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Abstract

A binary iriscode is a very compact representation of an iris image, and, for a
long time, it has been assumed that it did not contain enough information to allow
the reconstruction of the original iris. The present work proposes a novel proba-
bilistic approach to reconstruct iris images from binary templates and analyzes to
what extent the reconstructed samples are similar to the original ones (that is, those
from which the templates were extracted). The performance of the reconstruction
technique is assessed by estimating the success chances of an attack carried out
with the synthetic iris patterns against a commercial iris recognition system. The
experimental results show that the reconstructed images are very realistic and that,
even though a human expert would not be easily deceived by them, there is a high
chance that they can break into an iris recognition system. Furthermore, as the
proposed reconstruction methodology is able to generate not just one, but a large
amount of iris-like patterns with iriscodes which fall within the intra-class vari-
ability of a genuine user, the proposed method has other potential applications
including enrollment improvement or individuality studies.
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1. Introduction

Although being relatively young compared to other mature and long-used se-
curity technologies, biometrics have emerged in the last decade as a pushing al-
ternative for applications where automatic recognition of people is needed. Cer-
tainly, biometrics are very attractive and useful for the final user: forget about
PINs and passwords, you are your own key [1, 2]. However, we cannot forget
that as any technology aimed to provide a security service, biometric systems are
exposed to external attacks which could compromise their integrity [3]. Thus, it
is of special relevance to understand the threats to which they are subjected and
to analyze their vulnerabilities, in order to prevent possible attacks and develop
adequate countermeasures which increase their benefits for the final users.

Among the different existing biometric traits, iris has been traditionally re-
garded as one of the most reliable and accurate [4]. After some preprocessing
steps in which the iris is localized, segmented and normalized, the vast majority
of iris recognition systems perform some type of filtering operation in order to
generate the final binary template (i.e., iriscode) which is stored in the enrollment
phase. Then, in the authentication phase, matching is performed between iriscodes
applying some specific measure that operates at bit level such as the very widely
used Hamming distance [5, 6].

The iriscode has been adopted as a de facto standard by most iris-based sys-
tems, as it is a very efficient and compact representation of the specific discrimi-
native characteristics contained within a person’s iris pattern. As such, it has been
a common belief in the biometric community that binary templates do not com-
prise enough information in order to reconstruct the original iris image from them
[7]. Furthermore, iriscodes have been proven to be unique and random for real
iris images [8].

However, some recent studies have arisen different concerns regarding the
soundness of these widely spread believes [9, 10]. Are iriscodes really impos-
sible to be reversed engineered in order to recover the original iris pattern from
them? Is it possible to generate different synthetic iris-like patterns which yield
iriscodes very similar to one given? In summary, can we generate synthetic images
that match a specific binary template deceiving this way iris recognition systems?

In the present work we address all these questions proposing a novel proba-
bilistic approach based on genetic algorithms for the generation of iris-like syn-
thetic patterns whose corresponding iriscodes match that of a genuine user. Two
main goals are pursued:

• On the one hand, explore whether the reconstructed images produced by the
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new method may be used to carry out attacks against state-of-the-art and
commercial systems (e.g., injecting the reconstructed sample in the com-
munication channels or manufacturing a fake printed iris). This will also
serve as validation for the new technique.

• On the other hand, determine if it is possible to generate different synthetic
patterns with very similar iriscodes to one given.

The second objective defies the individuality of binary templates: synthetic
images visually different to an original sample may produce iriscodes which fall
within the intra-class variability of the genuine user, belonging this way to the
same identity according to iris recognition systems. In this new scenario, further
questions that fall out of the scope of the present work may be posed regarding
the security of iris-based algorithms. Can iris recognition be trusted solely to the
matching of iriscodes? Should some type of image-based recognition approach
be added in order to detect synthetic images with similar binary templates but
visually different? What other countermeasures could be developed to repel the
attacks?

