
Fourteenforty Research Institute, Inc.

1

Fourteenforty Research Institute, Inc.

Windows Phone 7

Internals and Exploitability
Black Hat USA 2012

Tsukasa Oi | Research Engineer

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp/

http://www.fourteenforty.jp/
http://www.fourteenforty.jp/
http://www.fourteenforty.jp/

Fourteenforty Research Institute, Inc.

• In aspect of:

– Looking Internals

– Security Evaluation

– Exploitation

• Introduction – Windows Phone 7.x

• System Implementation

• Reverse Engineering

• Exploitation, Part I and II

• Analysis & Conclusion

Agenda

2

Fourteenforty Research Institute, Inc.

INTRODUCTION:

WINDOWS PHONE 7.X

3

Is it good?

Fourteenforty Research Institute, Inc.

• Operating System based on Windows Embedded CE 6.0R3 (core)

and Windows Embedded Compact 7 (some features)

• Strong App Sandbox to protect system and user

– No native code allowed (in general)

• Unlike iOS, executable memory is permitted

– Capabilities and Chambers

4

Windows Phone 7.x

Fourteenforty Research Institute, Inc.

• Packaged in XAP (actually ZIP) format

Windows Phone Apps

5

AppManifest.xaml

application.dll

WMAppManifest.xml WMAppPRHeader.xml

WPInteropManifest.xml

Silverlight part

WP7

specific

part

.NET (Silverlight) based code

native_app.dll

Application Information in SL-XAP

Application Information DRM (PlayReady) Metadata

Exists if app use native code

Fourteenforty Research Institute, Inc.

• Resources which apps are authorized to use:

– Devices (ID_CAP_[ISV_CAMERA|MICROPHONE|SENSORS])

– Identification (ID_CAP_IDENTITY_[DEVICE|USER])

– Web Browser (ID_CAP_WEBBROWSERCOMPONENT)…

Capabilities

6

Fourteenforty Research Institute, Inc.

Capabilities

7

Notifies what resources the app uses

(just like Android but no confirmation)

Citation from:

http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e

http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e
http://www.windowsphone.com/en-US/apps/82a23635-5bd9-df11-a844-00237de2db9e

Fourteenforty Research Institute, Inc.

• Resources which apps are authorized to use:

– Devices (ID_CAP_[ISV_CAMERA|MICROPHONE|SENSORS])

– Identification (ID_CAP_IDENTITY_[DEVICE|USER])

– Web Browser (ID_CAP_WEBBROWSERCOMPONENT)…

• Undocumented Capabilities

– Only selected vendors can use these “privileges”

– File Type Association

(ID_CAP_FILEVIEWER)

– Native Code and Interop Services

(ID_CAP_INTEROPSERVICES)

Capabilities

8

Fourteenforty Research Institute, Inc.

• Isolate app/driver policies by separate chamber

Chambers

9

Elevated Rights

Standard Rights

Least Privilege

Chamber (LPC)

Trusted Computing Base (TCB)

+

+

+

Dynamic privileges by capabilities

Windows Phone Apps

Kernel and some Drivers

incl. OEM Drivers

Fourteenforty Research Institute, Inc.

• These looks modern, secure and well-designed.

– We need to know how good they are.

Conclusion

10

Fourteenforty Research Institute, Inc.

SYSTEM IMPLEMENTATION

How Windows Phone 7 Operating System works?

11

Fourteenforty Research Institute, Inc.

• OS Mechanisms

– Process Memory

– Protected Server Libraries

– Security System (incl. Sandbox)

Low Layer Implementation

12

Fourteenforty Research Institute, Inc.

• An unlocked Windows Phone device

– We mainly used “HTC 7 Mozart”

• Custom Native COM DLL

– http://forum.xda-developers.com/showthread.php?t=1299134

– Native COM DLL for Windows Phone 7 can be

created using Windows Mobile 6 SDK

• Reverse Engineering (later)

How we analyzed the system?

13

http://forum.xda-developers.com/showthread.php?t=1299134
http://forum.xda-developers.com/showthread.php?t=1299134
http://forum.xda-developers.com/showthread.php?t=1299134
http://forum.xda-developers.com/showthread.php?t=1299134

Fourteenforty Research Institute, Inc.

