iOS Kernel Heap Armageddon

Stefan Esser
stefan.esser@sektioneins.de

VERSION 1.0

Introduction

When you look at the public research covering iOS kernel heap exploitation it all comes
down to the kernel heap zone allocator that was first discussed by nemo|[1]. In short this
allocator separates kernel memory in zones containing memory blocks of the same size.
It comes with heap meta data that when overwritten can be exploited to inject arbitrary
memory areas into the freelist of the zone.

In this paper we will first recapitulate this information about the kernel heap zone
allocator as previously discussed by nemo and Esser[2][3]. We will then take a look into
other kernel heap managers or memory allocation wrapper functions that can be found
in the Mac OSX and iOS kernel. After a brief overview over these wrappers we will look
into recent changes in these allocators in latest i0S 5 versions. The paper continues by a
look into kernel level application data overwrites in contrast to attacks against the zone
allocator’s freelist. The paper closes with the introduction of a generic technique that
allows to perform kernel heap spraying and to control the layout of the kernel heap
layout for kernel heap exploits.

Kernel Heap Zone Allocator

Mac OSX and also jailbroken iPhones come with a tool called zprint that allows to have
a look into the kernel memory zones that are registered with the kernel heap allocator.
It can be used like in the following example:

$ zprint kalloc

elem cur max cur max cur alloc alloc
zone name size size size #elts #elts inuse size count
zones 460 84K 90K 187 200 167 20K 44
vm.objects 148 487K 512K 3375 3542 3103 4K 27 C
vm.object.hash.entries 20 19K 512K 1020 26214 704 4K 204 C
maps 168 11K 40K 72 243 61 4K 24
VM.map.entries 48 203K 1024K 4335 21845 3859 4K 85 C
Reserved.VM.map.entries 48 27K 1536K 597 32768 191 4K 85
VM.map.copies 48 3K 16K 85 341 0 4K 85 C
pmap 2192 134K 548K 63 256 52 20K 9 C
tcp_bwmeas_zone 32 0K 4K 0 128 0 4K 128 C
igmp_ifinfo 112 3K 8K 36 73 3 4K 36 C
ripzone 268 3K 1072K 15 4096 0 4K 15 C
in multi 136 3K 12K 30 90 2 4K 30 C
ip_msource 28 OK 4K 0 146 0 4K 146 C
in_msource 20 OK 4K 0 204 0 4K 204 C
in_ifaddr 156 3K 12K 26 78 1 4K 26 C
ip_moptions 52 3K 4K 78 78 1 4K 78 C
llinfo_arp 36 0K 12K 0 341 0 4K 113 C
unpzone 152 27K 1132K 182 7626 129 4K 26 C

fs-event-buf 64 64K 64K 1024 1024 0 4K 64

bridge_rtnode 40 0K 40K 0 1024 0 4K 102 C
vnode.pager.structures 20 19K 196K 1020 10035 655 4K 204 C
kernel stacks 16384 1232K 1232K 77 77 33 16K 1cC
page_tables 4096 6688K -—— 1672 --—— 1672 4K 1cC
kalloc.large 64898 2218K 8961K 35 141 35 63K 1

This information is based on the kernel API functions host zone info and
mach_zone_info. Both these API functions are very useful when it comes to constructing
kernel heap exploits, because they allow retrieving detailed information about each
kernel zone, like the amount of allocated blocks and the amount of free memory blocks.
The later is very useful for controlling the kernel heap via heap feng shui[4] techniques
as discussed by Sotirov. However with the introduction of i0OS 6 Apple has closed down
this path by protecting the kernel API functions against being used on factory iPhones.
Nowadays it calls the PE_i can haz debugger function that will only return true on
jailbroken iPhones or on special Apple internal debugging devices or devices being
booted by special debugging ramdisks that Apple most probably has. Anyway future
kernel heap exploits can no longer rely on these functions.

To understand how the kernel heap zone allocator works and can be exploited the
following figures will document the inner working step by step. The allocator divides the
kernel memory into zones that contain memory blocks of the same size. It starts by
assigning a first chunk of memory (usually a single memory page) to the zone.