The work has been carried out from a computer-based perspective. This means
that our goal is not to generate iris images that could fool a human expert, but
that are considered as genuine by automatic iris recognition systems. Even so,
different strategies to make the synthetic patterns look as realistic as possible are
also explored in the experimental part of the article presenting statistical results
regarding the perception that people have of the reconstructed images appearance.

In order to follow a fully reproducible experimental protocol which permits the
comparison of the results with future studies, experiments are carried out on two
publicly available databases. Furthermore, the iris recognition systems used for
development and testing are well known and commercial state-of-the-art systems
which may be easily obtained by any interested party.

The rest of the article is structured as follows. Iris recognition is briefly sum-
marized in Sect. 2. The novel probabilistic iris reconstruction algorithm is pre-
sented in Sect. 3. Then, the databases and iris recognition systems used in the
experimental protocol are described in Sect. 4. In Sect. 5 we present and analyze
the development and validation results of the algorithm. Conclusions are finally
drawn in Sect. 6.
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Figure 1: Example of the segmentation (a), the normalization and occlusion mask (b), and the
encoding (c) stages followed by most iris recognition systems.

2. Summary of Iris Recognition

The objective of this section is to briefly summarize those aspects of the very
complex iris recognition problem which are directly related to the present study
and which are essential for the correct understanding of the work. For a more
comprehensive, descriptive and self-contained review on automatic iris recogni-
tion the reader is referred to [8, 11, 12, 13, 14, 15].

Common iris recognition systems comprise five different stages: iris acquisi-
tion, iris location and segmentation, normalization, encoding and matching. As
has been mentioned before, the main objective of this work is to reconstruct an
iris pattern from its encoded binary template. Thus, although the acquisition and
segmentation tasks may be very challenging under certain scenarios (e.g., dis-
tance acquisition, uncontrolled lighting conditions, eye deviation, etc.) they are
not relevant to this study and will not be treated here.
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• Normalization. Once the iris has been segmented, the vast majority of iris
recognition systems transform the round-like iris pattern in cartesian co-
ordinates to a normalized rectangular image of fixed dimensions in polar
coordinates. These are the type of images that will be reconstructed using
the algorithm described in this work. The normalization process may be re-
versed and the normalized iris patterns can be merged again into the original
eye images (of the same or of a different user).

• Encoding. Although a greater diversity of methods have been reported in
this stage compared to the normalization one, most of them use some type
of filtering strategy (being the Gabor filters the most widely used) prior to
a quantization of the filtered output phase that generates the final binary
representation of the iris image (i.e., the iriscode).

Finally, the matching is performed between two iriscodes using in general
some bitwise operator such as the Hamming distance. In most cases, in the seg-
mentation stage, a mask showing the occluded areas of the iris (e.g., by the eyelids
or eyelashes) is also given as output. Then the matching score is only computed
on the “useful” bits of the iriscode.

In Fig. 1 an example of the normalization and encoding stages is shown. The
original iris image appears on top (a) with the two white circles marking the
boundaries of the segmented iris. Its corresponding normalized image together
with the mask showing the occluded areas (b) and its iriscode (c) are shown be-
low.

3. The Reconstruction Method

To give generality to the problem being addressed, some mathematical nota-
tion is introduced in this section. For the particular case of iris image reconstruc-
tion, in the following, B represents the compromised iriscode of the user whose
iris image is being reconstructed, IR represents the reconstructed normalized iris
image which is a solution to the problem, BR its associated iriscode and δ is the
matching threshold that determines if two iris images are coming from the same
subject.

Problem statement. Consider a R×C dimensional matrix IR of real values,
which is divided into H×L square blocks of dimension R/H×C/L, with H ≤ R
and L ≤ C. This matrix is mapped by some unknown function F to a binary
matrix BR (i.e., BR = F(IR)) of dimensions K × W (being in general K a
multiple of R and W a multiple of C).
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Figure 2: General diagram of the scheme followed in the present work. A detailed diagram of
the reconstruction approach (dashed rectangle) is given in Fig. 3 where points A and B show,
respectively, the input and output of the algorithm.

