

- 1 -

On Analyzing Static Analysis Tools
National Security Agency Center for Assured Software (cas@nsa.gov)

July 26, 2011

The National Security Agency (NSA) Center for Assured Software (CAS) conducted a study of static analysis tools for

C/C++ and Java in 2010. The purpose of this study was to determine the capabilities of commercial and open source static

analysis tools for C/C++ and Java in order to provide objective information to organizations that are looking to purchase,

deploy, or make the best use of static analysis tools.

This document details the methodology of this study, including:

 Purpose and scope of the study

 Tool criteria and selection process

 Software analyzed (Test Cases)

 Environment and procedure used to run tools

 Techniques used to automatically mark results as “True Positive”, “False Positive”, and “False Negative”

 Grouping of results for analysis (Weakness Classes)

 Analysis metrics calculated (Precision, Recall, F-Score, Discrimination Rate)

 Visualizations employed

Section 1: Introduction

1.1 Background

Software systems support and enable mission-essential

capabilities in the Department of Defense. Each new

release of a defense software system provides more

features and performs more complex operations. As the

reliance on these capabilities grows, so does the need for

software that is free from intentional or accidental flaws.

Flaws can be detected by analyzing software either

manually or with the assistance of automated tools. This

study focused on the capabilities of automated, flaw-

finding, static analysis tools.

Most static analysis tools are capable of finding multiple

types of flaws, but the capabilities of tools are not

necessarily uniform across the spectrum of flaws they

detect. Even tools that target a specific type of flaw are

capable of finding some variants of that flaw and not

others. Tools’ datasheets or user manuals often do not

explain which specific code constructs they can detect, or

the limitations and strengths of their code checkers. This

level of granularity is needed to maximize the

effectiveness of automated software evaluations.

In order to identify the capabilities of static analysis tools,

the National Security Agency’s Center for Assured

Software performed this study in 2010.

1.2 Center for Assured Software

In order to address the growing lack of Software

Assurance in the U.S. Government, the National Security

Agency’s Center for Assured Software (CAS) was created

in 2005. The CAS’s mission is to improve the Assurance

of software used by the U.S. Government. The CAS

accomplishes this mission by assisting organizations in

deploying processes and tools to address Assurance

throughout the software development life cycle.

As part of an overall secure development process, the

CAS advocates the use of static analysis tools. The CAS

also believes that some organizations and projects warrant

a higher level of assurance that can be gained through the

use of more than one static analysis tool.

1.3 Purpose of the Study

The purpose of this study was to determine the

capabilities of commercial and open source static analysis

tools for C/C++ and Java in order to provide objective

information to organizations that are looking to purchase,

deploy, or make the best use of static analysis tools. By

identifying the strengths of the tools, this study also aimed

to determine how tools could be combined to provide a

more thorough analysis of software by using strong tools

in each area analyzed.

The goal of this study was not to choose a single “best”

tool, to create a benchmark for all tools, or to create an

overall tool assessment that combined results across

diverse weaknesses types. This study focused solely on

tool results. Other factors that an organization should use

- 2 -

in choosing a static analysis tool, such as cost,

performance, ease of use, and ability to customize, were

not considered.

1.4 Scope of the Study

1.4.1 Static Analysis Tools

This study examined “static analysis” tools. That is, tools

that analyze software for flaws without executing the

software. Tools of this type are sometimes called “Static

Application Security Testing (SAST) Tools” or “Code

Weakness Analysis Tools”.

Many static analysis tools perform analysis on the source

code to software. Some tools analyze the compiled form

of the software, either as native executables, libraries, or

program object files or as Java bytecode (an intermediate

representation that cannot be executed on most processors

directly, but instead must be interpreted on a Java Virtual

Machine or compiled into machine code by a Just-in-

Time compiler). Tools in this study analyzed the source

code and/or the compiled form of software and some tools

did not specify how analysis was performed. This study

included tools which analyzed binaries compiled and

linked with specific, tool-defined options to aid analysis.

1.4.2 Languages Covered

Static analysis tools exist for many languages, but the

CAS limited this study to two language families due to

resource constraints. The language families of C/C++ and

Java were chosen because the CAS believed that they are

the unmanaged and managed languages most commonly

used in software for the US Government.

Although C and C++ are different programming

languages, this study examines tool results on the two as a

single unit. This decision was made because C++ is a

generally a superset of C. All of the static analysis tools

in this study which covered C or C++ supported both

languages and supported analysis of a single project

containing both C and C++ code.

1.4.3 Minimum Tool Criteria

Tools were required to meet the following minimum

criteria in order to be considered for study, though not all

tools meeting these criteria were included in the study:

 Tool must have provided automated analysis. Tools

that only assisted a manual analysis were not

included.

 Tool must not have required annotations or other

changes to the source code in order to perform

analysis. No annotations or comments designed to

assist the tools were present in the code analyzed in

this study. As described in Section 1.4.1, tools that

analyzed binaries built with specific configuration

options were allowed in this study since building

binaries using those configuration options did not

require changes to the application’s source code.

 Tool must have possessed the ability to identify

security-related flaws.

 Tool must have been in the “beta” or later stage of

development in September 2010 when the CAS chose

the tools used in this study.

 Tool must have run on the Windows operating

system.

 Tool must have provided an export or report of

results in a format that could be manipulated outside

of the tool.

