
Stamp Out Hash Corruption,
Crack All the Things!
Ryan	Reynolds,	Manager,	Crowe	Horwath,	LLP	
Jonathan	Claudius,	SpiderLabs	Security	Researcher,	Trustwave	
July	2012	
	

Abstract
	
This	whitepaper	is	to	serve	as	a	supporting	reference	to	the	Black	Hat	USA	2012	
talk,	“Stamp	Out	Hash	Corruption,	Crack	All	the	Things!”.		The	focus	of	both	the	
paper	and	presentation	is	to	show	how	a	number	of	Windows	password	extraction	
tools	–			Cain	and	Able,	Metasploit,	Creddump	and	many	others	–	yield	corrupt	data	
when	extracting	password	hashes	from	the	Windows	Registry.		Both	the	paper	and	
the	presentation	include	the	discovery	process	and	a	detailed	description	of	the	
problem,	as	well	as	a	solution	for	obtaining	the	correct	hashes.	

Content Primer
	
The	motivation	behind	obtaining	password	hashes	from	Windows‐based	systems	is	
very	similar	to	obtaining	password	hashes	from	any	other	operating	system,	service	
or	application.		Generally	speaking,	the	focus	of	this	process	is	either	to	transform	a	
hash	into	the	original	clear‐text	version	of	the	password	or	to	be	able	to	use	that	
hash	directly	(perhaps	via	the	pass‐the‐hash	technique	in	Windows)	to	either	
validate	the	security	of	the	password	itself	or	to	escalate	privileges	in	the	context	of	
a	malicious	user.	
	
When	referring	to	Windows‐based	password	hashes,	there	are	two	different	hash	
types	that	this	paper	will	focus	on;	LAN	Manager	(LM)‐style	hashes	and	NT	LAN	
Manager	(NTLM)‐style	hashes.		LM	hashing	is	the	older	of	the	two	hashing	
algorithms	and	comes	with	a	number	of	security	flaws:	
	

 Passwords	are	not	case‐sensitive	
 Passwords	have	a	maximum	length	of	14	characters	
 Passwords	are	split	into	two	7‐character	portions,	each	of	which	is	hashed	

separately,	drastically	reducing	the	number	of	potential	hash	keys	
 Hashes	are	not	individually	salted	

	
NTLM	hashing,	being	the	newer	of	the	two	algorithms,	is	stronger	than	LM	hashing.	
It	eliminates	the	first	three	shortcomings,	but	it	is	still	not	individually	salted,	
leaving	both	algorithms	susceptible	to	pre‐computed	dictionary	attacks.	
	

Two	methods	for	extracting	password	hashes	will	be	discussed:	memory	injection	
into	the	LSASS	process	space	(“memory	injection”)	and	reading	of	the	SAM	from	the	
Windows	Registry	(“registry	reading”).	
	
LSASS	injection	is	likely	the	most	popular	method	for	obtaining	Windows	password	
hashes,	using	tools	such	as	pwdump6	and	fgdump	2.1,	and	is	generally	accepted	as	
the	traditional	method	of	obtaining	hashes.		However,	LSASS	injection	does	come	
with	its	share	of	shortcomings:	

 Modern	anti‐virus	(AV)	controls	commonly	prevent	this	method	
 Potential	to	cause	a	crash	in	the	LSASS	process	

	
Registry	reading	is	historically	less	popular	but	has	recently	been	considered	a	
preferred	approach,	despite	having	been	around	for	quite	some	time	
(approximately	18	years),	because	it	overcomes	a	number	of	issues	presented	by	
the	memory	injection	method:	

 It	is	typically	not	obstructed	by	AV,	as	registry	access	is	allowed	as	part	of	
normal	activity	on	a	Windows	system	

 It	does	not	present	the	system	stability	concerns	of	loading	foreign	DLLs	into	
the	memory	of	critical	system	processes	

 Hashes	can	be	extracted	from	systems	that	are	not	running	by	copying	the	
appropriate	hive	files	

Research Motivations
	
The	motivation	behind	this	research	was	to	identify	and	eliminate	the	source	of	
inconsistencies	in	Windows	hashes	retrieved	during	real‐world	penetration	
assessments.	
	
During	assessments,	password	hashes	where	often	obtained	by	using	the	registry	
reading	method.		Occasionally,	though,	extracted	hashes	would	appear	corrupted	–	
they	did	not	work	in	pass‐the‐hash	techniques	and	they	could	not	be	cracked,	even	
when	using	rainbow	tables.		However,	when	reverting	to	using	the	memory	
injection	method,	as	a	sanity	check,	entirely	different	hashes	would	be	received	for	
the	same	accounts.	LM	and	NTLM	hashes	from	an	example	user	are	provided	below,	
using	both	methods.	
	

4500a2115ce8e23a99303f760ba6cc96 (BAD LM HASH)
 5c0bd165cea577e98fa92308f996cf45 (BAD NTLM HASH)

	
Figure:	1A	(via	Registry	Reading	Method)	

	
aad3b435b51404eeaad3b435b51404ee (LM HASH)

 5f1bec25dd42d41183d0f450bf9b1d6b (NTLM HASH)

Figure:	1B	(via	Memory	Injection	Method)	

Attempts	to	crack	the	hashes	extracted	using	the	memory	injection	method	were	
successful	in	obtaining	the	clear‐text	password	(“bananas”	in	the	above	example).		
Additionally,	attempts	to	use	the	pass‐the‐hash	technique	to	gain	access	to	other	
systems	were	also	successful.		With	this	understanding,	it	was	clear	that	something	
was	wrong	with	the	registry	reading	method	deployed	by	many	tools,	causing	them	
to	yield	incorrect	hashes.	
	