Consider the problem of finding an IR matrix such that, its associated BR

matrix (unknown), produces a similarity score (s) bigger than a certain threshold
δ, when it is compared to a known binary matrix B according to some unknown
matching function J , i.e., J (B,BR) > δ.

For clarity, we will define a new function V as: V(B, IR) = J (B,F(IR)) =
J (B,BR) = s

Assumptions. Let us assume: That we have access to the evaluation of the
function V(B, IR) for several trials of IR.

Algorithm. The problem stated above may be solved using a genetic algo-
rithm to optimize the similarity score given by the system, according to the gen-
eral diagram shown in Fig. 2. Genetic algorithms, which have shown a remark-
able performance in optimization problems [16], are a heuristic search tool that
iteratively applies certain rules inspired in natural evolution to a population of in-
dividuals (possible solutions) according to a given fitness function which has to
be optimized. At each generation (i.e., iteration) the algorithm evolves towards
better solutions. In this particular case:

• The fitness value associated to each individual (normalized iris image) is
the matching score, s = V(B, IR).

• Usually genetic algorithms operate with individuals which are binary vec-
tors. For this problem, the genetic algorithm has been modified to work
with matrices of real values (i.e., IR) where each of the H × L blocks in
which they are divided represents a gene of the individual.
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Figure 3: Diagram of the probabilistic method proposed in the present work for the reconstruction
of iris images from their iriscode. Points A and B (input and output of the reconstruction algorithm
respectively) may be seen for reference in Fig. 2. As it is shown in the shaded chart in the center of
the figure, although individuals are represented as vectors for simplicity, strictly they are matrices
of size R× C pixels divided into H × L blocks.

As can be seen in Fig. 3, the steps followed by the reconstruction algorithm
are:

1. Generate an initial population P0 with N individuals of size R×C (i.e., di-
mensions of the normalized iris images), and divide each of the individuals
into H × L rectangular blocks.

2. Compute the similarity scores si of the individuals (IRi) of the population
P0, si = V(B, IR

i), with i = 1, . . . , N .
3. Four rules are used at each iteration to create the next generation Pn of

individuals from the current population:
(a) Elite: the two individuals with the maximum similarity scores are kept

unaltered for the next generation.
(b) Selection: certain individuals, the parents, are chosen by stochastic

universal sampling [17]. This way, the individuals with the highest fit-
ness values (similarity scores) are more likely to be selected as parents
for the next generations: one subject can be selected 0 or many times.
From the original N individuals, only N − 2 are eligible (as the best
two are the elite) from which N/2 − 1 fathers and N/2 − 1 mothers
are chosen.

(c) Crossover: parents are combined to form the N − 2 children of the
next generation following a scattered crossover method: a random bi-
nary matrix of size H×L is created and the genes (blocks) of the child
are selected from the first parent where the value of the random matrix
is 1, and from the second when it is 0 (viceversa for the second child).
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(d) Mutation: random changes are applied to the blocks of the new chil-
dren with a mutation probability pm. When a block is selected for
mutation it is changed for the equivalent block in the individual of the
population with the highest fitness value.

4. Redefine P0 = Pn and return to step 2.

Stopping criteria. The algorithm stops when: i) the best fitness score of
the individuals in the population is higher than the threshold δ (i.e., the image has
been successfully reconstructed), ii) the variation of the similarity scores obtained
in a number of generations is lower than a previously fixed value, or iii) when the
maximum number of generations is reached.

Important notices. There are different important characteristics of the recon-
struction method presented above that should be highlighted as they differentiate
it from other previously published iris reconstruction techniques [10]:

• Due to the probabilistic nature of the four rules being applied, the algorithm
produces different solutions at each execution, even when its initialization
and parameter values are the same. This enables the reconstruction of more
than one normalized iris images (IR) with very similar iriscodes (BR) to
the target one (B).

• The algorithm does not need to know the mapping function F between the
normalized iris images (IR) and their corresponding iriscodes (BR).

• The algorithm does not need to know the matching function J .

• The algorithm does not need to know the function V , just its outcome to
given inputs.