0x000

0x1000

All the memory inside the zone is then divided into blocks of the same size. In our
example each memory block is exactly 512 bytes in size.

0x000

0x200

0x400

0x600

0x800

0xA00

0xC00

0xE00

0x1000

The memory manager uses the first 4 bytes of each free memory blocks as a pointer to
another memory block. This is showed in the next figure.

0x000

0x200

0x400

0x600

0x800

0xA00

0xCO00

0xEO00
0x1000 W

The zone allocator creates a linked list of free memory blocks, the so called freelist. The
freelist is a LIFO list, with each element pointing to the next element in the freelist.
Because the first free memory block inside a new memory page is added first, the free
memory will be used in a reverse order, as you can see in the next figure.

0x000

0x200

0x400

0x600

0x800

0xAQ00

0xC00

0xE00

0x1000

head of freelist

When memory is allocated for a specific zone the last element added to the freelist, also
named the head of the freelist is returned as allocated memory block. However before
the newly allocated memory is returned, the pointer to the next element in the freelist is
read from the first 4 bytes of the memory block. The pointer read is then made the new
head of the freelist. The memory block it points to will therefore be the next returned.
This principle is demonstrated in the next figures.

before after
T allocation T allocation

T

ﬁ

—
head of freelist head of freelist

Now that we know the basic functionality of the heap zone allocator we can have a look
into the exploitation of this memory allocator. When we look at two adjacent memory
blocks, the first being an allocated buffer and the second being a free memory block, a
buffer overflow will overwrite the heap meta data.

I/'A\Aﬁ\v FNPNP
M I

adjacent memory blocks T

Al

—_

[head of freelist |

allocated block overflowing into free one

e

attacker head of freelist
data

In case an attacker controls the data the buffer is overflown with, he can completely
control the pointer to the next element in the freelist. As discussed before the allocation
that will return the overwritten memory block will make the attacker controlled pointer
the head of the freelist. And the allocation following that will return an attacker
controlled memory block. In public iOS kernel heap exploits this technique was used to
return a piece of memory that is in the middle of the system call table. By forcing the
kernel to allocate that piece of memory and overwriting it with attacker controlled data
it was possible to replace arbitrary system call handlers and achieve arbitrary kernel
code execution.

It is reported that current betas of i0S 6 add some kind of memory tagging to the kernel
heap allocator that while it does not stop attacks against the freelist in general, it stops
the publically used attacks, because it only allows to inject memory blocks into the
kernel’s freelist that are already under full control of the attacker.

Other Kernel Heap Memory Managers and Wrappers

The Mac OSX and i0OS kernels contain a number of other kernel heap memory managers
and wrappers. The following figure shows a number of these wrappers and memory
managers, but is most probably still incomplete.

mbuf_slab_alloc slab_alloc
mcache_alloc
mcache_slab_alloc
mac_zalloc

@

_MALLOC_ZONE

0OSObject::operator new

kmem_alloc_kobject

kmem_alloc

operator new(]

operator new

mac_kalloc '—
IOMallocAligned

In this section we will have a look into several of the mentioned allocators and wrappers
and discuss their properties when it comes to exploitation.

kalloc()

kalloc () isa wrapper around zalloc () and kmem alloc().Ituses zalloc () for
all the smaller allocations and kmem alloc() for the larger memory requests. It does
this without keeping any extra heap meta data. It is therefore up to the caller to
remember the size of the memory allocated, because the exact same size value is
required when the memory is later freed with kfree().

For storing data in kernel zones the memory manager registers a number of zones by
the names kalloc.xxx where xxx is one of the kalloc zone sizes. When you use the
zprint utility on iOS 5 it allows you to extract the following zones.