As	part	of	this	research,	attempts	were	made	to	identify	other	individuals	who	had	
experienced	similar	issues.		This	led	to	the	discovery	of	several	people	who	had	
experienced	this	issue	before	and	the	identification	of	a	pre‐existing	Metasploit	Bug	
#4404,	which	describes	the	symptoms	of	the	issue	described	above.	The	goal	of	this	
research	was	to	correct	this	problem	and	patch	the	tools	that	are	affected	so	that	the	
information	security	community	can	more	reliably	obtain	correct	password	hashes	
in	order	to	assess	the	true	state	of	a	given	system.	

Detailed Technical Description
	
To	understand	this	issue,	it	is	important	to	understand	where	hash	data	is	stored,	
how	it	is	extracted	and	how	it	is	converted	into	usable	LM	and	NTLM	hashes	that	
can	be	processed	by	cracking	tools	such	as	John	the	Ripper	(JtR).	
	
The	registry’s	SAM	key	(a	reference	to	the	Security	Accounts	Manager)	is	the	
permanent	storage	location	of	security	information	for	each	local	user	on	the	
system.	
	
In	taking	a	closer	look	at	the	SAM	key,	a	key	exists	for	each	individual	user	under	
HKLM\SAM\SAM\Domains\Account\Users\.		Under	each	user’s	key	are	two	
registry	values,	“F”	and	“V”,	each	containing	binary	data	that	represent	information	
about	the	user.		The	“F”	key	contains	primarily	policy	and	audit	information,	such	as	
last	logon,	password	last	set,	account	expires,	last	incorrect	password,	and	password	
expiration.	
	
The	“V”	key	–	the	one	of	particular	interest	–	contains	the	username,	full	name,	
comments,	home	directory,	hours	allowed	and	most	importantly	the	LM	and	NTLM	
hash	data	for	the	user.		It	is	important	to	note	here	that	the	LM	and	NTLM	hash	data	
present	in	the	“V”	key	is	not	the	actual	LM	and	NTLM	hashes.		This	data	needs	to	be	
translated	into	the	LM	and	NTLM	hash	formats	through	a	series	of	cryptographic	
algorithms,	which	are	outside	the	scope	of	this	paper,	but	are	explained	in	more	
detail	in	Brendan	Dolan‐Gavitt’s	2008	blog	post	on	“SysKey	and	the	SAM”	(See	
References).	
	
Here	is	an	example	of	the	binary	data	stored	in	both	the	“F”	and	“V”	keys	for	a	user	
that	is	storing	LM	and	NTLM	hash	data:	
	

HKEY_LOCAL_MACHINE\sam\sam\domains\account\users\000003ED
 F REG_BINARY 02000100998762B9
F859CD010000000000000000A7BAABA7F859CD01ED03000001020000100200000000000002000000

000000000000000000844400
 V REG_BINARY 00000000D400000002000100D40000000A00000000000000E0000000
0A00000000000000EC0000000000000000000000EC0000000000000000000000EC00000000000000
00000000EC0000000000000000000000EC0000000000000000000000EC0000000000000000000000
EC0000000000000000000000EC0000000000000000000000EC00000015000000A800000004010000
08000000010000000C01000014000000000000002001000014000000000000003401000004000000
0000000038010000040000000000000001001480B4000000C4000000140000004400000002003000
0200000002C014004400050101010000000000010000000002C01400FFFF1F000101000000000005
070000000200700004000000000014005B03020001010000000000010000000000001800FF070F00
0102000000000005200000002002000000001800FF070F0001020000000000052000000024020000
00002400440002000105000000000005150000003FAD1462235F636B07E53B2BED03000001020000
00000005200000002002000001020000000000052000000020020000740065007300740032000000
740065007300740032000100FF5B3E6801020000
07000000010001009AC412C7DA10C788963DF9DF7E6B5EF401000100B0FD8B04845B3E6836EC62ED
D3EC84CA0100010001000100

Figure:	2A	(LM	and	NTLM	Hash	Data	Stored)	
	
As	seen	in	figure	2A,	the	text	highlighted	in	yellow	is	the	LM	and	NTLM	hash	data	
that	a	tool	would	need	to	read	and	extract	for	this	user.		Here	is	another	example	of	
the	exact	same	user,	but	with	LM	storage	disabled.	
	

HKEY_LOCAL_MACHINE\sam\sam\domains\account\users\000003ED
 F REG_BINARY 02000100D3680214
F959CD010000000000000000A7BAABA7F859CD01ED03000001020000100200000000000002000000
000000000000000000844400
 V REG_BINARY 00000000D400000002000100D40000000A00000000000000E0000000
0A00000000000000EC0000000000000000000000EC0000000000000000000000EC00000000000000
00000000EC0000000000000000000000EC0000000000000000000000EC0000000000000000000000
EC0000000000000000000000EC0000000000000000000000EC00000015000000A800000004010000
08000000010000000C01000004000000000000001001000014000000000000002401000004000000
0000000028010000040000000000000001001480B4000000C4000000140000004400000002003000
0200000002C014004400050101010000000000010000000002C01400FFFF1F000101000000000005
070000000200700004000000000014005B03020001010000000000010000000000001800FF070F00
0102000000000005200000002002000000001800FF070F0001020000000000052000000024020000
00002400440002000105000000000005150000003FAD1462235F636B07E53B2BED03000001020000
00000005200000002002000001020000000000052000000020020000740065007300740032000000
740065007300740032000100FF5B3E6801020000
070000000100010001000100B0FD8B04845B3E6836EC62EDD3EC84CA0100010001000100

Figure:	2B	(Only	NTLM	Hash	Data	Stored)	
	
As	seen	in	Figures	2A	and	2B,	the	contents	stored	within	V	changes,	depending	on	
whether	an	LM	hash	is	present	or	not.			
	