• No real iris images are involved in the reconstruction process. As will be
explained in Sect. 4 the initial population P0 is taken from a database of
fully synthetic iris images.

4. Experimental Protocol: Databases and Systems

As it is shown in Fig. 4 the experimental protocol is divided into a develop-
ment and a validation stage, where two different databases and two different iris
recognition systems have been used in order to ensure totally unbiased results. All
of them are publicly available so that the results obtained in this study are fully
reproducible and may be compared with future similar works.
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Figure 4: Diagram of the experimental protocol followed in the present work. The databases and
systems used are highlighted with a darker shade. The protocol is described in Sects. 4 and 5.

4.1. Databases
Two databases, one of real samples and one of synthetic samples, are used

in the experiments. The iris images to be reconstructed are taken from the real
database (Biosecure DB), while the synthetic dataset (SDB) is used for the initial-
ization of the reconstruction algorithm (see Fig. 4).

As was described in Sect. 3, the reconstruction method proposed in the present
work needs a set of iris images for its initialization. This pool of initial samples
is taken from a database of fully synthetic iris images for two main reasons: on
the one hand, to avoid any possible overlap between the reconstructed images
and those used in the reconstruction process (which could lead to overoptimistic
results), and, on the other hand, to avoid having any real images involved in the
reconstruction method.

• The real database: Biosecure DB. The real images to be reconstructed in
the experiments are taken from the iris subcorpus included in the Desktop
Dataset of the multimodal BioSecure database [18], which comprises voice,
fingerprints, face, iris, signature and hand of 210 subjects, captured in two
time-spaced acquisition sessions. This database was acquired thanks to the
joint effort of 11 European institutions and has become one of the standard
benchmarks for biometric performance and security evaluations [19]. It is
publicly available through the BioSecure Foundation1.

1http://biosecure.it-sudparis.eu/AB
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Figure 5: Typical examples of the iris images that can be found in the two databases used in the
experiments: real (top) and synthetic (bottom).

The database consists of three datasets captured under different acquisition
scenarios, namely: i) Internet Dataset (DS1, captured through the Internet in
an unsupervised setup), ii) Desktop Dataset (DS2, captured in an office-like
environment with human supervision), and iii) the Mobile Dataset (DS3,
acquired on mobile devices with uncontrolled conditions). The iris subset
used in this work includes four grey-scale images (two per session) per eye,
all captured with the Iris Access EOU3000 sensor from LG. In the exper-
iments both eyes of each subject have been considered as separate users,
leading this way to 210× 2× 4 = 1, 680 iris samples.

• The synthetic database: SDB. Being a database that contains only fully
synthetic data it is not subjected to any legal constraints and is publicly
available through the CITeR research center2.

The synthetic irises are generated following the method described in [20],
which is divided in two stages. In the first stage, a Markov Random Field
model is used to generate a background texture representing the global iris
appearance. In the next stage, a variety of iris features such as radial and
concentric furrows, collarette and crypts, are generated and embedded in
the texture field. The database includes seven grey-scale images of 1,000

2http://www.citer.wvu.edu/
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different subjects.

Typical examples of the eye images that can be found in Biosecure DS2 (top)
and SDB (bottom) are shown in Fig. 5. We can observe that, as was our intention
in order to avoid biased results, the samples in both datasets are totally different.

4.2. Iris recognition systems
Two different iris recognition systems are used in the experiments (see Fig. 4).

The first one, which consists of totally accessible software modules, is used as
development system for the reconstruction of the iris images. The second one,
totally different to the previous, is used in the validation stage in order to deter-
mine if the reconstructed images are recognized as authentic by systems following
different approaches in the encoding stage to that used for development.

• Development: LogGabor filters-based [21]. For the development stage,
where the real iris images are reconstructed, a modified version of the iris
recognition system developed by L. Masek [21] is used. This system was
selected for several reasons: i) it is publicly available and its source code
may be freely downloaded3, ii) although its performance is certainly lower
than that of current state-of-the-art iris recognition systems, it is widely used
in many iris related publications to give baseline results, and iii) it is divided
in independent software modules which permit the access to the matching
score (requirement of the proposed reconstruction method).