$ zprint kalloc

elem cur max cur max cur alloc alloc

zone name size size size #elts #elts inuse size count

kalloc.8 8 68K 91K 8704 11664 8187 4K 512 C
kalloc.16 16 96K 121K 6144 7776 5479 4K 256 C
kalloc.24 24 370K 410K 15810 17496 15567 4K 170 C
kalloc.32 32 136K 192K 4352 6144 4087 4K 128 C
kalloc.40 40 290K 360K 7446 9216 7224 4K 102 C
kalloc.48 48 95K 192K 2040 4096 1475 4K 85 C
kalloc.64 64 144K 256K 2304 4096 2017 4K 64 C
kalloc.88 88 241K 352K 2806 4096 2268 4K 46 C
kalloc.112 112 118K 448K 1080 4096 767 4K 36 C
kalloc.128 128 176K 512K 1408 4096 1049 4K 32 C
kalloc.192 192 102K 768K 546 4096 507 4K 21 C
kalloc.256 256 196K 1024K 784 4096 740 4K 16 C
kalloc.384 384 596K 1536K 1590 4096 1421 4K 10 C
kalloc.512 512 48K 512K 96 1024 46 4K 8 C
kalloc.768 768 97K 768K 130 1024 115 4K 5¢C
kalloc.1024 1024 128K 1024K 128 1024 80 4K 4 C
kalloc.1536 1536 108K 1536K 72 1024 59 12K 8 C
kalloc.2048 2048 88K 2048K 44 1024 39 4K 2 C
kalloc.3072 3072 672K 3072K 224 1024 59 12K 4 C
kalloc.4096 4096 120K 4096K 30 1024 28 4K 1cC
kalloc.6144 6144 420K 576K 70 96 38 12K 2 C
kalloc.8192 8192 176K 32768K 22 4096 20 8K 1cC

As you can see there is one kernel zone for each power of 2 between 8 and 8192 plus a
number of additional zones for numbers dividable by 8 in between the powers of 2.
These are the =zones kalloc.24, kalloc.40, kalloc.48, kalloc.88,
kalloc.112, kalloc.192, kalloc.384, kalloc.768, kalloc.1536,
kalloc.3072 and kalloc.6144. Prior to i0S 5 these kalloc zones were not available
and the smallest zone was of the size 16. It is likely that this change was made to add
zones that are better fitted to the most often performed allocations so that less memory
is wasted.

kfree()

Before moving on to the next wrapper there is something notable about the kfree ()
function. As previously mentioned the caller needs to remember the size of the block it
frees, because otherwise kfree() cannot know if zfree() or kmem free() is
supposed to be called and what zone it should return the memory to. In addition to that
the memory manager keeps track of the larges allocated memory block and an attempt
to free a block that is larger than this remembered value will just be ignored. This is a
simple protection against double frees.

_MALLOC()

_MALLOC () is a wrapper around the kalloc () function. It prepends a short header to
the allocated memory block that stores the size of the allocation. That way memory
allocated by MALLOC () can be freed without the kernel code needing to keep track of
the size of the block. This e.g. enables memory allocations across system calls.

size + 4

J/\\
r N\

‘ size data |

A special case is an allocation of 0 bytes. MALLOC () simply refuses to allow such an
allocation and returns a NULL pointer. It is unknown why Apple does not simply return
a smallest size allocation, because allocating 0 bytes can happen in legal situations. The
addition of the size header has two downsides, first it requires an integer addition in
order to determine the size to be allocated and secondly it represents extra heap meta
data that when overwritten can lead to exploitable conditions.

The danger of the integer addition in MALLOC () becomes obvious when you look into
its source code in the XNU source code tree, which is the version used for iOS 4. As you
can see in the code below, Apple did not catch the integer overflow in iOS 4 and Mac OSX
Lion, which results in a number of possible kernel heap corruptions.

void * MALLOC(size_t size, int type, int flags)

{
struct _mhead *hdr;
size t memsize = sizeof (*hdr) + size;
if (type >= M LAST)
panic(" _malloc TYPE");
if (size == 0)
return (NULL);
if (flags & M _NOWAIT) {
hdr = (void *)kalloc_noblock(memsize);
} else {
hdr = (void *)kalloc(memsize);
}
hdr->mlen = memsize;
return (hdr->dat);
}

However before the release of iOS 5 Apple learned about the possible integer overflow
and closed it. The code was changed to catch the integer overflow and in case of an

overflow a NULL pointer is returned in the non blocking case. In the blocking case
however a kernel panic is triggered as you can see.

