
1

The Line 8 Subway
Exploitation of Windows 8 Metro Style Apps

Ming-chieh Pan, Sung-ting Tsai. Core Tech, Trend Micro.

Contact: (nanika_pan|tt_tsai)@trend\.com\.tw

Abstract

Windows 8 introduces lots of security improvements; one of the most interesting features is

the Metro-style app. It not only provides fancy user interface, but also a solid application

sandbox environment. All Metro-style applications run in AppContainer, and the AppContainer

sandbox isolates the execution of each application. It can make sure that an App does not have

access to capabilities that it hasn't declared and been granted by the user.

This presentation will introduce the design of Metro-style app as well as AppContainer sandbox.

We will dive into details of the architecture and see how it works, how does it protect from a

malicious App attack. After reviewing the design, we are going to look for possible attack

vectors to bypass the sandbox. Analysis will start from low level to high level. We will describe

how we find the target to attack, and how we do analyze in different layers, such as debug of

APLC, COM server attack, WinRT API fuzzing, and logic flaw discovery. Not only the

methodology, we will also demonstrate some problems we have discovered, including tricks to

bypass AppContainer to access files, launch program, and connect to Internet.

2

Table of Contents
Abstract ... 1

1. Introduce the Security Design of Metro Style Apps ... 4

1.1 Configuration and Limitation ... 4

1.2 WinRT Environment and APIs .. 6

1.3 AppContainer Sandbox... 7

1.4 App Confidence .. 8

2. Sandbox Bypassing Analysis .. 8

2.1 Previous Work on Sandbox Bypassing ... 8

2.2 The Target .. 9

2.3 Attack Vectors .. 9

2.4 DLLs and Writing Shellcode .. 10

3. Debug of ALPC communication .. 11

3.1 Message Flow ... 11

3.2 ALPC Syscal ... 12

3.3 HOOK and Monitoring ALPC communication .. 12

3.4 Fuzzing of ALPC communication .. 14

4. Attack COM server .. 15

4.1 COM on Windows 8 ... 15

4.2 Purpose of COM Testing... 15

Test stability of COM server .. 15

Test functionality of COM server .. 15

4.3 The Target – RuntimeBroker and Other COM server .. 16

4.4 Find Interface and Functions .. 19

4.5 Start the Testing ... 19

4.6 Use Desktop App to Test .. 20

4.7 Attack Trend? ... 21

5. Attack WinRT API .. 21

5.1 WinRT APIs Test.. 21

3

5.2 A Broker Process Memory Corruption ... 22

6. Attack Design Logic ... 25

6.1 Bypass Internet Connection Limitation .. 25

6.2 Bypass Launch Program Limitation .. 26

6.3 Bypass File/Folder Access... 29

7. Conclusion ... 29

8. References .. 29

9. Appendix ... 30

9.1 Clsid with “ALL APPLICATION PACKAGE” launch permission ... 30

9.2 OpenWith.exe Vulnerability Details: .. 31

4

1. Introduce the Security Design of Metro Style Apps

1.1 Configuration and Limitation

Metro style apps developer must specify which resource they need to access by declaring the

capabilities in its package manifest. After submitting to the Windows store, it is checked to

ensure that the declared capabilities match the description of the app. It is not allowed to

access the resource it doesn’t declare.

The capability settings include 3 types of resource:

 Network: Enterprise auth., client, server & client, Intranet, Text, Messaging, etc.

 File System: Documents, Pictures, Music, Video, etc.

 Devices: Location (e.g. GPS), Microphone, Proximity (e.g. NFC), Removable

storage, etc.

(Things that are specific to an application (local storage, settings, etc.) do not require

capabilities.)

Following picture shows the capability settings:

5

When users get apps from the Windows Store, they are notified of all the capabilities that the

app declares.

6

1.2 WinRT Environment and APIs

Windows Runtime (WinRT API) is the backbone of the new Metro-style apps (also known as

Immersive) in the Windows 8 operating system. It provides a set of API that can be called

from .NET languages (C#, VB.NET, F#), C++, and HTML/JavaScript.

(Picture source: http://blogs.msdn.com/b/b8/archive/2012/02/09/building-windows-for-the-

arm-processor-architecture.aspx)

http://blogs.msdn.com/b/b8/archive/2012/02/09/building-windows-for-the-arm-processor-architecture.aspx
http://blogs.msdn.com/b/b8/archive/2012/02/09/building-windows-for-the-arm-processor-architecture.aspx

7

The architecture provides safe, secure, and sandboxed design, so Metro style apps need to use

WinRT API to access resources from OS.

