

Owning Bad Guys {& Mafia } with JavaScript Botnets
Chema Alonso (chema@informatica64.com @chemaalonso) and Manu ñThe Surò (mfernandez@informatica64.com)

Informatica 64 (http://www.informatica64.com)

Abstract: ñMan in the middleò attacks are common and dangerous. Using a TOR

connection or an Anonymous Proxy Server implies accepting a ñman in the

middleò schema in our Internet Connection. In this paper we describe how easily

a JavaScript Botnet can be constructed and what are the risks. Moreover, we

describe, with samples, what kind of people are using this kind of services.

Botnets

Building a botnet is an idea that everyone working in

security has thought about. c. The idea of having a control

panel that allows you to manage the behaviour of thousands

of machines is tempted é However, this process is

definitively a step to the side of cybercrime, and must be

very careful not to do.

Despite this, the proof of concept I will relate in this article

has to do with this idea, to make a botnet, but with a

complete different philosophy. First, on our proof of concept

work that is done is completely passive, it means, there is no

intention to control the lives of anyone, but to study the risks

of certain services that have become too popular, such as

ñAnonymous Proxiesò and TOR networks.

All this work is intended to alert of the risks to which may

be incurred by the mere fact of following one of the many

tutorial available on Internet about anonymity. That said, I

will tell you the process we followed to make a botnet to

control what they do and how they do, that bad guys of

Internet.

Man In The Middle

Before describing the architecture is necessary to review the

concept of ñMan in the Middleò techniques. In the

networking field, ñMan in the Middleò attacks are popular

and effective. Typical cases in IPv4 networks with ARP

Spoofing techniques or Rogue DHCP, in IPv6 networks

with ICMP Spoofing attacks or SLAAC, or other cases such

as DNS Poisoning are widely used in schemes to steal

credentials.

"Man in the middle" scheme in networks, spread with the

cybercrime world to "Man In The Browser". For a long

time, "the Russian school" was beating those systems with

Internet Explorer 6 by using the famous Browser Helper

Objects (BHO) - Active X components -, just like a browser

toolbar took control about everything going on in the

browser, in order to replace and inject HTML code in

websites of financial institutions and steal login credentials.

This scheme of business was extended to mobile devices,

where it is known as ñMan In The Mobileò, since in order to

control economic transactions of many banks was necessary

to steal the bank confirmation SMS.

Man in the Tab

Even more subtle are the techniques of "Man in the Tab" or

"JavaScript in the middle", also known as cache poisoning

browser. In these cases, the attacker does not control entire

browser, but its only area of work is the content of a tab, that

is, it has managed to put malicious code on the user tab,

allowing they to do all the things that can be done with code

on a web page loaded in a web browser.

These attacks are commonly used in XSS schemes, where

the attacker injects code that runs in the browser tab.

Another common way, is to own legitimate web servers to

put a JavaScript code, which is responsible for redirecting

visitors to a web server where the exploting kits were

deployed. This is something very common in distribution of

malware operations.

Figure 1: Trojan JS/Redirector.GA

But there are even malware whose operation is based

entirely on that, a file cached in web browser to load

malicious JavaScript on a regular basis on the tabs to get

their executions. Thus, malware as Trojan horse: JS /

Redirector.GA [1] took care to put the Google Analytics

JavaScript file, widely used on many web sites, as this

trojan-blog, loading a malicious payload from a server

controlled.

mailto:chema@informatica64.com
mailto:mfernandez@informatica64.com
http://www.informatica64.com/

Once inside

In an environment that has been infected with a JavaScript

file loaded in the page, the many things that can be done are

more than enough to please the attacker. First, to be within

the domain allows Javascprit code to access all the cookies

that are not tagged as HTTP Only, and even others if the

conditions are present for TRACE attack [2], or make an

Error 400 attack in Apache[3] or loading a Applet[4] or... Of

course, it is possible to make Clickjacking attacks, Phishing,

to steal data that has been typed, to intercept forms, to load

code from remote servers, etcetera.

In order to generate attacks in these environments there are

advanced solutions such as BeEF (Explotation Browser

Framework)[5] that contains a good amount of payloads to

use in case you get the malicious .js file.

Figure 2: BeEF Project

How to make a botnet with this idea

Moving from an environment that specifically infects a

JavaScript file, we decided that the best way to create the

botnet would be if bots did "motu proprio", it means, not a

forced man in the middle, but chosen by themselves. Hereby

we decided to focus on the TOR network and Proxy servers

used on the Internet.