The different stages involved in iris recognition (described in Sect. 2) are
implemented following a classical approach: i) segmentation, the method
proposed in [22] is followed, modelling the iris and pupil boundaries as cir-
cles; ii) normalization, a technique based on Daugmans rubber sheet model
that maps the segmented iris region into a 2D array is used [11]; iii) fea-
ture encoding, produces a binary template of 20 × 480 = 9, 600 bits and
the corresponding noise mark (representing the eyelids areas) by filtering
the normalized iris pattern with 1D Log-Gabor wavelets and quantizing the
filtered output to four levels (i.e., two bits) according to [11]; and iv) match-
ing, a modified Hamming distance that takes into account the noise mask
bits is used.

3www.csse.uwa.edu.au/pk/studentprojects/libor/sourcecode.html
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• Validation: VeriEye [23]. For the validation experiments the VeriEye com-
mercial system marketed by Neurotechnology4 is used as a final test to de-
termine the attacking potential of the reconstructed iris images. The mo-
tivation for its selection is twofold, i) on the one hand, it has proven an
outstanding reliability being ranked among the top performing systems in
the NIST Iris Exchange (IREX) independent evaluation in 2009 [24], and,
ii) on the other hand, being a commercial system it works as a black-box for
the user, who has no knowledge of the algorithms used at any of the stages
of the iris recognition process (being a commercial system its implementa-
tion details are industrial secrets). This way, the results are ensured to be
totally unbiased and not due to a specific adaptation of the reconstruction
algorithm to a given validation system.

5. Results: Performance

In addition to avoid biased results, the experimental framework has been de-
signed to evaluate the performance of the reconstruction algorithm and its degree
of compliance with the main objectives set in this work: i) if the iris images re-
constructed following the proposed method are able to compromise the security of
iris recognition systems (main goal of the present work), ii) if the reconstruction
scheme is able to produce different iris-like patterns with an iriscode very similar
to one given (secondary goal of the present work).

For this purpose, as was already introduced in Sect. 4.2, two totally different
iris recognition systems were used: one in the development stage and the other
one for validation purposes (see Fig. 4).

5.1. Development experiments: LogGabor filters-based system
The objectives of this first set of experiments are: i) to reconstruct the real iris

images in Biosecure DB starting from their iriscodes, and ii) to fix the values of
the different parameters involved in the reconstruction algorithm.

In order to achieve these two goals, one sample of each of the 420 users present
in the Biosecure DB (right and left irises of 210 subjects) were randomly selected
and their iriscode computed according to the publicly available iris recognition
system developed by Masek [21]. The dimensions of the normalized iris images
produced by this system are R×C = 20×240 and the size of their corresponding
binary templates K ×W = 20× 480 (i.e., each pixel is coded with two bits).

4http://www.neurotechnology.com/verieye.html
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Figure 6: Genuine and impostor score distributions of the iris recognition system used in the
development experiments. The selected positive matching threshold is marked with a vertical
dotted line, δ = 0.3.

This same system was then used to generate 5 different reconstructed images
of each binary template using the algorithm proposed in the present contribution
(i.e., the algorithm was applied 5 times to reconstruct each iriscode), thus leading
to a database of 5×420 = 2, 100 reconstructed iris images (named Reconstructed
Biosecure DB in Fig. 4).

In order to determine the positive matching threshold δ at which an iriscode
is considered to have been successfully reconstructed, the iris recognition system
performance was evaluated on the Biosecure DB. Genuine scores were computed
matching the first sample of each user to the other 3 images of that same user
(i.e., 420 × 3 = 1, 260 genuine scores), while impostor scores were generated
comparing the first iris of each user to the first sample of the remaining users in the
database (i.e., 420× 419 = 175, 980 impostor scores). The two sets of similarity
values are depicted in Fig. 6, where the selected positive matching threshold has
been highlighted with a vertical dotted line. We can observe that, below that value,
δ = 0.3, the probability of having an impostor score is almost zero. Thus, two
iris images producing such a similarity score may be considered to come from the
same user.