1.3 AppContainer Sandbox

An application sandbox is a mechanism to isolate untrusted processes, protecting system from

exploit attack. AppContainer is a new sandbox design in Windows 8. All metro style apps run in

a security 'sandbox' called the AppContainer that isolates them from other Metro apps and

from the operating system.

Isolated process which runs with very limited rights. They need to communicate with a broker

process to run all privilege commands/operations. An IPC mechanism to allow isolated

processes to communicated with broker.

The architecture of AppContainer sandbox:

(Picture source: http://ameblo.jp/naoshi1128/entry-11049964906.html)

http://ameblo.jp/naoshi1128/entry-11049964906.html

8

1.4 App Confidence

Not only WinRT and AppContainer, Windows also provide lots of security features to secure

Metro style apps, such as App Signatures, Certification Kit, etc.

(Picture source: http://blogs.msdn.com/b/b8/archive/2012/05/17/delivering-reliable-and-

trustworthy-metro-style-apps.aspx)

We agree all of these designs really provide a secure execution environment for Metro style

apps. We would say, exploit metro style app is not easy.

In this paper, we will focus on the sandbox bypassing part. We are going to review the

architecture of AppContainer, and explain how we look for problems, and to see is it possible to

bypass AppContainer sandbox.

2. Sandbox Bypassing Analysis

2.1 Previous Work on Sandbox Bypassing

There are some typical approaches to bypass an application sandbox:

 Exploit kernel or privilege escalation vulnerabilities to escape sandbox.

 File system: looking for accessible folders/files and registries, especially some writable

locations on the disk. And to see what we can do or what we can get from these places.

9

 Sending message or keyboard events to outside of sandbox, it might trigger some

privilege actions.

 Leverage special handles: some available handles might be used to communicate with

other process or resources.

However, we will not use above approaches to bypass sandbox. We are going to provide

some new techniques targeting architecture of Metro style apps and the AppContainer.

2.2 The Target

In order to bypass Sandbox, usually the first target is the broker process. In Metro style apps,

our target is the RuntimeBroker.

2.3 Attack Vectors

Metro style apps are based on WinRT, and WinRT is essentially a COM-based API. Metro style

apps communicate with the RuntimeBroker through COM interfaces. Under the COM, there is

the APLC communication in Kernel. Following graph shows the flow of communication between

a Metro style app and RuntimeBroker.

10

From the architecture view, there are three attack vectors: APLC, COM, and WinRT. Plus the

logic design flaw, we are going to discuss four attack vectors in following chapters:

 Debug of ALPC

 Attack COM Server

 Attack WinRT

 Discover Design Logic Flaw

2.4 DLLs and Writing Shellcode

Since there is no win32 COM API we can use directly, we need to write shellcode to use COM

APIs. There are something should be noted:

 Originally COM API is in the ole32.dll, however, COM API has been moved to

combase.dll in Windows 8.

 When you writing shellcode, InInitOrder.blink is the base address of kernelbase.dll, not

kernel32.dll.

 There are still some WinRT COM APIs we can leverage, such as Ro* APIs.

11

3. Debug of ALPC communication

The first step of analyzing communication of metro style apps is to see what we can do in APLC

communication.

Message Flow

3.1 Message Flow

(Ref: http://www.quarkslab.com/dl/2012-HITB-WinRT.pdf)

As you see in this picture, COM is responsible for the communications between metro style app

and Runtimebroker. For example, to access one file, the metro style app marshals its request

via COM, then passes it to Runtimebroker by ALPC. Once Runtimebroker receives the

marshaled-request, first it has to un-marshals the request via COM to get the request data.

After Runtimebroker successfully auditing the request’s privileges, it opens the file and passes

contents to app following the same marshaling mechanisms. So this is the flow between metro

style app and runtime broker

http://www.quarkslab.com/dl/2012-HITB-WinRT.pdf
http://www.quarkslab.com/dl/2012-HITB-WinRT.pdf

12

3.2 ALPC Syscal

Here is the list of communication related ALPC syscall:

• 82027f1c 8247ba70 nt!NtAlpcSendWaitReceivePort

• 82027f5c 824defc4 nt!NtAlpcCreatePort

• 82027f60 824e9ae4 nt!NtAlpcConnectPort

• 82027f6c 824f78de nt!NtAlpcAcceptConnectPort

We are interested in these 4 API. nt!NtAlpcSendWaitReceivePort is in charge of send and

receive data; nt!NtAlpcCreatePort is in charge of Port creating; nt!NtAlpcConnectPortis in

charge of Port connecting; nt!NtAlpcAcceptConnectPortis in charge of connection accepting. If

we can get data/content through this communication channel, that would be very helpful for

debug of ALPC communication. So we decide to hook these APIs.