While	the	hash	data	in	figures	2A	and	2B	has	been	manually	found	and	highlighted	
for	demonstration	purposes,	tools	must	follow	a	more	rigorous	process	to	know	
what	source	data	to	translate	into	actual	hashes.		
	
An	extraction	tool	starts	by	determining	the	read	offset	within	”V”	to	find	the	start	of	
the	hash	data	section.		The	following	pseudo‐code	is	used	to	reliably	find	the	
beginning	of	hash	data	section,	also	known	as	hash	data	offset:	
	

1. Read	156	bytes	(0x9c)	into	the	data	structure	
2. Then	parse	the	next	4	bytes	as	an	integer(X)	
3. Hash	Data	Offset	=	X	+	204	bytes	(0xCC)	

	
Now	that	the	hash	data	offset	is	known	for	a	particular	user,	the	remainder	of	the	
data	in	”V”,	starting	at	the	offset,	is	considered	the	hash	data	section.		Using	the	
above	examples	(Figure	2A	and	2B),	a	tool	reads	from	the	hash	data	offset	to	the	end	
of	the	data	structures	and	is	left	with	the	following	hash	data	sections	respectively:	

	
010001009AC412C7DA10C788963DF9DF7E6B5EF401000100B0FD8B04845B3E6836EC62EDD3EC84CA010001
0001000100 (hash data section)

Figure:	3A	(LM	and	NTLM	Hash	Data	Stored)	
	

0100010001000100B0FD8B04845B3E6836EC62EDD3EC84CA0100010001000100 (hash data section)

Figure:	3B	(Only	NTLM	Hash	Data	Stored)	
	
The	remaining	data	(hash	data	section)	for	both	data	structures	change	when	LM	
hash	data	is	not	present.		As	seen	in	figures	3A	and	3B,	the	hash	data	is	simply	
stripped	away	and	the	start	and	end	delineators	(“01000100”)	are	still	present.		
This	means	that	in	order	for	tools	to	properly	parse	hash	data	in	both	scenarios,	an	
extraction	tool	needs	to	make	a	decision	about	whether	or	not	the	LM	hash	data	is	
present	or	not.		Most	registry	extraction	tools,	in	use	today	and	included	within	
scope	of	this	research,	use	the	following	parsing	logic:	
	

1. If	Hash	Data	Section	>	40	bytes	(0x28)	then		
 lmoffset	=	Hash	Data	Offset	+	4	bytes	(0x04)	
 ntoffset	=	Hash	Data	Offset	+	20	bytes	(0x14)	
 Parse	as	if	LM	and	NTLM	hash	data	are	present	

2. Else	If	Hash	Data	Section	>	20	bytes	(0x14)	then	
 ntoffset	=	Hash	Data	Offset	+	8	bytes	(0x08)	
 Parse	as	if	NTLM	is	present	

	
Note:	The	above	4	byte	increments	used	in	the	offset	calculations	are	used	to	skip	
the	start	and	end	delineators	that	are	present	in	the	data	structure.	

	
When	a	tool	employs	the	above	logic	to	figures	3A	and	3B,	the	end	result	is	the	LM	
and	NTLM	hash	data	elements	from	each	structure:	
	

9AC412C7DA10C788963DF9DF7E6B5EF4 (LM HASH DATA)
 B0FD8B04845B3E6836EC62EDD3EC84CA (NTLM HASH DATA)

	
Figure:	4A	(LM	and	NTLM	Hash	Data	Stored)	

	
 B0FD8B04845B3E6836EC62EDD3EC84CA (NTLM HASH DATA)

Figure:	4B	(Only	NTLM	Hash	Data	Stored)	
	
As	seen	above,	when	a	tool	employs	this	logic	it	can	accurately	extract	password	
hash	data	for	this	user	.		After	this	information	is	obtained	by	a	tool,	the	resulting	
hash	data	can	then	be	passed	to	cryptographic	algorithms	to	decode	hash	data	and	
translate	into	typical	LM	and	NTLM	hashes.		These	hashes	can	then	be	supplied	to	a	
cracking	tool	like	John	the	Ripper	(JtR)	to	obtain	the	clear‐text	passwords.	
	
As	noted	previously,	the	above	parsing	logic	is	used	by	nearly	all	the	registry‐based	
extraction	tools	examined.		With	that	in	mind,	a	closer	look	at	the	F	and	V		data	for	

an	account	affected	by	the	hash	corruption	problem	is	illuminating.		The	following	
figures	show	an	example	of	this:	
	