void * MALLOC(size_t size, int type, int flags)
{

struct _mhead *hdr;

size t memsize = sizeof (*hdr) + size;

int overflow = memsize < size ? 1 : 0;

if (flags & M_NOWAIT) {
if (overflow)
return (NULL);
hdr = (void *)kalloc_noblock(memsize);
} else {
if (overflow)
panic(" MALLOC: overflow detected, size %1lu", size);
hdr = (void *)kalloc(memsize);

hdr->mlen = memsize;

return (hdr->dat);

}

The memory block header containing the extra size field is a very interesting target for
overwrites, because by overwriting it, the memory manager can be tricked to release the
memory block into the freelist of the wrong zone. If the size is overwritten with a
smaller size the block will be added to the freelist of smaller sized blocks. This does not
result in a memory corruption but will result in a memory leak, because the end of the
longer block will never be overwritten. If instead a bigger size is written into the header,
the block will be added to a freelist of larger sized blocks. This will lead to a memory
corruption, because on allocation the kernel believes the block to be larger than it is
which will overwrite the adjacent memory when it is filled.

Kernel Heap Application Data Overwrites

Considering that Apple is hardening the zone allocator right now and that some memory
allocators do not have inbound heap meta data that can be overwritten, we will now
have a look at attacking interesting kernel application data that is stored in the heap. For
the rest of this section, we will use kernel level C++ objects as an example of such
interesting application data that can be abused.

The libkern inside the iOS kernel implements a subset of a C++ runtime. It allows
kernel drivers to be written in C++, which is heavily used in especially [OKit drivers. This
is interesting, because it brings C++ vulnerability classes into the iOS kernel. However
for our purposes only the in memory layout of these objects is of interest.

The following figure shows an overview of the base objects that are supported i0S
kernel’s C++ runtime and their inheritance:

As you can see all these objects are derived from the base object 0SObject. Next we
want to look into the memory layout of such objects. As you can see an 0SObject
consists merely of a vtable ptr and areference counter.

0x00
vtable ptr + 8

0x04
retainCount

0x08 T

80221570 ; “vtable for'OSObject
802A1570 _ zZTV80SObject

80271570 DCD 0

80271574 DCD 0

80271578 DCD sub_801E7COC+1

802A157C DCD __ ZN80SObjectDOEv+1

802A1580 DCD __ ZNK80OSObject7releaseEi+l

80221584 DCD __ ZNK80OSObjectl4getRetainCountEv+1l
802A1588 DCD __ ZNK80OSObject6retainEv+l

802A158C DCD __ ZNK80OSObject7releaseEv+l

802A1590 DCD __ ZNK80OSObject9serializeEPllOSSerialize+l
802A1594 DCD __ ZNK80OSObjectl2getMetaClassEv+l
802A1598 DCD __ ZNK150SMetaClassBase9isEqualToEPKS_+1
802A159C DCD __ ZNK80SObjectl2taggedRetainEPKv+1
802A15A0 DCD __ ZNK80SObjectl3taggedReleaseEPKv+l
802A15A4 DCD __ ZNK80SObjectl3taggedReleaseEPKvi+l
802A15A8 DCD __ ZN80SObject4initEv+l

802A15AC DCD __ ZN80OSObjectdfreeEv+l

The vtable ptr points into the kernel’s data segment, where the method table of the
object is stored. The retainCount on the other hand is a bit more complicated. It is a
32bit value that stores a 16bit reference counter in its lower 16 bits. The upper 16 bits
are used for a second reference counter that counts how often this object is part of a
collection. It seems this was originally meant for debugging purposes, because the
collection counter seems to be only used to verify that the normal reference counter
does not drop below the collection counter. If that ever happens a kernel panic is
triggered. A special thing about the reference counter is that is has an integer overflow
protection built in. If the value of the reference counter ever reaches the number 65534
then the counter is frozen, which means that the reference counter will not be increased

and also not decreased anymore. Therefore the object cannot be destructed anymore
and its memory never be freed.