3.3 HOOK and Monitoring ALPC communication

In order to analyze the communication data, here we provide 4 windbg scripts to help debug.

These 4 scripts can grab the communication data. We also wrote an automatic testing program

for Metro style app testing, by continually sending crafted data to NtAlpcSendWaitReceivePort.

Hook NtAlpcSendWaitReceivePort:

bp ntdll!NtAlpcSendWaitReceivePort ".catch{r @$t10 = 0xe4c;.if(@$teb != 0){.if(poi(@$teb+20)
= @$t10){!handle poi(esp+0x4);.process; .printf \"PID:%x PortHandle:%x Flags:%x
SendMessage:%x SendMessageAttributes:%x ReceiveMessage:%x BufferLength:%x
ReceiveMessageAttributes:%x
Timeout:%x\r\n\",poi(@$teb+20),poi(esp+0x4),poi(esp+0x8),poi(esp+0xc),poi(esp+0x10),poi(es
p+0x14),poi(esp+0x18),poi(esp+0x1c),poi(esp+0x20);.if(poi(esp+c)!=0){.printf \"send:\";dt
_PORT_MESSAGE poi(esp+c);db poi(esp+c) l
(poi(poi(esp+c))&0xffff)+0x18;gc;};.if(poi(esp+0x14)!=0){r @$t0 = poi(esp+0x14);.printf
\"recv:\";bp poi(esp) \".process;.if(poi(@$teb+20) = @$t10){r @$t1 =
(poi(@$t0)&0xffff)+0x18;dt _PORT_MESSAGE @$t0;!alpc /lpp;!alpc /m poi(@$t0+0x10);db
@$t0 l @$t1;bc 2;gc;}.else{gc;}\";gc;}}.else {gc;}}.else {gc;}}"

This can help us to know when the ALPC port is created.

13

Please be noted that this hook is a global hook. You need to filter messages by process id like

this showing.

Hook NtAlpcCreatePort:

bp nt!NtAlpcCreatePort ".process; .printf \"PID:%x PortHandle:%x ObjectAttributes:%x
MaxConnectionInfoLength:%x MaxMessageLength:%x MaxPoolUsage:%x
\r\n\",poi(@$teb+20),poi(esp+0x4),poi(esp+0x8),poi(esp+0xc),poi(esp+0x10),poi(esp+0x14);"

This can help us to know when the ALPC port created is.

Hook NtAlpcConnectPort:

bp nt!NtAlpcConnectPort ".process; .printf \"PortHandle:%x PortName:%msu
ObjectAttributes:%x PortAttributes:%x Flags:%x RequiredServerSid:%x ConnectionMessage:%x
BufferLength:%x OutMessageAttributes:%x InMessageAttributes:%x Timeout:%x
\r\n\",poi(esp+0x4),poi(esp+0x8),poi(esp+0xc),poi(esp+0x10),poi(esp+0x14),poi(esp+0x18),poi(
esp+0x1c),poi(esp+0x20),poi(esp+0x24),poi(esp+0x28),poi(esp+0x2c) "

This can help us to know when the port is connected and what the name of the port is.

Hook NtAlpcAcceptConnectPort:

bp nt!NtAlpcAcceptConnectPort ".process; .printf \"PortHandle:%x ConnectionPortHandle:%x
Flags:%x ObjectAttributes:%x PortAttributes:%x PortContext:%x ConnectionRequest:%x
ConnectionMessageAttributes:%x AcceptConnection:%x
\r\n\",poi(esp+0x4),poi(esp+0x8),poi(esp+0xc),poi(esp+0x10),poi(esp+0x14),poi(esp+0x18),poi(
esp+0x1c),poi(esp+0x20),poi(esp+0x24); “

This can help us to know when the connection been accepted is.

Testing flow:

14

First, open a log file to write to. Second, Hook on NTAlpcCreatePort function, and then we can

know when port is created. Third, launch the metro-style-app, then your hook will get a process

ID. Fourth, Hook on NtAlpcSendWaitReceivePort function to see the data, to see what is

sending and what is receiving.