HKEY_LOCAL_MACHINE\sam\sam\domains\account\users\000003ed
 F REG_BINARY 020001001C61A42C
0F5ACD010000000000000000A4CE64640E5ACD01ED03000001020000100200000000000002000000
000000000000000000844400
 V REG_BINARY 00000000D400000002000100D40000000A00000000000000E0000000
0A00000000000000EC0000000000000000000000EC0000000000000000000000EC00000000000000
00000000EC0000000000000000000000EC0000000000000000000000EC0000000000000000000000
EC0000000000000000000000EC0000000000000000000000EC00000015000000A800000004010000
08000000010000000C01000014000000000000002001000014000000000000003401000094000000
00000000C8010000840000000000000001001480B4000000C4000000140000004400000002003000
0200000002C014004400050101010000000000010000000002C01400FFFF1F000101000000000005
070000000200700004000000000014005B03020001010000000000010000000000001800FF070F00
0102000000000005200000002002000000001800FF070F0001020000000000052000000024020000
00002400440002000105000000000005150000003FAD1462235F636B07E53B2BED03000001020000
00000005200000002002000001020000000000052000000020020000740065007300740032000000
740065007300740032000100FF5B3E6801020000
07000000010001009AC412C7DA10C788963DF9DF7E6B5EF401000100B0FD8B04845B3E6836EC62ED
D3EC84CA0100010015F478C0D71D99AB56AB61F0921DE0EF9C21D096BE07202EDF579D32EF31DF17
8E47CFC180A85D50451DBBCD73DB89F3E81DC94989A51D23610F8669762EBFD5DF73B40F40B95683
5E95719E0C18D4B27CAC2754CA807AD818CB4C27677A52621BA0A5AFB8CAA34AC3DFCDA8054B9395
14CD7E8A51840220C7E1AF65C0865C015E517C522EAB6710181584F4E2D0652C0100010030077263
8DEB345851FF5B0CCA0123BB9B5C279A405AC24B0E98A583843488CD968264658858D5560A2047DB
06FC11269C826D74B1EA6C1F2B6293F992E0360D562D62A1C091EDDC0C054E6A47881065C4F38C5C
F888781246B88769BCE6E08E3ADBC06193EF250EC43775C8A5AE558A44F87484AED9BE0B73464DCD
A257CC67

	
Figure:	5A	(LM	and	NTLM	Hash	Data	Stored)	

HKEY_LOCAL_MACHINE\sam\sam\domains\account\users\000003ed
 F REG_BINARY 0200010001174DC0
0E5ACD010000000000000000A4CE64640E5ACD01ED03000001020000100200000000000002000000
000000000000000000844400
 V REG_BINARY 00000000D400000002000100D40000000A00000000000000E0000000
0A00000000000000EC0000000000000000000000EC0000000000000000000000EC00000000000000
00000000EC0000000000000000000000EC0000000000000000000000EC0000000000000000000000
EC0000000000000000000000EC0000000000000000000000EC00000015000000A800000004010000
08000000010000000C01000004000000000000001001000014000000000000002401000064000000
0000000088010000540000000000000001001480B4000000C4000000140000004400000002003000
0200000002C014004400050101010000000000010000000002C01400FFFF1F000101000000000005
070000000200700004000000000014005B03020001010000000000010000000000001800FF070F00
0102000000000005200000002002000000001800FF070F0001020000000000052000000024020000
00002400440002000105000000000005150000003FAD1462235F636B07E53B2BED03000001020000
00000005200000002002000001020000000000052000000020020000740065007300740032000000
740065007300740032000100FF5B3E6801020000
070000000100010001000100B0FD8B04845B3E6836EC62EDD3EC84CA0100010015F478C0D71D99AB
56AB61F0921DE0EF9C21D096BE07202EDF579D32EF31DF172549756090BA6CB58D6EB32C31E0714E
B7CF5C2A4073BEBF1C979A4CD4F07404747D0EAE50AB676696E6797F4E232C0F7CAC2754CA807AD8
18CB4C27677A526201000100BB10DCCFE8681DD551FF5B0CCA0123BBB83FA6A3F659351C0E98A583
843488CDB5E1E55C3E5B22010A2047DB06FC11269C826D74B1EA6C1F2B6293F992E0360D562D62A1
C091EDDC0C054E6A47881065

	
Figure:	5B	(Only	NTLM	Hash	Data	Stored)	

The	primary	differences	in	the	binary	data	for	what	is	stored	in	figures	2A	and	2B	
versus	what	is		stored	in	figures	5A	and	5B	are	highlighted	in	green.	This	additional	
data	is	present	when	an	administrator	enables	password	histories	(to	prevent	user	
password	re‐use)	and	the	account’s	password	changes.		Based	on	our	observation	of	
how	the	structure	grows	everytime	a	password	reset	occurs,	this	is	the	probable	
storage	location	of	hash	data	for	previous	passwords.			
	
Let’s	now	take	another	look	at	how	the	de‐facto‐standard	logic	that	we	described	
above	is	affected	by	this	change	in	data	structure.			Assuming	we	use	the	same	
calculation	to	determine	our	offset,	we	then	consider	the	remainder	of	the	structure	

to	be	the	hash	data	section.			Below	we	provide	the	hash	data	section	for	the	
examples	described	in	Figures	5A	and	5B.	
	

010001009AC412C7DA10C788963DF9DF7E6B5EF401000100B0FD8B04845B3E6836EC62EDD3EC84CA
0100010015F478C0D71D99AB56AB61F0921DE0EF9C21D096BE07202EDF579D32EF31DF178E47CFC1
80A85D50451DBBCD73DB89F3E81DC94989A51D23610F8669762EBFD5DF73B40F40B956835E95719E
0C18D4B27CAC2754CA807AD818CB4C27677A52621BA0A5AFB8CAA34AC3DFCDA8054B939514CD7E8A
51840220C7E1AF65C0865C015E517C522EAB6710181584F4E2D0652C01000100300772638DEB3458
51FF5B0CCA0123BB9B5C279A405AC24B0E98A583843488CD968264658858D5560A2047DB06FC1126
9C826D74B1EA6C1F2B6293F992E0360D562D62A1C091EDDC0C054E6A47881065C4F38C5CF8887812
46B88769BCE6E08E3ADBC06193EF250EC43775C8A5AE558A44F87484AED9BE0B73464DCDA257CC67