In order to understand how iOS kernel object overwrites are exploitable it is necessary
to understand the impact from overwriting each field of an 0SObject in memory. In
case it is possible to overwrite the vtable ptr this allows to change the address of the
table that is used to lookup methods of the object. Once this pointer is overwritten every
action performed on the object will allow arbitrary kernel code execution. If the
retainCount is overwritten this allows to set the reference counter to a value smaller
than the actual number of references existing. This allows freeing the object early, which
results in the typical use after free exploitation through the use of dangling references.
Once freed the next allocation of the same size allows to completely replace the content
of the object.

OSObject is the simplest of all the C++ objects in the i0OS kernel. Other objects like
OSString are more complicated and contain more properties or properties of different
types. It is therefore interesting to look a bit further and analyze their memory layout.
First lets have a look at the 0SString object, its memory layout is visible in the next
figure.

0x00
vtable ptr + 8
0x04
retainCount
0x08
flags
0x0C
length
0x10
string ptr ————— > kalloc()ed memory
0x14

In addition to the properties known from OSObject the three properties flags,
length and string ptr are new. The flags field just controls if the string pointer
inside the object should be freed on its destruction or not. This is usually only
interesting if the other fields can also be overwritten. More interesting is the length
field. If the length of the string is changed to a value bigger than the original value this
can either lead to a kernel heap information leak or to a memory corruption on
destruction. The memory corruption is caused because a too large length will result in a
short length memory block being added to the freelist of the wrong kernel heap zone. If
the freed memory is later reallocated, the pointer returned will point to a memory block
that is actually smaller than expected. When the kernel fills this smaller block with data
the superfluous data will overwrite the adjacent memory. The last field that could be
overwritten is the string pointer itself. If this pointer is overwritten it can result kernel
heap information leakage or a memory corruption on destruction. In this case an
attacker could inject an arbitrary memory address into the freelist of a specific zone,
which results in memory corruption once that memory is reallocated and filled by the
kernel.

Another interesting object for overwrites is OSArray. It contains more properties and
therefore offers some new and interesting possibilities for overwrites. Lets have a look
at in memory layout of an OSArray object:

0x00
vtable ptr + 8 [\kalloc(capacity * sizeof(void *))
0x04 0x00
retainCount OSObject ptr
0x08 0x04
updateStamp OSObject ptr
0x0C 0x08
fOptions NULL
0x10 \j 0x0C
array ptr
Ox14
count
0x18
capacity
0x1C
capacitylncrement
0x20
reserved
0x24

The fields updateStamp, reserved and £Options are not interesting for overwrites,
because they cannot lead to some interesting exploitable scenario. However all the other
fields allow for interesting exploitable scenarios. The fields count, capacity and
capacityIncrement are all numbers involved in the allocation of memory with
kalloc(). Overwriting these numbers will confuse the kernel and make him allocate
or deallocate wrong amounts of memory. This can lead to information leaks or different
memory corruptions. The last field the array ptr is the most interesting one to
overwrite. This pointer points to an array of pointers to objects derived from
OSObject. By overwriting it is possible to let the kernel access arbitrary constructed
objects, which will result in arbitrary code execution inside the kernel. An alternate
attack would be to overwrite the memory block that stores the array directly.

This concludes our little overview of C++ objects in the iOS kernel, their memory layout
and the possibilities that arise from overwriting them. Keep all this information in mind
for the next section where we use these objects to fill the iOS kernel heap and control its
layout.

Controlling the iOS Kernel Heap

For successful exploitation of kernel heap memory corruptions it is required to bring the
kernel heap from an unknown starting point to a predictable state in a controlled way.
For this purpose there have been different techniques proposed. The simplest of these is
called heap spraying, which just comes down to filling memory with specific data by
repeatedly triggering the same allocations over and over again, until a large percentage
of the memory is filled with this pattern (or another terminating condition is triggered).
In order to implement heap spraying it is required to have an allocation primitive that is
executed repeatedly. It is unknown who originally invented heap spraying, because this
technique was already used around or before 2001.