And following is the data sample that we intercepted:

ncalrpc:[\\Sessions\\1\\AppContainerNamedObjects\\S-1-15-2-1115239912-5888679-
3094415206-3103815194-10819155-2778485781-2267460753\\RPC
Control\\OLE9517A3676FBEC77BBFB0BB30B841]

By the script we have just mentioned, the data transmitted can be caught in windbg. We can

see strings like this when ALPC ports are created.

3.4 Fuzzing of ALPC communication

We know how to monitor the ALPC communication. Now we want to fuzz the ALPC

communication. We can write a script to test ALPC protocol automatically, and keep sending

malformed data to NtAlpcSendWaitReceivePort.

15

4. Attack COM server

4.1 COM on Windows 8

The attack in the upper layer can be achieved by COM. Similarly, we would like to test Metro

style apps using COM. One thing needs to be noted first, in win8 & win7, the base address we

get by InInitOrder.blink is kernelbase.dll instead of kernel32.dll. Also, in win8, some API in

ole32.dll must be called through combase.dll. The COM in WinRT utilizes some private API in

Ro* API, which can be directed used by us while developing WinRT shellcode.

4.2 Purpose of COM Testing

Test stability of COM server

The first, we want to test the stability of COM servers, and want to look for the problem like

memory corruption.

Test functionality of COM server

Also, we want to test the functionality of COM servers. There might be some useful functions

can help us to do privileged operations. There might be some useful functions can help us to do

privileged operations.

16

4.3 The Target – RuntimeBroker and Other COM server

The Metro style apps majorly communicate with the Broker process – RuntimeBroker. So

RuntimeBroker is the first target.

We can use shellcode to call COM APIs, so is it possible to use COM to communicate with other

COM servers? The answer is “Yes”.

COM servers usually provide services for other program. So looking for a useful COM server

might be a chance to escape from the sandbox.

And sometimes you can find a COM server with high privilege, for example:

17

In this sample, TabTip is a COM server with ‘High’ privilege. Compromised this COM server

means get the highest permission.

Following is the list of available COM server list.

There are so many COM servers. How do we know which one we can use?

We need to check the permission:

18

One thing we have to note is the launch permission of COM server, it can only be launched by

Metro APP if ALL APPLICATION PACKAGE permission is granted.

As the example, this COM server allows Metro style apps to use.

So this one has to be granted, and then metro style app can use this COM server. We are

interested in this kind of COM servers.

19

4.4 Find Interface and Functions

After decide the target, now we need to see how to use this COM service (server), i.e. looking

for the specification of interface and functions.

Using the tool ‘ComView’ can get the interface list and how many functions in the vtable.

The tool COMView can help us to enumerate COM server interfaces. After got the interface, we

need to get functions. COM View can only retrieve function vtable address. (like picture

showing). However, IDApro can dig more details such as function name and parameters.

4.5 Start the Testing

Use CoCreateInstance() could trigger start of the COM server, then it could get an object

pointer. With the pointer, we can iterate all functions. Call these functions and start to test.

20

4.6 Use Desktop App to Test

Testing COM servers from Metro style apps is kind of tough jobs, since we need to write

shellcode/asm doing everything. Actually we can test COM server using Desktop app, because:

 It is much easier: we can use most of APIs.

 It has better error handling: using desktop app, we can do error handling easily.

 Debug: we can attach COM server to debug.

21

4.7 Attack Trend?

Since there are more and more application sandbox, using COM communication to bypass

sandbox might become an attack trend.

5. Attack WinRT API

5.1 WinRT APIs Test

This is the architecture of WinRT API:

22

You must know API before fuzzing it. The metro style app API can be categorized in UI, Device,

Media, Communication & data and Fundamentals.

As for the testing to WinRT, we can apply the same methods with other application fuzzing,

such as IE : append some abnormal arguments or tags to all methods, and see if something was

going wrong. All we have to do is iterating all mutations and combinations through each API.

5.2 A Broker Process Memory Corruption

During the testing, we discovered a memory corruption problem in a broker process –

OpenWith.exe. And we found this is possible exploitable:

23

We used !exploitable Crash Analyzer (MSEC Debugger Extension), a windbg plugin to

investigate this bug and found it to be exploitable. Like picture shows: Call dword ptr [ecx+18h].