• Similar to Windows Embedded CE 6.0

– User VM (0x00100000-0x3fffffff)

– Shared DLLs (0x40000000-0x5fffffff)

• Contains common DLLs

– RAM-backed Map Files (0x60000000-0x6fffffff)

• Contains common files including some .NET assemblies

– …and specific system areas

Process Memory Layout

14

Kernel Memory
Shared

DLLs
UserKData User VM

PSL

area

RAM-

backed

Map

Fourteenforty Research Institute, Inc.

• Stack / Executable / Heap (LocalAlloc) / Virtual Memory (VirtualAlloc)

– Randomized every launch

– 64KiB granularity, chosen from 64+MiB low memory range
(estimated entropy: about 10-bits)

– Issue: Only base addresses are randomized
(no random “gap” between two allocations – unlike Linux’s mmap)

• Some (uncommon) DLLs are loaded in low memory range

– Also randomized every launch

Process ASLR (1)

15

Shared DLLs

bottom

PSL

area

bottom

Stack / Exec

Heap bottom

VM bottom

Mapped

Files

bottom

Fourteenforty Research Institute, Inc.

• Shared DLLs / Memory Mapped Files

– Randomized every boot

– Mapped to RANDOM_BASE_ADDRESS + CONST_OFFSET?
(Optimized for Performance; or just no “shared gaps”)

– 64KiB granularity, chosen from 64MiB memory range
(estimated entropy: about 10-bits)

Process ASLR (2)

16

Shared DLLs

bottom

Stack / Exec

Heap bottom

VM bottom

Mapped

Files

bottom

PSL

area

bottom

Fourteenforty Research Institute, Inc.

• “Branch” specific address (Trap Address) and cause trap

– Exception handler determines PSL calls
(by identifying address which caused the exception)

– Kernel launches proper PSL routine
(kernel mode procedure / user-mode handler)

• Trap Address is Randomized (ASLR for system call)

– PSL_TRAP_SEED (part of shared memory called UserKData)

• Randomized every boot

• 4-bytes granularity, chosen from 1MiB specific memory range
(Maximum entropy should be around 18-bits but seems non-uniform)

– note that location of UserKData is NOT randomized

• UserKData is located at 0xffffc800

System Calls → Protected Server Library (PSL) calls

17

Fourteenforty Research Institute, Inc.

Kernel

Making PSL: Handling in the system

18

PSL Handler Kernel Mode Routines

Exception Handler

PSL Server (e.g. udevice.exe)

(2) Detect PSL call
(3a) Call kernel mode routine

(3b) Callback user mode handler

e.g. BX R3

Application

(1) Fault (trap) occur

Fourteenforty Research Institute, Inc.

Making PSL: Disassembly

19

…

Fourteenforty Research Institute, Inc.

• Almost all process memory areas are randomized

– Except shared data regions like UserKData
(there’s no FS segment register in ARM!)

• However: Only Base addresses are randomized

– This behavior will make Heap Spray (or similar techniques)

easier and more reliable

– At most about 70MiB?

Process ASLR: Evaluation

20

Fourteenforty Research Institute, Inc.

Kernel

• Policy Engine

• Security Loader

…and more

Security System in WP7

21

Policy Engine

Package Manager

Security Loader

Shell (telshell.exe)

Query Apps

Check if App Allowed

Apps (TaskHost.exe)

Launch App

Access Control

(sandbox)

Prevent untrusted

files to be loaded Running applications

(related components)

Fourteenforty Research Institute, Inc.

• Actual Access Control

– Policy Database

– Policy XML file

• Principle of “Least Privilege”

• ¥Windows¥BasePolicy.xml

– Policy definition for whole system

– Generated by merging (guid).policy.xml

Policy Engine (1) – PolicyEngine.dll

22

Fourteenforty Research Institute, Inc.

• <CeSecurityPolicyFile>

– <Macro> (defines common macro)

– <Account> (defines account and account group)

• <MemberOfGroup>

– <Rule> (policy definition)

• <Authorize> / <Stop> (permit or reject operations)

– <Match>

– …

• Achieves Program Isolation

Policy Engine (2) – XML format

23

Fourteenforty Research Institute, Inc.