A more complicated and better technique to control the state of a heap was called heap
feng-shui by A. Sotirov in 2007. In his BlackHat talk he described how it is possible to get
from a heap in an unknown state to one with a controlled memory layout. For this it is
required to first fill all the holes in the heap by repeatedly allocating memory. Once all
holes are closed further allocations will be adjacent to each other. Freeing memory
blocks within these adjacent areas will poke holes in controlled positions so that
following allocations end up in these holes. In that way it is possible to control the heap
layout in a way that an overflowing buffer will overflow exactly the data we want it to
overflow. Naturally implementing a heap feng-shui technique is more complicated than
a heap spray and requires not only an allocation primitive, but also an deallocation
primitive.

In previous public iOS kernel exploits the allocation and deallocation primitives were
always very specific and depending on the actual exploited functions. We will therefore
introduce you to a more generic solution that can control the kernel heap without
vulnerability specific allocation and deallocation primitives.

The i0S kernel contains a very interesting function called 0OSUnserializeXML(). Itis
called by many of the I0Kit API functions and is used to pass objects from user space to
kernel pace. The functions takes an input in XML .plist format, that defines numbers,
booleans, strings, data, dictionaries, arrays, sets and references. An example of such an
XML plist can be seen below.

<plist version="1.0">
<dict>
<key>IsThere</key>
<string>one technique to rule them all?</string>
<key>Answer</key>
<true />
<key>Audience</key>
<string>meet OSUnserializeXML()</string>
</dict>
</plist>

By constructing such XML .plist data packages it is therefore possible to create arbitrary
object collections in memory and therefore allocate arbitrary amounts of different types
of objects in all sizes and shapes. We can use that to control the kernel heap in any way
we like. The following table can be used as a cheat sheet listing the memory sizes of the
base objects.

in memory size kalloc zone size additional alloc
OSArray 36 40 + capacity * 4
OSDictionary 36 40 + capacity * 8
OSData 28 32 + capacity
OSSet 24 24 + sizeof(OSArray)
OSNumber 24 24
OSString 20 24 + strlen + |
E z Py

We will now look into how the XML data must be constructed to allow for heap spraying
and heap feng-shui.

Allocate repeatedly

The first thing we need to be able todo is to allocate arbitrary amounts of memory
blocks in arbitrary sizes. Unfortunately it is not possible to loop inside an XML .plist data
block. It is however not limited and we can therefore allocate as much data as we want.

<plist version="1.0">
<dict>
<key>ThisIsOurArray</key>
<array>
<string>again and</string>
<string>again and</string>
<string>again and</string>
<string>again and</string>
<string>again and</string>
<string>again and</string>
<string>...</string>
</array>
</dict>
</plist>

The previous example uses an <array> object and fills it with an arbitrary number of
strings. In order to do a kernel heap spray we therefore just need to construct a very big
XML data object and feed it to an appropriate I0Kit API function

Allocate attacker controlled data

The downside of using <string> data objects for spraying the iOS kernel heap is that
NUL bytes cannot be contained. It is therefore not possible to use string objects for
spreading the heap with completely arbitrary data structures. However the <data>
object type comes to the rescue. It allows the creation of arbitrary data structures
because the data is base64 encoded and therefore has no limit of character values.
Alternatively the kernel also supports simple hex format. You can see this in the example
below.

<plist version="1.0">

<dict>
<key>ThisIsOurData</key>
<array>

<data>VGhpcyBJcyBPdXIgRGF0YSB3aXRoIGEgT1VMPgA8+ADw=</data>
<data format="hex">00112233445566778899%9aabbccddeeff</data>
<data>...</data>
</array>
</dict>
</plist>

The <data> object type is also more convenient, because it reads in chunks of 4096 and
therefore it does not allocate blocks in memory zones we are interested in while
decoding the XML. By combining the power of <data> and <array> it is possible to
perform a kernel level heap spraying. Heap feng-shui requires more control which we
will solve next.

Fill arbitrary sized memory blocks with application data

For heap feng-shui we need to be able to not only allocate arbitrary sized memory
blocks, but to allocate arbitrary sized memory blocks that are filled with data that when
overwritten can result in arbitrary code execution. For this we once again make use of
the <array> object type (alternatively we can use the <dict> object type, too).