Extensive experiments were undertaken to determine the most effective pa-
rameter values of the reconstruction algorithm, finally finding a good operating
point for: population size N = 80, mutation probability pm = 0.003, and block
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Figure 7: Three example executions (right) of the reconstruction algorithm for the same original
image (left). For the reconstruction samples the evolution of the score through the generations is
shown on top (positive matching threshold marked with a horizontal dashed line), with the final
reconstructed normalized image and its corresponding iriscode below.

size R/H × C/L = 2 × 2 pixels (i.e., each normalized image is divided into
H × L = 10× 120 blocks).

In Fig. 7 three different reconstructions of an original normalized iris image
are shown. We can see that, although the reconstructed patterns do not look like
the original one and that the forming blocks may be distinguished, their corre-
sponding iriscodes are all very similar among themselves and present a high de-
gree of resemblance with the original. On top of each reconstructed image the
evolution of the score through the iterations is shown. The optimization process
may be clearly distinguished, reaching a lower value at each generation. Marked
with a horizontal dashed line is the positive matching threshold δ = 0.3.

5.2. Validation experiments: VeriEye
The iris images reconstructed in the development stage are used to test the

vulnerabilities of the VeriEye iris recognition system (see the validation chart in
Fig. 4). As mentioned in Sect. 4.2, this system operates as a black-box, that is,
given an input, it returns an output with no information about the algorithms fol-
lowed to get that final result. Several remarks have to be made regarding the inputs
and outputs of VeriEye:

• Inputs. Normalized iris samples in polar coordinates are not accepted by
VeriEye. The input to the system has to be an image containing a circular
iris in cartesian coordinates. For this reason, in order to attack the system, all
the reconstructed irises were transformed into desnormalized images such
as those shown in Fig. 8.
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Figure 8: Four reconstructed iris images in polar coordinates (top) all recovered from the same
original iris, and their corresponding desnormalized images in cartesian coordinates used to attack
the VeriEye commercial system (bottom).

• Outputs. The system output is only a similarity score in case of a positive
matching. When the matching threshold is not reached, a 0 is returned,
making this way more difficult the possibility of a hill-climbing attack [25].
In case that an error occurs during the recognition process (most likely at
the segmentation stage), a negative value is returned.

The performance of the attacks is measured in terms of its Success Rate (SR),
which is defined as the percentage of successful attacks (As) out of the total carried
out (AT ), i.e., SR = As/AT × 100. The key factor to compute the SR is to
define what constitutes an attack and when it is considered to be successful. In
the experiments, three representative attacks will be taken into account in order to
estimate the performance of the reconstructed iris images:

1. Attack 1: 1 reconstruction vs 1 real. In this case the attack is carried out on
a 1 on 1 basis. That is, one reconstructed image is matched against one real
image and, if the resulting score exceeds the fixed matching threshold, the
attack has been successful. Two possible scenarios may be distinguished in
this case depending on the real image being attacked:

(a) The real image being attacked is the original sample from which the
synthetic images were reconstructed. In this scenario the total number
of attacks performed which will be used to compute SR1a is AT1a =
420× 5 = 2, 100.

(b) The real image being attacked is one of the other three samples of the
same user present in the Biosecure DB. For this experiment the total
number of attacks performed which will be used to compute SR1b is
AT1b = 420× 3× 5 = 6, 300.
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FAR
SR (%) - VeriEye

SR1a SR1b SR2a SR2b SR3 Average
0.1% 81.2 66.7 96.2 92.8 96.7 86.7
0.05% 79.2 63.4 96.2 91.4 95.2 85.1
0.01% 77.3 60.9 95.2 90.9 93.8 83.6
0.0001% 69.0 49.1 92.8 82.8 82.9 75.3

Table 1: SR of the different attacking scenarios considered against VeriEye at the four operating
points tested.