And it also shows “PROBABLY_EXPLOITABLE”

24

The PoC Code:

var savePicker = new Windows.Storage.Pickers.FileSavePicker();

savePicker.suggestedStartLocation =

Windows.Storage.Pickers.PickerLocationId.desktop;

savePicker.defaultFileExtension = ".docx";

savePicker.suggestedFileName = "New Document";

savePicker.fileTypeChoices.insert("Microsoft Word Document", [".docx",

".doc"]);

savePicker.fileTypeChoices.insert("Plain Text", [".txt"]);

savePicker.commitButtonText = "0day_demo";

var userContent = "hello world";

savePicker.pickSaveFileAsync().then(function (file){

 if (file) {

 var options = new Windows.System.LauncherOptions();

 options.displayApplicationPicker = true;

 Windows.System.Launcher.launchFileAsync(file, options);

 }

}

25

This bug was fixed in Release Preview version, we don’t know if there are chances to see it

again in the future. But it proved our testing methods to be workable.

6. Attack Design Logic
Exploiting metro style apps need so much hard work? Not exactly, we are going to show you

some design problem that we can still use to easily bypass sandbox. We are going to show you

how to bypass restriction of Internet connection, execute program, and file access.

6.1 Bypass Internet Connection Limitation

Even you didn’t grant the Internet Connect permission to app, the app still have some way to

send information to Internet.

 Launch other applications to connect instead. For example, launch Metro Internet

Explorer, and specify a URL with information that you want to send in URL parameters.

 Use URL protocol. For example, open a mms:// URL. It will launch associated application

to connect.

 Open a document. A malicious app may write/drop a document, and the document may

embed some object which could connect to Internet. Open the document, the

connection will be created.

26

Patch information: (from MSRC)

Such undesirable activities are highly detectable by either users or the AV industry, and once

reported to Microsoft, we have the ability to remove the offending app from all user machines,

thus protecting Windows 8 users.

Exploit scenario:

Will user be aware of media player is sending information to Internet, or they only know media

player is trying to play a video?

6.2 Bypass Launch Program Limitation

It is not allow launching other program/application in Metro Style app. However, we have

discovered some ways to bypass the limitation:

 Inline asm and shellcode: although there is no API for you to launch another application.

We found that we can still launch application using inline asm or shellcode technique.

 ClickOnce package (.Application/.xbap) is executable: once you can write or drop

a .xbap file, you can install and run programs.

 DLL hijacking: during the test, we found there are still some DLL hijacking problems in

Windows 8 application. Once you can find a DLL that will be loaded by an application (ex:

office), you can easily execute instructions in the DLL file.

27

Launch cmd.exe in a Metro Style App:

Launch an .application package:

28

For the DLL hijacking, we found that IE in debug build version has a DLL hijacking vulnerability:

drop a file and rename it to traceextn.dll, as long as IE is launched, this file will be loaded by IE

and execute with IE privilege, which can lead to the metro-app restriction bypass.

Patch Information

(ClickOnce) ClickOnce problem will be fixed in next Windows 8 release.

(DLL Hijacking)We would consider this type of exploit a vulnerability in the desktop applications

rather than a vulnerability in the metro app or the platform. We continue to address DLL

hijacking bugs in security updates as detailed in our security advisory for Insecure Library

loading.

29

6.3 Bypass File/Folder Access

During the test, we found an issue in a broker process: PickerHost.exe.

Even you didn’t grant file system access to App, the App still can use SavePickFile/PickFolder to

let user choice folders they want to access, such as save a file in user-specified folders.

The PickerHost.exe is running with Medium permission, and we found the process can be used

to have full control of the folder that user specified. When user is picking a folder, once user

click/open a folder, the app has full control to the folder (medium permission). Then the app

can read/write all files in the folder, even modify content of files (ex: change file to be malicious,

or read files and send to Internet).

Patch Information (From MSRC)

This is a deliberate feature, and fully under the user’s control. Users should not click “ok” to the

File picker dialog if they do not want the app to have access to that folder tree. We consider this

under the user’s control and as such do not view it as a threat.

7. Conclusion
In this paper, we introduced the security design of AppContainer, the methodology of Metro

style app vulnerability discovery, and the issues we have discovered.

Windows 8 introduces a lot of security improvements. We agree it is much more secure than

before. For the Metro style apps, the sandbox and the design of Windows store can provide a

trustable environment for users.

However it doesn’t mean bad guys don’t have any chances. After review the design, there are

still some problems that can be leveraged by bad guys.