<plist version="1.0">
<dict>
<key>ThisArrayAllocates 4 Bytes</key>
<array>
<true />
</array>
<key>ThisArrayAllocates 12 Bytes</key>
<array>
<true /><true /><true />
</array>
<key>ThisArrayAllocates 28 Bytes</key>
<array>
<true /><true /><true ><true /><true /><true /><true />
</array>
</dict>
</plist>

In this example we use the allocated arrays to fill the memory with pointers to boolean
objects. The booleans will not be separate objects that allocate memory. Instead they
will increase the reference counter of a global true object. If overwritten this will allow
to supply crafted objects to the kernel that when used result in arbitrary code execution.
Alternatively the <dict> object type can be used for this attack. The difference is that in
one case the multiplier is 4 for the single object pointer and in the dictionary case the
multiplier is 8, because a key and a value object pointer is stored.

Poking holes into allocated areas

The last thing that is required for total control of the kernel heap is the possibility to not
only allocate arbitrary sized memory blocks, but also the ability to poke arbitrary sized
holes into these allocations. To understand how poking holes in already allocated
memory is possible, with the help of <dict> objects, have a look at the following
example.

<plist version="1.0">
<dict>
<key>AAAA</key>

<data>AA</data>

<key>BBBB</key>

<data>AA</data>

<key>CCCC</key>

<data>Z7Z7Z777277272%22%2222%22222%22222%222222222222222%222222222222%2</data>

<key>DDDD</key>

<data>AA</data>

<key>EEEE</key>

<data>AA</data>

<key>CCCC</key>
<true />
</dict>
</plist>

In this example you can see that the key CCCC is assigned two times. The first time it is
inserted into the dictionary and the second time the key’s value is updated and the
previous value object is destructed. The destruction of this data object will therefore
free the data object itself and also free the data, which consists of a base64 decoded
repeated Z character in this case. We have therefore effectively poked a hole into the
memory. With this last piece in the puzzle is should be no problem for you construct
XML .plist documents that control the heap to your bidding.

Conclusion

Within this paper we have started with a recapitulation of the iOS kernel’s heap zone
allocator and its exploitation as previously discussed by various authors. We then had a
look at other kernel heap allocators and the additional heap meta data they come with.
We have discussed how overwriting this data can be abused and have also mentioned
recent changes in these allocators. We have then taken a step away from the exploitation
of kernel heap meta data structures and discussed i0S C++ kernel objects, their in
memory structure layout and what can be gained by overwriting them in memory.
Finally we have introduced a generic technique to perform kernel heap spraying and
kernel heap feng-shui with the help of the OSUnserializeXML () function that is used
by many [OKit API functions. This new technique allows to not only spray the heap with
arbitrary data and control its layout completely, but it also fills the kernel heap with
interesting kernel application data in form of kernel level C++ objects that once
overwritten allow for easy code execution.

References

[1] E. PERLA, M. OLDANI, "A GUIDE To KERNEL EXPLOITATION - ATTACKING THE CORE”,
2010, HTTP:/ /WWW.ATTACKINGTHECORE.COM /

[2] S. ESSER, "I10S KERNEL EXPLOITATION, BLACKHAT USA”, 2011
HTTPS://MEDIA.BLACKHAT.COM /BH-US-
11/EsSer/BH_US_11_Esser_EXPLOITING_THE_IOS_KERNEL_WP.PDF

[3] C. MILLER, D. BLAZAKIS, D. DAIZovV], S. ESSER, V. 10ZZ0, R.-P. WEINMANN, "10S
HACKER’S HANDBOOK”, 2012,
HTTP://EU.WILEY.COM/WILEYCDA /WILEYTITLE /PRODUCTCD-1118204123,DESCCD-
DESCRIPTION.HTML

[4] A. SoTIROV, "HEAP FENG SHUI IN JAVASCRIPT, BLACKHAT EUROPE”, 2007
HTTPS://WWW.BLACKHAT.COM/PRESENTATIONS /BH-USA-07 /SOTIROV/WHITEPAPER /BH-
USA-07-SOTIROV-WP.PDF