2. Attack 2: 5 reconstructions vs 1 real. In this case all five reconstructions
are matched against the real sample. The attack is successful if at least one
of the synthetic images is able to access the system. This represents the
most likely attack scenario analyzed in other related vulnerability studies
[9]: the iriscode of the legitimate user is compromised and the intruder
makes different reconstructions of the iris to try to break the system. The
attacker will gain access if any of the reconstructions gets a positive score.
The same two scenarios as in attack 1 can be considered here, being the
total number of attacks carried out in each of them AT2a = 420 and AT2b =
420 × 3 = 1, 260. The resulting success rates will be noted as SR2a and
SR2b, respectively.

3. Attack 3: 5 reconstructions vs average (4 real). It is a common practice in
many biometric recognition systems to match the test sample against several
stored templates and return as final score the average of all the matchings.
To emulate this scenario each reconstructed iris image is matched against
the four samples of the real user available in the Biosecure DB. The attack is
successful if the average of the four matchings of any of the five reconstruc-
tions is higher than the given operating threshold. Thus, in this case, the
total number of attacks performed in order to compute SR3 is AT3 = 420.

In general, the success chances of an attack are highly dependent on the False
Acceptance Rate (FAR) of the system. Thus, the vulnerability of the system to
the attacks with the reconstructed images is evaluated at three operating points
corresponding to: FAR=0.1%, FAR=0.05%, and FAR=0.01%, which, according
to [26], correspond to a low, medium and high security application, respectively.
For completeness, the system is also tested at a very high security operating point
corresponding to FAR≪0.01%.
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As was mentioned before, this commercial system does not return impostor
scores (i.e., they are always 0) which means that its FAR may not be statistically
computed on a given database. In order to fix the threshold for the different oper-
ating points, a deterministic equation is given in the documentation enclosed with
the system.

During the experiments, the system was unable to segment (i.e., reported an
error) 1.4% of the real images in the Biosecure DB. This means that, for these
cases, a sample from the legitimate user would have not been able to access the
system. Thus, the highest SR that may be reached by the attacks is 98.6%. More-
over, 0.5% of the reconstructed images were not correctly segmented (these are
computed as unsuccessful attacks).

Several observations can be made from the results of the validation experi-
ments carried out on VeriEye shown in Table 1:

• The high performance of the reconstruction algorithm is confirmed, reach-
ing an average SR of around 85% for the three usual operating points con-
sidered and over 95% for the most likely attacking scenario (i.e., SR2a).

• Even for an unrealistically high security point (i.e., FAR=0.0001%), the re-
constructed images would have, on average, almost 75% chances of break-
ing the system.

• As expected, it is more probable that the synthetic samples are positively
matched to the original image from which they were reconstructed than to
other real images of the same user (see the decrease in the SR between SR1a

vs SR1b and between SR2a vs SR2b).

• Even so, the reconstructed images still present a high probability of break-
ing the system even when the stored templates are not the one from which
they were recovered (average SR of SR1b and SR2b around 75%).

• Furthermore, for the case of using several real samples of the user for veri-
fication (SR3), the reconstructed samples are still able to access the system
for around 94% of the attempts in the usual operating points, and for over
80% in the extremely high operating point tested.

• When the SR of attacks 1 and 2 are compared (i.e., 1vs1 and 1vs5, re-
spectively) an increase of around 27% may be observed on average when
several reconstructions of the iris image are available. These results prove
the higher attacking potential of the probabilistic reconstruction approach
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compared to deterministic algorithms that can only generate one iris image
from each iris code.

• Besides, a new possible vulnerability of iris recognition applications has
been raised, as the tested system positively matches images with a black
circle in the middle and a white background (such as the ones showed in
Fig. 8) that should by no means be recognized as an eye image.

6. Conclusions

The results retrieved from the systematic experiments carried out using the
proposed reconstruction approach have shown that it is unlikely to deceive a hu-
man expert with the generated fake samples. This does not seem to be simply due
to a limitation of the method but rather to a lack of information in the iriscodes
themselves that does not allow to fully reconstruct the complete original greyscale
iris pattern.