8. References
 Windows RunTime - Hack In The Box 2012

 Practical Sandboxing on the Windows Platform

 Escaping The Sandbox

 Extraordinary String Based Attacks - Smashing the ATOM

 Playing In The Reader X Sandbox

 A day of Windows 8 and Metro

http://www.quarkslab.com/dl/2012-HITB-WinRT.pdf
https://media.blackhat.com/bh-eu-11/Tom_Keetch/BlackHat_EU_2011_Keetch_Sandboxes-Slides.pdf
https://media.blackhat.com/bh-ad-10/Ridley/BlackHat-AD-2010-Ridley-Escaping-The-Sandbox-slides.pdf
http://www.azimuthsecurity.com/resources/recon2012_mandt.pptx
https://media.blackhat.com/bh-us-11/Sabanal/BH_US_11_SabanalYason_Readerx_Slides.pdf
http://www.devweek.com/code/DWheeler_DevWeek12_Windows_8_Metro.pdf

30

 WINDOWS PRIVILEGE ESCALATION THROUGH LPC AND ALPC INTERFACES

 Local Procedure Call

 COMView

 !exploitable Crash Analyzer - MSEC Debugger Extensions

 Reverse Engineering and Modifying Windows 8

 Enhanced Protected Mode

 Understanding Enhanced Protected Mode

 Practical Windows Sandboxing – Part 1

 Practical Windows Sandboxing, Part 2

 Practical Windows Sandboxing – Part 3

 Windows 8 browsers: the only Metro apps to get desktop power

 Delivering reliable and trustworthy Metro style apps

 Design Details of the Windows Runtime

 Application Sandboxing in Windows 8

 Win32 and COM for Metro style apps

 Enhanced Protected Mode

 Understanding Enhanced Protected Mode

 Enhanced Memory Protections in IE10

9. Appendix

9.1 Clsid with “ALL APPLICATION PACKAGE” launch permission

{69B1A7D7-C09E-40E9-A1DF-688007A2D9E4} //imebroker.exe
{9A4B1918-0A2F-4422-89DD-35B3F455999C} //imebroker.exe
{A4FBCBC6-4BE5-4C3D-8AB5-8B873357A23E} //imebroker.exe
{BA6EE7D8-190D-423A-93CC-1270E6599195} //imebroker.exe
{C658E5BD-817B-41C8-8FB6-5B2B386A40EA} //imebroker.exe
{DE50C7BB-FAA7-4A7F-BA47-BF0EFCFE433D} //imebroker.exe
{DF46CD07-4F86-42F0-8FA9-35C3CE55D77B} //imebroker.exe

{7FC12E96-4CB7-4ABD-ADAA-EF7845B10629}//CredentialUIBroker.exe
{31337EC7-5767-11CF-BEAB-00AA006C3606}//AuthHost.exe
{36BBB745-0999-4FD8-A538-4D4D84E4BD09}//CLSID_JITDebuggingHost
{228826AF-02E1-4226-A9E0-99A855E455A6}//Immersive Shell Broker unknow
{A47979D2-C419-11D9-A5B4-001185AD2B89}//Network List Manager unknow
{C4D6E899-E38A-4838-9188-0B98EE3175E6}//ProgrammabilityManager Class unknow
{D63B10C5-BB46-4990-A94F-E40B9D520160}//RuntimeBroker.exe

http://recon.cx/2008/a/thomas_garnier/LPC-ALPC-paper.pdf
http://en.wikipedia.org/wiki/Local_Procedure_Call
http://www.japheth.de/COMView.html
http://msecdbg.codeplex.com/
http://justinangel.net/ReverseEngineerWin8Apps
http://blogs.msdn.com/b/ie/archive/2012/03/14/enhanced-protected-mode.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/03/23/understanding-ie10-enhanced-protected-mode-network-security-addons-cookies-metro-desktop.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/30/practical-windows-sandboxing-part-2.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/31/practical-windows-sandboxing-part-3.aspx
http://www.techradar.com/news/software/operating-systems/windows-8-browsers-the-only-metro-apps-to-get-desktop-power-1073930
http://blogs.msdn.com/b/b8/archive/2012/05/17/delivering-reliable-and-trustworthy-metro-style-apps.aspx
http://www.infoq.com/news/2011/09/Design-Details-Windows-Runtime
http://blog.avecto.com/2012/05/application-sandboxing-in-windows-8/
http://msdn.microsoft.com/en-us/library/windows/apps/br205757.aspx
http://blogs.msdn.com/b/ie/archive/2012/03/14/enhanced-protected-mode.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/03/23/understanding-ie10-enhanced-protected-mode-network-security-addons-cookies-metro-desktop.aspx
http://blogs.msdn.com/b/ie/archive/2012/03/12/enhanced-memory-protections-in-ie10.aspx