For its implementation, we assemble a machine, which

would be the ñMan in the Middleò, and enrolled as TOR

node and as an Anonymous Proxy Server, and in both cases

was operating for a while. However, we must say that with

TOR node, we suffered a detection of malicious activity that

makes that our IP address was ignored.

Figure 3: DNS test log in TOR

Security systems in TOR networks launch periodic and

more or less random tests, in which the answers are known

beforehand, and if they are handled or manipulated in some

way, then the node loses confidence and it is blocked. In our

case, we "tweak" the answer to certain domain names and

stopped sending traffic through our node. Good for them!

However, with proxy servers on the Internet the things were

differenté

Architecture of the solution: Infection of JavaScript

To achieve the goal of being able to infect clients with

malicious JavaScript files should ideally not add a new file,

but to modify JavaScript files that pass through the

Malicious Proxy server by adding some code to load a

payload each time bots execute this code in a browser tab.

That is, using a schema similar to the following image:

Figure 4: Malicious Proxy architecture

This means that the architecture does modify the code of all

JavaScript files that passes through the Proxy server to

dynamically load the payloads to be set later with a control

panel as BeEF.

Setting the proxy server: SQUID

To get JavaScript files rewritten, the steps were:

1) Download the file from its original location.

2) Save it to a temporary location.

3) Add the JavaScript infection code at the end of the

JavaScript file.

4) Make that file has an expiration date of 3,000 days.

5) Deliver to the clients the new created JavaScript file.

In order to perform all these steps, the first thing to do is

select the server option URL_Rewrite_Program of SQUID,

which lets you run a program to rewrite the files that match

a certain condition. In this case, the rule applies to all files

and used a Perl program called poison.pl.

Figure 5: squid.conf file with activated url_rewrite_program

The file poison.pl performs steps 1 to 5 (with the exception

of step 4) of the process described above. To do this, first

check that the file name ends in .js with a small regular

expression. Once the file is met JavaScript, the program will

download it from its original location, copy it to a temporary

location, change its permissions to write it and dumps the

contents of file infection, which in our example is called

pasarela.js

Figure 6: poison.pl module infects JavaScript files

The last step is modify the expiration date of the objects. It

requires installing ñmod_expiresò module into Apache, and

to make a little change in the file .htaccess at location from

which will serve all the JavaScript infected files.

Figure 7: .htaccess file of temporary folder

The infection

Finally, note that all that is necessary to infect JavaScript

files, is something called pasarela.js and all it does is

loading the poisoned payload.php from malicious server and

report their identity loading an image with jsonip.php.

Figure 8: pasarela.js file that is copied in all the JavaScript files

In the code can be viewed whether an element has been

created or not. The goal is to not run the code of the

pasarela.js more than once per page.

And nowéhow to get someone become infected with this

Malicious Proxy?

Distributing the Pr oxy server in Internet

To get the ñbad guysò do use of our Malicious Proxy server,

the idea was very simple: We registered it on one list of

proxy servers. For a long time, and in many sites and blogs,

it is recommended the use of proxy servers to get

anonymous IP address, which is common for many of us to

do, and I have to include myself. We selected a site at

random and we register the IP address with port 31337, to

attract a little more attention.

Figure 9: Proxy servers service

These sites with lists of Proxy servers perform security

testing to the new Proxy Servers, but the test are not as good

as those made in the TOR network. In fact, the real problem

is not the place where the proxy server is registered do the

tests or not, but once it gets on the list, there are hundreds of

sites and applications that are downloading these lists

without any verification of safety.

Simply pass the first test, which from what we saw was test

of connection and functionality, and the "Magic of the

Internetò will make your IP address appears on thousands of

sites, such as what happened with our IP address.

Figure 10: Rogue Proxy IP appeared in thousands of sites

Expansion of the botnet

Once there was the mass distribution of the IP address, the

rest of the work was waiting to see how many "bad guys"

began to be infected by JavaScript code. To see that, it was

implemented a small panel in PHP ï that was hacked by

Spanish hackers later, just after we show it in our talk in

RootedCON [6]. Don´t trust on Spanish hackers!-, which

accounted for the bots that had ever requested payloads and

those who had requested them in the last 24 hours.