(hash data section)

	
Figure:	6A	(LM	and	NTLM	Hash	Data	Stored)	

0100010001000100B0FD8B04845B3E6836EC62EDD3EC84CA0100010015F478C0D71D99AB56AB61F0
921DE0EF9C21D096BE07202EDF579D32EF31DF172549756090BA6CB58D6EB32C31E0714EB7CF5C2A
4073BEBF1C979A4CD4F07404747D0EAE50AB676696E6797F4E232C0F7CAC2754CA807AD818CB4C27
677A526201000100BB10DCCFE8681DD551FF5B0CCA0123BBB83FA6A3F659351C0E98A583843488CD
B5E1E55C3E5B22010A2047DB06FC11269C826D74B1EA6C1F2B6293F992E0360D562D62A1C091EDDC
0C054E6A47881065

(hash data section)

	
Figure:	6B	(Only	NTLM	Hash	Data	Stored)	

	
When	we	check	the	size	of	both	hash	data	sections,	for	Figures	6A	and	6B,	they	are	
both	greater	than	40	bytes	(0x28)	in	length.		What	this	means	is	that,	regardless	of	
whether	LM	hash	data	is	present,	we	will	always	parse	the	hash	data	section	as	if	LM	
and	NTLM	hash	are	present.			If	we	follow	this	logic,	then	we	end	up	parsing	the	
following	hash	data	from	Figures	6A	and	6B.	
	

9AC412C7DA10C788963DF9DF7E6B5EF4 (LM HASH DATA)
 B0FD8B04845B3E6836EC62EDD3EC84CA (NTLM HASH DATA)

	
Figure:	7A	(LM	and	NTLM	Hash	Data	Stored)	

	
01000100b0fd8b04845b3e6836ec62ed (BAD LM HASH DATA)

 0100010015f478c0d71d99ab56ab61f0 (BAD NTLM HASH DATA)

Figure:	7B	(Only	NTLM	Hash	Data	Stored)	
	
As	seen	in	Figure	7A,	this	logic	correctly	parsed	V	data	that	contained	LM	and	NTLM	
hashes,	even	with	historical	password	hashes	stored.	However,	Figure	7B	shows	
that	this	logic	does	not	correctly	parse	the	data	when	it	contains	historical	password	
hashes	and	only	a	NTLM	hash.	
	
It	is	that	point	that	leads		to	the	crux	of	the	issue,	the	flawed	assumption	that	a	hash	
data	length	greater	than	40	bytes	indicates	the	presence	of	both	LM	and	NTLM	
hashes.	Under	this	flawed	assumption,	a	tool	tasked	with	parsing	an	NTLM	hash	
only,	followed	by	historical	password	hashes,	will	always	incorrectly	parse	what	it	
believes	to	be	the	first	hash	(actually	only	part	of	the	hash),	since	it	is	using	the	
incorrect	offset.	It	will	also	then	attempt	to	parse	a	second	hash	but	get	completely	
junk	data	because	it	is	reading	into	another	data	structure	(the	historical	hashes).	
	

This	issue	has	gone	undetected	by	many	extraction	tools	due	to	the	fact	the	
corrupted	data	is	just	hash	source	data,	which	is	then	passed	to	cryptographic	
functions	which	result	in	a	corrupted	LM	and	NTLM	hash	as	described	in	Figures	1A	
and	1B.		This	explains	why	the	resulting	LM	and	NTLM	hashes	look	and	feel	like	
valid	hashes,	however,	they	are	not	a	true	representation	of	the	users	encrypted	
password.	
	
After	discovering	root	of	the	issue,	an	alternate	algorithm	was	pursued	to	work	for	
scenerios	with	or	without	the	additional	data	(shown	in	green	in	examples	7A,	7B,	
6A,	6B,	5A,	5B).		What	was	learned	was	that	earlier	in	the	”V”	data	structure	for	each	
user	there	are	header	values	that	describe	what	hash	data	is	being	stored	for	the	
user.		The	following	figures	show	the	highlighted	header	values	that	describe	
whether	the	LM	of	NTLM	hash	data	is	present.	
	

HKEY_LOCAL_MACHINE\sam\sam\domains\account\users\000003ed
 F REG_BINARY 020001001C61A42C
0F5ACD010000000000000000A4CE64640E5ACD01ED03000001020000100200000000000002000000
000000000000000000844400
 V REG_BINARY 00000000D400000002000100D40000000A00000000000000E0000000
0A00000000000000EC0000000000000000000000EC0000000000000000000000EC00000000000000
00000000EC0000000000000000000000EC0000000000000000000000EC0000000000000000000000
EC0000000000000000000000EC0000000000000000000000EC00000015000000A800000004010000
08000000010000000C01000014000000000000002001000014000000000000003401000094000000
00000000C8010000840000000000000001001480B4000000C4000000140000004400000002003000
0200000002C014004400050101010000000000010000000002C01400FFFF1F000101000000000005
070000000200700004000000000014005B03020001010000000000010000000000001800FF070F00
0102000000000005200000002002000000001800FF070F0001020000000000052000000024020000
00002400440002000105000000000005150000003FAD1462235F636B07E53B2BED03000001020000
00000005200000002002000001020000000000052000000020020000740065007300740032000000
740065007300740032000100FF5B3E6801020000
07000000010001009AC412C7DA10C788963DF9DF7E6B5EF401000100B0FD8B04845B3E6836EC62ED
D3EC84CA0100010015F478C0D71D99AB56AB61F0921DE0EF9C21D096BE07202EDF579D32EF31DF17
8E47CFC180A85D50451DBBCD73DB89F3E81DC94989A51D23610F8669762EBFD5DF73B40F40B95683
5E95719E0C18D4B27CAC2754CA807AD818CB4C27677A52621BA0A5AFB8CAA34AC3DFCDA8054B9395
14CD7E8A51840220C7E1AF65C0865C015E517C522EAB6710181584F4E2D0652C0100010030077263
8DEB345851FF5B0CCA0123BB9B5C279A405AC24B0E98A583843488CD968264658858D5560A2047DB
06FC11269C826D74B1EA6C1F2B6293F992E0360D562D62A1C091EDDC0C054E6A47881065C4F38C5C
F888781246B88769BCE6E08E3ADBC06193EF250EC43775C8A5AE558A44F87484AED9BE0B73464DCD
A257CC67