31

{549E57E9-B362-49D1-B679-B64D510EFE4B}//ShareFlow
{7B6EA1D5-03C2-4AE4-B21C-8D0515CC91B7}//Shell Create Object Task Server unknow
{F1425A67-1545-44A2-AB59-8DF1020452D9}//Spell Checking Host Class
{D6E88812-F325-4DC1-BBC7-23076618E58D}//TsfManager Class unknow TabTip.exe
{6B19643A-0CD7-4563-B710-BDC191FCAD3B}//TSFstateManager Class unknow TabTip.exe
{054AAE20-4BEA-4347-8A35-64A533254A9D}//high UIHost Class TabTip.exe
{4CE576FA-83DC-4F88-951C-9D0782B4E376}//UIHostNoLaunch Class unknow TabTip.exe
{2F93C02D-77F9-46B4-95FB-8CBB81EEB62C}//DevicesFlow
{19C65143-6230-42FA-A58E-7D9FA9BE2EB5}//WorkspaceBroker Class wkspbroker.exe

9.2 OpenWith.exe Vulnerability Details:
0:000> !analyze -v

**

*

*

* Exception Analysis

*

*

*

**

TRIAGER: Could not open triage file : C:\Program Files\Windows

Kits\8.0\Debuggers\x86\triage\guids.ini, error 2

TRIAGER: Could not open triage file : C:\Program Files\Windows

Kits\8.0\Debuggers\x86\triage\modclass.ini, error 2

FAULTING_IP:

twinui!CImmersiveOpenWithUI::_CreateAndPositionPopup+172

6e0f30b4 8b08 mov ecx,dword ptr [eax]

EXCEPTION_RECORD: ffffffff -- (.exr 0xffffffffffffffff)

ExceptionAddress: 6e0f30b4

(twinui!CImmersiveOpenWithUI::_CreateAndPositionPopup+0x00000172)

 ExceptionCode: c0000005 (Access violation)

 ExceptionFlags: 00000000

NumberParameters: 2

 Parameter[0]: 00000000

 Parameter[1]: 00000000

Attempt to read from address 00000000

PROCESS_NAME: OpenWith.exe

ERROR_CODE: (NTSTATUS) 0xc0000005 - The instruction at 0x%08lx referenced

memory at 0x%08lx. The memory could not be %s.

32

EXCEPTION_CODE: (NTSTATUS) 0xc0000005 - The instruction at 0x%08lx referenced

memory at 0x%08lx. The memory could not be %s.

EXCEPTION_PARAMETER1: 00000000

EXCEPTION_PARAMETER2: 00000000

READ_ADDRESS: 00000000

FOLLOWUP_IP:

twinui!CImmersiveOpenWithUI::_CreateAndPositionPopup+172

6e0f30b4 8b08 mov ecx,dword ptr [eax]

NTGLOBALFLAG: 400000

APPLICATION_VERIFIER_FLAGS: 0

APP: openwith.exe

FAULTING_THREAD: 00000be4

BUGCHECK_STR: APPLICATION_FAULT_NULL_POINTER_READ_BEFORE_CALL

PRIMARY_PROBLEM_CLASS: NULL_POINTER_READ_BEFORE_CALL

DEFAULT_BUCKET_ID: NULL_POINTER_READ_BEFORE_CALL

LAST_CONTROL_TRANSFER: from 6e0f26e6 to 6e0f30b4

STACK_TEXT:

00d3fdc4 6e0f26e6 0107aea0 0107af3c 00f10f1c

twinui!CImmersiveOpenWithUI::_CreateAndPositionPopup+0x172

00d3fdf8 6e0f21fd 0107aea0 00000001 01072528

twinui!CImmersiveOpenWithUI::_CreateAndShow+0x2d4

00d3fe1c 012925a7 00f10f1c 01072548 0107aeec

twinui!CImmersiveOpenWithUI::CreateAndShowFromDelegateExecute+0xc7

00d3fe68 01292e3c 00000001 00000020 00000000

OpenWith!COpenWithLauncher::_DoExecute+0x6e

00d3fe94 012957db 01290000 00000000 00ec1394 OpenWith!wWinMain+0xee

00d3ff24 74fb1d17 7f8e4000 00d3ff70 771f0c25 OpenWith!_initterm_e+0x17c

00d3ff30 771f0c25 7f8e4000 9c280193 00000000 kernel32!BaseThreadInitThunk+0xe

00d3ff70 771f0bfb 01295873 7f8e4000 ffffffff ntdll!__RtlUserThreadStart+0x23

00d3ff88 00000000 01295873 7f8e4000 00000000 ntdll!_RtlUserThreadStart+0x1b

STACK_COMMAND: ~0s; .ecxr ; kb

SYMBOL_STACK_INDEX: 0

SYMBOL_NAME: twinui!CImmersiveOpenWithUI::_CreateAndPositionPopup+172

FOLLOWUP_NAME: MachineOwner

MODULE_NAME: twinui

IMAGE_NAME: twinui.dll

33

DEBUG_FLR_IMAGE_TIMESTAMP: 4f3f076c

FAILURE_BUCKET_ID:

NULL_POINTER_READ_BEFORE_CALL_c0000005_twinui.dll!CImmersiveOpenWithUI::_Crea

teAndPositionPopup

BUCKET_ID:

APPLICATION_FAULT_NULL_POINTER_READ_BEFORE_CALL_twinui!CImmersiveOpenWithUI::

_CreateAndPositionPopup+172

WATSON_STAGEONE_URL:

http://watson.microsoft.com/StageOne/OpenWith_exe/6_2_8250_0/4f3f12b8/twinui_

dll/6_2_8250_0/4f3f076c/c0000005/001330b4.htm?Retriage=1

Followup: MachineOwner

0:000> u 6e0f30b4 l 20

twinui!CImmersiveOpenWithUI::_CreateAndPositionPopup+0x172:

6e0f30b4 8b08 mov ecx,dword ptr [eax]

6e0f30b6 8d5584 lea edx,[ebp-7Ch]

6e0f30b9 52 push edx

6e0f30ba 50 push eax

6e0f30bb ff5118 call dword ptr [ecx+18h]

6e0f30be 8bf0 mov esi,eax

6e0f30c0 85f6 test esi,esi

6e0f30c2 783b js

twinui!CImmersiveOpenWithUI::_CreateAndPositionPopup+0x1bd (6e0f30ff)

6e0f30c4 d94584 fld dword ptr [ebp-7Ch]

6e0f30c7 e8da261900 call twinui!_ftol2_sse (6e2857a6)

6e0f30cc d94588 fld dword ptr [ebp-78h]

6e0f30cf 89458c mov dword ptr [ebp-74h],eax

6e0f30d2 e8cf261900 call twinui!_ftol2_sse (6e2857a6)

6e0f30d7 8b7db0 mov edi,dword ptr [ebp-50h]

6e0f30da 8d7324 lea esi,[ebx+24h]

6e0f30dd 8b0e mov ecx,dword ptr [esi]

6e0f30df 894590 mov dword ptr [ebp-70h],eax

6e0f30e2 85c9 test ecx,ecx

6e0f30e4 7409 je

twinui!CImmersiveOpenWithUI::_CreateAndPositionPopup+0x1ad (6e0f30ef)

6e0f30e6 832600 and dword ptr [esi],0

6e0f30e9 8b01 mov eax,dword ptr [ecx]

6e0f30eb 51 push ecx

6e0f30ec ff5008 call dword ptr [eax+8]

6e0f30ef 8b07 mov eax,dword ptr [edi]

6e0f30f1 56 push esi

6e0f30f2 8d4d8c lea ecx,[ebp-74h]

6e0f30f5 51 push ecx

6e0f30f6 ff731c push dword ptr [ebx+1Ch]

6e0f30f9 57 push edi

6e0f30fa ff501c call dword ptr [eax+1Ch]

6e0f30fd 8bf0 mov esi,eax

6e0f30ff 8b4da4 mov ecx,dword ptr [ebp-5Ch]

0:000> r

eax=00000000 ebx=00d3f7dc ecx=00000400 edx=00000000 esi=00d3f74c edi=00000000

34

eip=7722c2d4 esp=00d3f620 ebp=00d3f7a4 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246

ntdll!KiFastSystemCallRet:

7722c2d4 c3 ret