The number of computers that were infected were so high at

the beginning, that knock down our panel, so we had to

optimize some queries, and be much more selective in the

connections and the data to be captured, so as not to

overwhelm our small server with many data.

Figure 11: Map of active bots by countries

Here you can see how the panel reached one of the moments

about 5,000 bots with nearly 1,000 of them active in the last

hour. As you can see, to make an analysis of the origins of

connection, Russia, Brazil and Indonesia were the most

active when using these services. Interestingly match source

of much malware.

Making payloads

Once we had entered the pasarela.js in the browser ... What

could be done from there? The volume of ideas that you

may occur is huge. From making DDOS attacks, until make

defacement of the sites visited by the bot, phishing attacks to

steal login credentials of special sites or steal cookies from

the session.

As we had no intention of doing anything wrong with this,

and our goal was to do an experiment to see what kind of

things were done through the Internet Proxy servers, only

started a couple of payloads.

1) Identification of bot, and theft of cookies that were

not HTTP Only and its URL.

2) Theft of data sent by loaded HTTP forms.

Identifying bot and URL of connection

We left out of the payloads the HTTPs connections and

HTTPOnly cookies, because we had no actual real target,

and because it was sufficient as sample to obtain that

information.

Thus, the first payload identification only did this:

document.write(ñ<img id="domaingrabber"

src="http://X.X.X.X/panel/

domaingrabber.php?id=0.0.0.0

&domain="+document.domain+" &location="

+document.location+"& cookie="+document.cookie+""

style="display: none;" />");

Allowing us to know which URL was connecting and if he

had any unsafe session cookie. This information allows us to

find things very juicy and discover a new Internet full of

URLs that we had not visited before.

Grabbig data from the forms

To get data filed from forms, a small script was generated

which hook submit events of the forms, with this simple

JavaScript code.

Figure 12: Script to hook submits fields of the forms

And the rest was to discover what is done through an

Anonymous Proxy Server on the Internet ... What did we

found there?

Who uses the Internet Proxy server?

The main reasons to use an Internet Proxy Server are usually

two. The first of these is obviously hiding the source IP

address of the connection. Such users are seeking will

certainly not leave the IP address of the initial connection to

a log file that can point directly to them. The second reason

is often to jump/avoid access restrictions on the network

connection, i.e. users who want to bypass any security

restriction in any organization in order to connect to sites

not allowed by the network administrator.

With this type of base motives, the type of users of our

Proxy Server was the most colourful, leaving a good

collection of data that is worthy to study deeply. Between

the most striking we found the following:

Scam artists: The Nigerian scammer

One of the users of such Internet Proxy Services proved to

be a man that allegedly was selling Visa Cards for working

at UK, with IP address from India. To do that, he was

making an intense campaign of spam with an e-mail

message requesting payment for Western Union.

Figure 13: Spam scam campaign and request money

Of course, some recipients of the messages were quite

sceptical and their responses were very negative, but we

could see how some people paid and sent all data to obtain a

Visa that would never come.

Figure 14: Victim sending all his documentation

Scam artists: The horny chick you get off with tonight

Another type of scam artists with whom we met are

dedicated to keeping fake profiles of women in different

social networks of sentimental contacts. In each, the

location, name and age of women were different.

In fact, the same person kept profiles with different types of

women, allowing it to open the range of victims.

Figure 15: Rogue profile number 1

For reasons of space I show you only a couple of profiles of

all we found that are maintained by the same person.

Figure 16: False profile number 2

In this case, its business model was very similar. Making a

working day, this German crock, is dedicated to linking

people and ask for money through Western Union to pay for

the trip to where the victim lives and spend a night of mad,

wild, nasty love.

As had many chance encounters, he organised conversations

and stores them. Some are like this, in which insistently

sought money in exchange for some alleged "nicked"

(naked) photos. In the chat you can see that, as it should be

chatting with several at once, sometimes it plays dirty tricks

and puts things in their native language.

Figure 17: A chat log talking to a victim

The number of chats, and requests for money by Western

Union did was very high, making this system a real work

night shift.

These two types of scams are among the many we saw,

where we found that it made all kinds of scams, such as

sales of dogs, fake vehicles, etcetera. A real amount of

business, we did not know previously. Financial crisis what?