	
Figure:	8A	(LM	and	NTLM	Hash	Data	Stored)	

HKEY_LOCAL_MACHINE\sam\sam\domains\account\users\000003ed
 F REG_BINARY 0200010001174DC0
0E5ACD010000000000000000A4CE64640E5ACD01ED03000001020000100200000000000002000000
000000000000000000844400
 V REG_BINARY 00000000D400000002000100D40000000A00000000000000E0000000
0A00000000000000EC0000000000000000000000EC0000000000000000000000EC00000000000000
00000000EC0000000000000000000000EC0000000000000000000000EC0000000000000000000000
EC0000000000000000000000EC0000000000000000000000EC00000015000000A800000004010000
08000000010000000C01000004000000000000001001000014000000000000002401000064000000
0000000088010000540000000000000001001480B4000000C4000000140000004400000002003000
0200000002C014004400050101010000000000010000000002C01400FFFF1F000101000000000005
070000000200700004000000000014005B03020001010000000000010000000000001800FF070F00
0102000000000005200000002002000000001800FF070F0001020000000000052000000024020000
00002400440002000105000000000005150000003FAD1462235F636B07E53B2BED03000001020000
00000005200000002002000001020000000000052000000020020000740065007300740032000000
740065007300740032000100FF5B3E6801020000
070000000100010001000100B0FD8B04845B3E6836EC62EDD3EC84CA0100010015F478C0D71D99AB
56AB61F0921DE0EF9C21D096BE07202EDF579D32EF31DF172549756090BA6CB58D6EB32C31E0714E
B7CF5C2A4073BEBF1C979A4CD4F07404747D0EAE50AB676696E6797F4E232C0F7CAC2754CA807AD8
18CB4C27677A526201000100BB10DCCFE8681DD551FF5B0CCA0123BBB83FA6A3F659351C0E98A583
843488CDB5E1E55C3E5B22010A2047DB06FC11269C826D74B1EA6C1F2B6293F992E0360D562D62A1
C091EDDC0C054E6A47881065

	
Figure:	8B	(Only	NTLM	Hash	Data	Stored)	

	
When	examining	these	header	values	that	describe	whether	or	not	a	hash	is	present	
for	either	LM	or	NTLM,	as	seen	in	the	above	Figures	8A	and	8B	in	blue,	two	values	
are	present	that	when	unpacked	result	in	either	a	0x04	or	a	0x14.		If	0x04,	this	
means	that	a	hash	is	not	present	and	if	0x14,	this	means	that	a	hash	is	present.		
Knowing	this,	a	modified	parsing	algorithm	was	developed	to	work	as	follows:	
	

1. Read	160	bytes	(0xA0)	from	beginning	of	data	structure	
2. Then	parse	the	next	4	bytes	as	an	integer(lm_header)	
3. Read	172	bytes	(0xAC)	from	beginning	of	data	structure	
4. Then	parse	the	next	4	bytes	as	an	integer(nt_header)	
5. Read	156	bytes	(0x9c)	from	beginning	of	data	structure	
6. Then	parse	the	next	4	bytes	as	an	integer(X)	
7. Hash	Data	Offset	=	X	+	204	bytes	(0xCC)	
8. If	lm_header	==	20	then		

a. lm_exists	=	true	
b. lm_offset	=	Hash	Data	Offset	+	4	
c. Parse	LM	

9. If	nt_header	==	20	then		
a. If	lm_exists	

i. nt_offset	=	Hash	Data	Offset	+	24	
ii. Parse	NTLM	

b. Else	
i. nt_offset	=	Hash	Data	Offset	+	8	
ii. Parse	NTLM	

Using	the	above	logic,	a	tool	will	parse	Figures	8A	and	8B	to	obtain	the	correct	hash	
data	even	with	additional	data	present	at	the	end	of	the	data	structure.	
	

14000000 (lm_header)
14000000 (nt_header)
010001009AC412C7DA10C788963DF9DF7E6B5EF401000100B0FD8B04845B3E6836EC62ED
D3EC84CA0100010015F478C0D71D99AB56AB61F0921DE0EF9C21D096BE07202EDF579D32EF31DF17
8E47CFC180A85D50451DBBCD73DB89F3E81DC94989A51D23610F8669762EBFD5DF73B40F40B95683
5E95719E0C18D4B27CAC2754CA807AD818CB4C27677A52621BA0A5AFB8CAA34AC3DFCDA8054B9395
14CD7E8A51840220C7E1AF65C0865C015E517C522EAB6710181584F4E2D0652C0100010030077263
8DEB345851FF5B0CCA0123BB9B5C279A405AC24B0E98A583843488CD968264658858D5560A2047DB
06FC11269C826D74B1EA6C1F2B6293F992E0360D562D62A1C091EDDC0C054E6A47881065C4F38C5C
F888781246B88769BCE6E08E3ADBC06193EF250EC43775C8A5AE558A44F87484AED9BE0B73464DCD
A257CC67 (hash data section)