• Following modules can run on default configuration:

– Modules inside ROM
(Stored PE [XIP] files may have invalid signature but that’s fine)

– Modules Authenticode-signed by Microsoft
(including Windows Phone Marketplace files)

• Developer Unlock

– Authorizes limited number of apps (modules)

having no Authenticode signature

• Some checks are done by Package Manager

– lvmod.dll checks whether “DeveloperUnlockState”

registry key is 1 and (conditionally) allows unsigned modules if

developer-unlocked

Security Loader – LVMOD

24

Fourteenforty Research Institute, Inc.

REVERSE ENGINEERING

Don’t fall into the ditch!

25

Fourteenforty Research Institute, Inc.

• It’s not a black box.

– Reverse Engineering is possible even if

you don’t actually own the device

• There are some obstacles but can be cleared

– We created “WP7 Helper Tools” to make analysis easier.

• It’s not difficult.

– …if you understand the tools

Reverse Engineering Windows Phone 7 OS

26

Fourteenforty Research Institute, Inc.

• Types:

– OS image for recovery

– Web-based Updater (which Zune downloads)

• These files should be fixed before using IDA Pro

Retrieving Files

27

Fourteenforty Research Institute, Inc.

• Windows CE ROM can contain PE files in

XIP (eXecute-In-Place) format

– Headers are converted to its original one (E32/O32 header)

• struct e32_rom / o32_rom

– Image contents are aligned but the original file

seems to be an unaligned PE file(1)

• WP7 Helper Tools :: unpack-xip.py

– Accept dump generated by ImgFsToDump/xidump
(http://forum.xda-developers.com/showthread.php?t=572673)

Fixing Files (1) – OS image

28

(1) Found while observing IMAGE_DEBUG_DIRECTORY.

http://forum.xda-developers.com/showthread.php?t=572673
http://forum.xda-developers.com/showthread.php?t=572673
http://forum.xda-developers.com/showthread.php?t=572673
http://forum.xda-developers.com/showthread.php?t=572673
http://forum.xda-developers.com/showthread.php?t=572673

Fourteenforty Research Institute, Inc.

• Zune retrieves updater CAB files from Microsoft website

– It contains PE files!

• Unaligned (and a bit corrupted) PE file

– Section is not aligned (!= OptionalHeader.FileAlignment)

– Some section sizes are corrupted

• WP7 Helper Tools :: unpack-updater.py

– Accept ordinal (but unaligned) PE file

– Realign the file to make IDA Pro analyze the file correctly

Fixing Files (2) – Web-based Updater

29

Fourteenforty Research Institute, Inc.

• Found IDA Pro (6.1-6.2) analysis bug for WP7 modules:

– What?!

IDA Pro bug (1) – Auto Analysis Failure

30

This is not supposed

to be here…

This is the real end

of the function.

Fourteenforty Research Institute, Inc.

• IDA Pro did not correctly handle LSB of Begin Address

– Conflict with Auto Analysis and result in early function ends

• WP7 Helper Tools has an option to avoid this issue (-p)

– Reported this issue to Hex-Rays

– Fixed in IDA Pro version 6.3

IDA Pro bug (2) – Exception Table (PE/ARMI)

31

Virtual Address ! Prolog Len Function Len 32-bit Exception

Begin Address Flags…

1 if Thumb function
(like program counter)

This confuses IDA Pro.

Same as LSB of

Begin Address

Fourteenforty Research Institute, Inc.

• IDA Pro did not correctly handle LSB of Begin Address

– Conflict with Auto Analysis and result in early function ends

• WP7 Helper Tools has an option to avoid this issue (-p)

– Reported this issue to Hex-Rays

– Fixed in IDA Pro version 6.3

IDA Pro bug (2) – Exception Table (PE/ARMI)

32

Citation from http://www.hex-rays.com/products/ida/6.3/index.shtml

http://www.hex-rays.com/products/ida/6.3/index.shtml
http://www.hex-rays.com/products/ida/6.3/index.shtml
http://www.hex-rays.com/products/ida/6.3/index.shtml
http://www.hex-rays.com/products/ida/6.3/index.shtml
http://www.hex-rays.com/products/ida/6.3/index.shtml

Fourteenforty Research Institute, Inc.

IDA Pro bug – Effects by Fixing

33

Before:

After:

It’s “no return”

function so it’s fine.