Worrie d about anonymity

Many of the users who came to do something "illegal", the

first thing they did was check their IP address with websites

such as Whatismyip.com checking whether they are

anonymous or not or using others similar websites, but in

the end, apparently seen, not only should check their IP

addressing.

Hacked hackers hacking

One of the issues that caught our attention as we hoped was

to find many hackers using WebShell through Proxy Servers

to deface websites. Among them, we have chosen this

defacement that we saw how it was made in real-time.

Figure 18: Hackerôs defacement

When we look at why he had been infected, we realized that

he was using an infected WebShell loading a JavaScript file

to report the URL of the WebShell. This JavaScript file was

also infected by our Proxy Server, and allows us to discover

where the webshell was.

Figure 19: Webshell requesting the infected JavaScript

So far, everything has been obtained by passive observation

of navigation, but ... Could we make an active infection by

selecting to infect websites that are not reached by browsing

via our Proxy Server? The answer is yes.

Coming into the intranet

One of the things that caught our attention when reviewing

the collected data, was the possibility of finding information

about machines that were not published on the Internet, that

is, applications that are being used internally on an Intranet,

as can be seen the following data in an internal ERP System.

Figure 20: Data of Intranet web application

Reasons to collect Intranet application data by a Javascript

botnet such as ours are simple:

1) At any time this person configured our Proxy

Server and was infected.

2) At some point requested a JavaScript file on

Internet that was also in use by the Intranet

application.

This makes it clear that use remote JavaScript files on an

Intranet may not be desirable and opens the door to potential

attacks of this kind.

Seeing this, we thought it would be easy to prepare a

targeted attack to any application in the Intranet or the

Internet, analysing previously the JavaScript files that are

loaded, and forcing customers to load these files from any

domain, so the caching is forced.

Analysing the JavaScript files of a web

To prepare a targeted attack to a specific site, i.e. to ensure

that a user who is part of the botnet is infected when he

visits a particular site, it must be known what are the

JavaScript files that loads that site.

To do this, you can make use of network inspection in

Google Chrome or Firefox Firebug, and select the one to

infect.

Figure 21: Loaded JavaScript files loaded in login website

For example, in this site it can be seen that in the login page,

JavaScript files are being loaded statically, that is, it always

loads the same files, allowing attackers to force a pre-

caching of all of them to all the victims they want to infect.

To do this, the control panel would have a payload in

JavaScript to do something like:

document.write(<script

src=http://www.objetivo.com/target.js >);

This file will be also infected, and the attacker could run any

payload in the future within the targeted domain, even if the

bot is disconnected form the Rogue Proxy Server.

Dynamic JavaScript files

Sites like Facebook load javascript files using names that

change dynamically, which prevents it from caching the

JavaScript file previously, so this attack cannot be done.

Figure 22: JavaScript files loaded in Facebookôs login

However, the list of sites that use static JavaScript files, in

login pages of banks, institutions, companies, etcetera, is

huge, and it should not be a security vulnerability if users

are not infected, but it helps Javascript botnets to perform

targeted attacks.

Previously cached JavaScript files and HTTPs

One of the things that we did not implemented in this proof

of concept was to force to cache the infected file if it was

already in the browser cache. Assuming that a site loads a

JavaScript file that the browser has already cached, the

client will not request that file, so it would not become

infected. However, playing with HTTP Etags options would

be possible to force the browser to request the new files, but

this wasn´t implemented in this proof of concept.

Moreover, to avoid arousing the slightest suspicion, we

decided not to intercept HTTPs communications, leaving

out of reach any secure connection and any cookie marked

with the ñSecureò flag. Do not forget that this was just a

POC.

Final recommendations

Both the TOR networks and Proxy systems represent ñMan

in the Middleò schemes, in which you must trust to use

them. Put a malicious server on Internet is too easy as to

think that there is not being made, in a massive way, by

people with the worst of the intentions of all, so if you use

any of these facilities, it is best to get ready to be attacked.

No surfing with out dated systems for these networks,

firewalls and anti-malware always in alert, and remember

when you finish to use of them should take precautions for

disinfection. As recommended by default, clear the cache for

each browser session, and always use the private browsing

mode.

Greetings

We would like to say thanks, to Jon, Antonio, Pedro and
Isabel of JAPI Tracing, to people working on BeEF,
colleagues form Informatica64 and Manu and Frank for
helping us to improve the security of the C&C.