However, this work has demonstrated, as it was its main objective, that iriscodes
do have sufficient information to generate synthetic iris-like images with very sim-
ilar binary templates to the genuine pattern. The experimental findings presented
in the article have shown that an eventual attack against iris recognition systems
using such reconstructed images would have very high success chances provided
that we can present the fake samples to the system.

The experimental findings have also shown the ability of the proposed prob-
abilistic approach to reconstruct many synthetic samples from one given iriscode
(second goal of the work). This fact not only increases drastically its attacking
success rate compared to methods that can only generate one synthetic sample
from each binary template, but also opens the possibility to other potential appli-
cations which fall outside the security field on which this paper is focused:

• The probabilistic approach may be used to synthetically increase the amount
of available data of a subject (i.e., the number of training samples) in order
to improve the performance of iris recognition systems [27, 28].

• Biometric samples are personal data and different privacy concerns have
arisen regarding their distribution and protection [29]. The proposed recon-
struction method is able to generate synthetic iris patterns totally different
to the original (see Fig. 7) which are, nevertheless, positively matched to the
user’s identity. This means that the synthetic samples may be considered as
an alternative representation of the user’s identity and, as such, they may be

18



stored as enrollment templates avoiding this way possible privacy issues as
the genuine trait would only be used for testing.

• As mentioned above, the reconstructed samples may be considered as a new
iris pattern class which, although is visually different from that of the gen-
uine user (see Fig. 7), represents the same identity (i.e., iriscode). This way,
the reconstruction method may be useful to conduct experiments on the in-
dividuality of the iris trait [30, 31, 32]. Given that we can generate synthetic
templates with an iriscode which falls within the intra-class variability of a
different class (i.e., user), can we consider iriscodes really unique?

Furthermore, the work has arisen the need of including in commercial iris
recognition systems some verification strategy to check that the samples presented
to the system are those of an eye and not some other type of simple iris-like look-
ing image.

It may be argued that, for attacks such as the one considered in this work to
be successful, the first condition is that the original user’s template falls in the
wrong hands. This may be difficult, yet possible, in classic biometric systems
where the enrolled templates are kept in a centralized database. In this case, the
attacker would have to extract the information from the database or intercept the
communication channel when the stored template is released for matching.

However, nowadays, Match-on-Card (MoC) applications in which the match-
ing is performed inside a smartcard where the enrolled template of the user is
also stored, are rapidly growing due to several appealing characteristics such as
their scalability and privacy (you carry the only copy of your biometric data) [33].
Furthermore, biometric data is being stored in many official documents such as
the new biometric passport [34], some national ID cards [35], or the US FIPS-201
Personal Identity Verification inititatives (PIV) [36] and the ILO Seafarers Identity
Card Program [37]. In spite of the clear advantages that these type of distributed
systems present, templates are more likely to be compromised as it is easier for
the attacker to have physical access to the storage device and, as has already been
proven [38], fraudulently obtain the information contained inside. This makes
MoC systems potentially more vulnerable to the type of threat described in this
article.

In either case, centralized or MoC systems, the present work has proven that
attacks using reconstructed iris images constitute a real threat, stressing out the
importance of equipping automatic recognition systems with all the necessary
measures against it. These may include two complementary approaches:
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• Prevention. Aimed to avoid the users’ templates being compromised, for
example by securely storing biometric data or protecting the communication
channels through encryption [39].

• Protection. Aimed to minimize the probabilities of the attack of breaking
into the system should a template be compromised. This would be the case
of biometric-based countermeasures to detect synthetic from real iris images
such as the liveness-detection techniques [40].

Research works such as the one presented in this article pretend to bring some
insight into the difficult problem of biometric security evaluation through the sys-
tematic study of biometric systems vulnerabilities so that effective countermea-
sures that minimize the effects of the detected threats may be developed, in order
to increase the confidence of the final users in this thriving technology.
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