	
Figure:	9A	(LM	and	NTLM	Hash	Data	Stored)	

04000000 (lm_header)
14000000 (nt_header)
01000100B0FD8B04845B3E6836EC62EDD3EC84CA0100010015F478C0D71D99AB
56AB61F0921DE0EF9C21D096BE07202EDF579D32EF31DF172549756090BA6CB58D6EB32C31E0714E
B7CF5C2A4073BEBF1C979A4CD4F07404747D0EAE50AB676696E6797F4E232C0F7CAC2754CA807AD8
18CB4C27677A526201000100BB10DCCFE8681DD551FF5B0CCA0123BBB83FA6A3F659351C0E98A583
843488CDB5E1E55C3E5B22010A2047DB06FC11269C826D74B1EA6C1F2B6293F992E0360D562D62A1
C091EDDC0C054E6A47881065 (hash data section)

	
Figure:	9B	(Only	NTLM	Hash	Data	Stored)	

	

As	seen	in	figures	9A	and	9B,	the	respective	LM	and	NTLM	hash	header	elements	
indicate	(via	0x04	or	0x14)	whether	the	hash	exists	or	not,	so	a	tool	can	now	make	
the	correct	parsing	decisions	when	it	comes	to	reading	through	the	hash	data	
section.		Once	a	tool	applies	the	final	steps	(5‐7	listed	above),	the	correct	hash	data	
is	obtained	for	both	examples	as	follows:	
	

9AC412C7DA10C788963DF9DF7E6B5EF4 (LM HASH DATA)
 B0FD8B04845B3E6836EC62EDD3EC84CA (NTLM HASH DATA)

	
Figure:	10A	(LM	and	NTLM	Hash	Data	Stored)	

	
 B0FD8B04845B3E6836EC62EDD3EC84CA (NTLM HASH DATA)

Figure:	10B	(Only	NTLM	Hash	Data	Stored)	
	

Affected Tools and Origins
	
A	large	number	of	tools,	which	extract	hashes	from	the	registry	were	considered	as	
part	of	this	research.		Tools	that	were	confirmed	as	producing	corrupted	hashes	
when	using	the	registry	extraction	method	were	as	follows:	
	

 Metasploit	Hashdump	Script	
 Creddump	
 Samdump2	1.0.1	
 Cain	and	Able	
 Pwdump	
 Pwdump5	
 Pwdump7	
 FGDump	3.0	
 l0phtcrack	6.0	

	
Of	these	tools,	there	was	a	mix	of	both	open‐source	and	closed‐source	projects.		By	
examining	the	source	code	from	the	open	source	tools,	the	hashes	they	produced	
and	the	hashes	produced	from	the	closed	source	tools,	it	was	clear	that	similar	logic	
was	used	by	all	of	them,	which	resulted	in	the	same	incorrect	hashes.	
	
In	tracing	the	origin	of	these	tools,	it	was	determined	that	Pwdump	version	1	
(Pwdump)	was	likely	the	first	tool	to	reverse	engineer	the	process	of	gathering	
hashes	from	the	registry.	
	
Being	that	Pwdump	was	an	open‐source	tool,	it	was	clearly	a	source	of	information	
and	inspiration	for	other	new	tool	authors	that	eventually	began	using	this	
approach	and	associated	logic	for	parsing	registry	data.		By	reading	through	tool	
change	logs,	blog	posts	and	other	online	sources,	the	following	relationship	diagram	
was	constructed	to	show	how	Pwdump	had	influenced	these	tools	and	how	it’s	
influence	spread	through	generations	of	tools.	

	

																						 	
	

Figure:	11A	
		

Although	these	relationships	are	important	in	showing	how	all	these	tools	ended	up	
using	the	similar	logic,	it	is	equally	if	not	more	important	to	understand	the	
chronological	time‐line	of	when	these	tools	were	developed	as	seen	in	the	following	
diagram.	

Figure:	11B	

	
The	above	diagram	contains	two	entries	for	samdump2	because	in	2007,	samdump2	
identified	that	a	flaw	existed	and	developed	a	code	fix	for	this	issue	in	their	1.1.1	
release.		Ironically,	5	years	later	the	tools	that	Samdump2	helped	influence	directly	
or	indirectly,	still	(at	the	time	of	this	writing)	use	the	incomplete	logic	as	
implemented	in	the	1.0.1	release	of	Samdump2	and	Pwdump	version	1	as	discussed	
in	the	technical	section	of	this	paper.	

Conclusions and Take Aways
	
Security	professionals	that	are	using	extraction	tools	to	obtain	password	hashes	
from	Windows‐based	systems	via	the	registry	are	regularly	receiving	corrupted	

hashes.		This	is	due	to	a	logic	flaw	used	by	many	tools	that	was	described	in	detail	
within	this	whitepaper.	
	
In	addition	to	the	identification	of	the	flaw	and	its	history,	patches	have	been	
developed	for	both	Metasploit	and	Creddump,	which	are	both	open‐source.		The	
goal	here	was	to	ensure	that	many	of	the	tools	described	here	are	updated	to	utilize	
the	improved	logic	described	in	this	paper.		To	this	end,	an	active	outreach	to	
closed‐source	tool	developers	in	this	space,	such	as	Cain	and	Able,	L0phtcrack,	
Pwdump7	and	Fgdump,	is	already	underway	and	some	of	these	updates	are	already	
in	development	and	should	be	available	soon.	
	