Fourteenforty Research Institute, Inc.

• Most of debug symbols can be retrieved!

– WP7 Helper Tools fix debug directory (with -d option)

– http://msdl.microsoft.com/download/symbols

• Load PDB file after you load and analyze the program

– Loading PDB files first will result in auto-analysis failure

IDA Pro tip – Symbols (1)

34

Load PDB when you open the file

Load PDB using “File” → “Load file” → “PDB file”

Fourteenforty Research Institute, Inc.

• Loading PDB files may corrupt analysis

• To solve this:

1. Analyze program

2. Acquire the list of “Thumb” functions using IDAPython

3. Disable Auto Analysis

4. Load PDB file

5. Make “Thumb” functions “Thumb” functions

(fix sideeffects by loading PDB file, using IDAPython)

6. Enable Auto Analysis and Reanalyze Program

IDA Pro tip – Symbols (2)

35

Fourteenforty Research Institute, Inc.

Demo (WP7 Helper Tools + IDA Pro)

36

Fourteenforty Research Institute, Inc.

• Downloading Applications

– Marketplace Browser and Downloader for Windows Phone 7
(http://mktwp7.codeplex.com/)

– We can also use “Unlocked” device to

retrieve installed application images
(apps are installed on “¥Applications¥Install¥{product-id}”)

• Reverse Engineering

– IDA Pro (.NET or native)

– .NET Reflector
(http://www.reflector.net/)

Appendix: Reverse Engineering for WP7 package

37

http://mktwp7.codeplex.com/
http://mktwp7.codeplex.com/
http://www.reflector.net/

Fourteenforty Research Institute, Inc.

EXPLOITATION, PART I

Native code seems vulnerable… but really?

38

Fourteenforty Research Institute, Inc.

• Memory Protection (kernel / native components)

– DEP: good

– ASLR: not bad
 (except no random “gap”)

– Executable Memory: not good as iOS
 (executable memory may be unsigned)

• Memory Protection (.NET)

– DEP: ?

– Executable Memory: ?

• Native Code / Native Modules

– How these are used?

How about Exploitability?

39

Fourteenforty Research Institute, Inc.

• Strings:

– Dynamic strings are allocated in the VM (access == RWX)

– ‍Low randomization on heap/VM

– Strings may be frequently used in the program

• Possibility of “String” Spray

– Spraying executable code as UTF-16LE strings
(each string must be unique)

– Low memory footprint because of low randomization
(estimated: 70MiB at most)

• Conclusion: Attacking native components

 using .NET might be possible

Usage of Memory in .NET

40

Fourteenforty Research Institute, Inc.

• Very few Apps have Native code

• Most of “native” apps are OEM or career’s one

but non-OEM apps include:

– Adobe Reader

– Tango Video Calls

• Can native code be vulnerable?

Native Code in Apps

41

Fourteenforty Research Institute, Inc.

• Static Analysis

– Using IDA Pro

• Dynamic Analysis

– Trace and instrumentation with JTAG or something…

– Fuzzing

• I have planned to do this before I find…

Finding Vulnerabilities (in general)

42

Fourteenforty Research Institute, Inc.

What?!

43

Signature of vulnerable zlib…

What program did such…

Fourteenforty Research Institute, Inc.

What?!

44

☹

(not publicly disclosed)

Fourteenforty Research Institute, Inc.

• CVE-2005-2096

– Buffer overflow vulnerability in zlib before 1.2.3

– ‍(not disclosed yet) uses zlib 1.2.1

• Heap Overflow

– Destroys inflate_state struct allocated by zalloc

• Overwritten address range can be controlled

but overwrite pattern cannot (always “invalid” signature)

– ‍(redacted)’s zalloc function just calls COREDLL’s malloc

– COREDLL’s malloc uses LocalAlloc to allocate memory

Vulnerability in (not publicly disclosed)

45

Fourteenforty Research Institute, Inc.

EXPLOITATION, PART II

Privilege escalation with third-party components

46

Fourteenforty Research Institute, Inc.

• Undocumented Capability ID_CAP_INTEROPSERVICES

allows “third-party service” access

– Some third-party (and non-OEM) apps declare this capability!

• e.g. Tango Video Calls

– Why such application have to do so?

• ID_CAP_INTEROPSERVICES allows OEM driver access

– I have no good feelings about OEM drivers…

• Many “rooting” vulnerabilities in OEM drivers

are found in various Android devices…

– Some OEM drivers allow “backdoor” access

Policy Flaw? – ID_CAP_INTEROPSERVICES

47

Fourteenforty Research Institute, Inc.

Policy Flaw? – Breaking Chambers

48

Elevated Rights

Standard Rights

LPC App

Trusted Computing Base (TCB)

Interop

Services

ID_CAP_INTEROPSERVICES

Vulnerable OEM Drivers

Isolated Storage

LPC App

Other Apps’

Storage

Interop Services access

Vulnerable Interop Services

Fourteenforty Research Institute, Inc.

• Allows registry access

– Ability to change system settings without permission

• Latest version: fixed

– By restricting registry access

Looking at Demo Device – HTCRegUtility.dll

49

Fourteenforty Research Institute, Inc.

• Allows file system access bypassing sandbox/chamber

– Ability to steal user/system information

• Latest version: Directory traversal vulnerability

– HTCFileUtility.dll checks whether supplied path has specific

(hardcoded) prefixes but there’s no other verification 

Looking at Demo Device – HTCFileUtility.dll

50

Fourteenforty Research Institute, Inc.

• Allows RAW RAM read/writes using DeviceIoControl

– Ability to gain kernel mode privileges

– Detailed in great work by Alex Plaskett

• Latest version: fixed

– By removing related features

Looking at Demo Device – HTCUtility.dll

51

Fourteenforty Research Institute, Inc.

Demo (What will happen then?)

52

Fourteenforty Research Institute, Inc.

• Windows Phone is designed secure

– But some OEM drivers seem to be unconcerned about security

• This might be a big difference between Android

– Bad designs, vulnerabilities

• Privilege (Capability) separation is important

– Microsoft should have been separated

OEM capabilities correctly…

…

53

Fourteenforty Research Institute, Inc.

ANALYSIS & CONCLUSION

Anyway, is Windows Phone 7 secure?

54

Fourteenforty Research Institute, Inc.

• Sandbox / Application System

– Designed secure, conforming “Principle of Least Privilege”

• Exploitation (Native Code)

– Designed well but some concerns here

(regarding insufficient ASLR and .NET memory usage)

• Exploitation (OEM components)

– If the app with ID_CAP_INTEROPSERVICES capability is

vulnerable, it may result in sandbox bypass.

Analysis – Summary

55

Fourteenforty Research Institute, Inc.

• Windows Phone 7.x OS’ sandbox is very strong

– Conforming “Principle of Least Privilege”

• Interop Services and Native Code could be a design failure

– OEM Code and vulnerable native apps

might threaten users (depends on devices)

– It {have to | will} be fixed in Windows Phone 8

Conclusions

56

Fourteenforty Research Institute, Inc.

• Shared Windows Core

– NT kernel is coming.

– Expecting strong memory protection

• Native Code access and a new framework

– Minimize ID_CAP_INTEROPSERVICES attack surface

– May minimize applications which require such privilege

Windows Phone 8

57

☺

Fourteenforty Research Institute, Inc.

• Windows Embedded Compact 7 public headers and libraries
(Evaluation: http://www.microsoft.com/en-us/download/details.aspx?id=19004)

• Blue Hat v11 Technical

Windows Pwn 7 OEM – Owned Every Mobile?
(http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf)

• “48 Windows Phone apps using native code - Nanapho” (Japanese)
(http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/)

• And more!

58

References

http://www.microsoft.com/en-us/download/details.aspx?id=19004
http://www.microsoft.com/en-us/download/details.aspx?id=19004
http://www.microsoft.com/en-us/download/details.aspx?id=19004
http://www.microsoft.com/en-us/download/details.aspx?id=19004
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/
http://nanapho.jp/archives/2012/02/only-48-windows-phone-apps-using-native-code/

Fourteenforty Research Institute, Inc.

59

Thank you!

Tsukasa Oi | Research Engineer

<oi@fourteenforty.jp>

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp/

Updated and Detailed slides will be available at our website!

mailto:oi@fourteenforty.jp
http://www.fourteenforty.jp/