Definition of Terms
	
Hash	–	The	actual	password	hash	(LM	or	NTLM)	that	is	generated	from	Hash	Data	
that	represents	the	encrypted	form	of	a	clear‐text	password.		This	is	what	can	be	
directly	supplied	to	a	cracking	tool	such	as	John	the	Ripper	(JtR).	
	
Hash	Data	–	The	source	(or	seed)	data	that	is	stored	within	the	registry	key	“V”	for	
each	user	that	is	transformed	into	either	a	LM	or	NTLM	hash	through	a	series	of	
cryptographic	algorithms.		This	data	alone	cannot	be	directly	supplied	to	a	cracking	
tool	such	as	John	the	Ripper	(JtR).	
	
Hash	Data	Section	–	A	subset	of	the	V	key	stored	in	the	SAM	hive	for	each	user	that	
contains	hash	data,	which	has	yet	to	be	parsed	into	hash	data	elements.	
	
	
	
	
	

References
	
	
Clark,	Peter.	"Security	Accounts	Manager."	Security	Accounts	Manager.	

Beginningtoseethelight.org,	3	Apr.	2005.	Web.	01	June	2012.	
<http://www.beginningtoseethelight.org/ntsecurity/>.	

	
Dolan‐Gavitt,	Brendan.	"CredDump:	Extract	Credentials	from	Windows	Registry	

Hives."	Push	the	Red	Button.	Moyix.blogspot.com,	20	Feb.	2008.	Web.	05	July	
2012.	<http://moyix.blogspot.com/2008/02/creddump‐extract‐credentials‐
from.html>.	

	
Dolan‐Gavitt,	Brendan.	"SysKey	and	the	SAM."	Push	the	Red	Button.	

Moyix.blogspot.com,	21	Feb.	2008.	Web.	01	June	2012.	<	
http://moyix.blogspot.com/2008/02/syskey‐and‐sam.html>.	

	
Dolan‐Gavitt,	Brendan.	"Creddump‐0.2.tar.bz2	‐	Creddump	‐	Creddump	0.2	‐	

Extracts	Credentials	from	Windows	Registry	Hives."	Creddump	Source	Code	
Repository.	N.p.,	Feb.	2008.	Web.	01	June	2012.	
<http://code.google.com/p/creddump/downloads/detail?name=creddump‐
0.2.tar.bz2>.	

	
Fizzgig.	"Fgdump:	A	Tool	For	Mass	Password	Auditing	of	Windows	Systems."	

Http://fgdump.com/.	Fizzgig,	8	Oct.	2011.	Web.	01	June	2012.	
<http://fgdump.com/fgdump/>.	

	
Moore,	HD.	"Bug	#4402:	Hashdump	Script/post	Module	Breaks	with	Passwords	

Greater	than	14	Characters."	Metasploit	Framework	Issue	Tracker.	Rapid	7,	11	
Mar.	2011.	Web.	1	June	2012.	
<http://dev.metasploit.com/redmine/issues/4402>.	

	
Moore,	HD.	"Metasploit‐framework	/	Scripts	/	Meterpreter	/	Hashdump.rb."	

Metasploit	Source	Code	Repository.	Rapid	7,	31	Dec.	2009.	Web.	05	July	2012.	
<https://github.com/rapid7/metasploit‐
framework/blob/4512089a34adafa05a477a5b86b911658d6b80ae/scripts/
meterpreter/hashdump.rb>.	

	
Moore,	HD.	"Safe,	Reliable,	Hash	Dumping."	Metasploit	Community	Blog.	Rapid	7,	01	

Jan.	2010.	Web.	05	July	2012.	
<https://community.rapid7.com/community/metasploit/blog/2010/01/01
/safe‐reliable‐hash‐dumping>.	

	
Mueller,	Lance.	"Computer	Forensics,	Malware	Analysis	&	Digital	Investigations:	

Bypassing	a	Windows	Login	Password	in	Order	to	Boot	in	a	Virtual	Machine."	
ForensickKB.	Forensickb.com,	22	Feb.	2008.	Web.	1	June	2012.	

<http://www.forensickb.com/2008/02/bypassing‐windows‐login‐
password‐in.html>.	

	
Oechslin,	Philippe,	and	Cedric	Tissieres.	"Ophcrack	‐	Samdump2	(samdump2‐

1.1.1.tar.gz)."	Ophcrack	Source	Code	Repository.	SourceForge,	22	Nov.	2007.	
Web.	05	July	2012.	
<http://sourceforge.net/projects/ophcrack/files/samdump2/1.1.1/>.	

	
"Oxid.it	‐	Cain	&	Abel."	Oxid.it	‐	Cain	&	Abel.	Oxid.it,	n.d.	Web.	01	June	2012.	

<http://www.oxid.it/cain.html>.	
	
Rioux,	Christien,	Chris	Wysopal,	and	Peiter	Mudge	Zatko.	"L0phtCrack	Password	

Auditor	V6	‐	Documentation."	L0phtCrack	Password	Auditor.	L0phtcrack.com,	
n.d.	Web.	01	June	2012.	<http://www.l0phtcrack.com/help/index.html>.	

	
"SAMInside."	InsidePro	Password	Recovery	Software.	InsidePro	Software,	n.d.	Web.	

01	June	2012.	<http://www.insidepro.com/eng/saminside.shtml>.	
	
Tarasco,	Andres,	and	Miguel	Tarasco.	"Password	Dumper	Pwdump7	(V7.1)."	

Tarasco	Security.	Tarasco.org,	03	Oct.	2010.	Web.	05	July	2012.	
<http://www.tarasco.org/security/pwdump_7/>.	

	
	
	
	
	