 The tool must have been available to the CAS, either

as a product already licensed by the CAS, under a

trial license from the vendor, or as an open source or

free tool.

1.5 Related Work

The CAS is aware of several projects that are related to

this study:

 F. Michaud and R. Carbone at Defence Research and

Development Canada Valcartier conducted a study of

static analysis tools and released a report titled

“Practical verification & safeguard tools for C/C++”

in November 2007. The report is available at

handle.dtic.mil/100.2/ADA479348.

 In 2008, James Walden, Adam Messer, and Alex

Kuhl of the Northern Kentucky University

investigated the effect of code complexity on static

analysis. Results of their study are described in the

paper titled “Measuring the Effect of Code

Complexity on Static Analysis Results”, which is

available at faculty.cs.nku.edu/~waldenj/papers/

essos2009-long.pdf.

 Martin Johns at the University of Hamburg,

Germany, and others, conducted an evaluation of

static analysis tools called “Scanstud” in 2007-2008.

Slides on this project are available at

www.owasp.org/images/7/76/Johns_jodeit_-

_ScanStud_OWASP_ Europe_2008.pdf.

 James A. Kupsch and Barton P. Miller of the

University of Wisconsin, Madison released a paper

titled “Manual vs. Automated Vulnerability

Assessment: A Case Study” in June 2009. This paper

is available at pages.cs.wisc.edu/~kupsch/

vuln_assessment/ManVsAutoVulnAssessment.pdf.

 During 2008, 2009, and 2010, the National Institute

for Standards and Technology (NIST) Software

Assurance Metrics And Tool Evaluation (SAMATE)

- 3 -

project sponsored the Static Analysis Tool Exposition

(SATE, samate.nist.gov/index.php/SATE.html),

which examined the performance of static analysis

tools on open source applications in C/C++ and Java.

This study differed from SATE in three main ways:

this study focused on synthetic test cases, this study

attempted to systematically identify tool capabilities

across a broad spectrum of weakness classes, and this

study attempted to determine tool capabilities on both

results reported by the tools (true and false positives)

and constructs not reported by the tools (true and

false negatives).

Section 2: Study Procedure

This section describes the procedure used to perform this

study.

2.1 Software Analyzed

In order to study static analysis tools, the CAS needed

software for the tools to analyze. The CAS considered

using “natural” software or “artificial” software in the

study. Natural software is software that was not created

to test software analysis tools. Open source projects such

as the Apache web server (httpd.apache.org) or the

OpenSSH suite (www.openssh.com) could have been

used as natural software. Artificial software, on the other

hand, is software that contains intentional flaws and that

was created to test software analysis tools.

2.1.1 Limitations of Natural Code

During the 2006 static analysis tool study, the CAS used a

combination of natural and artificial code. In addition,

the CAS has followed the National Institute of Standards

and Technology (NIST) Static Analysis Tool Exposition

(SATE) which examined the performance of static

analysis tools on natural code.

Experience from these efforts indicated that using natural

code presents specific challenges, such as:

 Evaluating tool results to determine their correctness

– When a static analysis tool is run on natural code,

each result needs to be reviewed to determine if the

code in fact has the specified type of flaw at the

specified location (i.e. if the result is correct or a

“false positive”). This review is non-trivial for most

results on natural code and often the correctness of a

given result cannot be determined with a high degree

of certainty in a reasonable amount of time.

 Comparing results from different tools – Comparing

tool results on natural code is complicated because

different static analysis tools report results in

different manners. For example, many flaws involve

a “source” of tainted data and a “sink” where that

data is used in a dangerous manner. Some tools may

report the source where others report the sink.

Sometimes multiple sources of tainted data all lead to

one sink, which may cause different tools to report a

different number of results.

 Identifying flaws in the code that no tools find –

When evaluating static analysis tools, a “standard”

list of all flaws in the code is needed in order to

identify which flaws each tool failed to report. With

natural code, creating this “standard” is difficult,

especially identifying flaws that are not reported by

any automated tool and therefore can only be found

with manual code review.

 Evaluating tool performance on constructs that do not

appear in the code – Natural code has the limitation

that even a combination of different projects will

likely not contain all flaws and non-flawed constructs

that the CAS wants to test. Even flaw types that

appear in the code may be obfuscated by complex

data and control flows such that tools that report

some flaws of that type will not report the flaws in

the natural code. To address this issue, the CAS

considered using a “seeding” method to embed flaws

and non-flaws into natural code. Ultimately,

“seeding” was not used in this study because the CAS

believed that performing the study using “seeded”

code would be overly complex and result in testing

fewer constructs than desired.

Based on these experiences and challenges, the CAS

decided to develop artificial code for this study. Using

artificial code simplified the study because the CAS could

control which flaws and non-flaws were included in the

code and the location of each flaw.

2.1.2 Limitations of Artificial Code

Although the use of artificial code simplified this study

and allowed for studying tool results on a large number of

flawed and non-flawed constructs, it may limit the

applicability of the study results in the following two

ways:

 Artificial code is simpler than natural code – The first

limitation of the artificial code used in this study is

the code’s relative simplicity. Some test cases are

intentionally the simplest form of the flaw being

tested. Even test cases which include data or control

flow complexity are relatively simple compared to

natural code, both in terms of the number of lines of

code and in terms of the number and types of

branches, loops, and function calls. This simplicity

may have inflated the study results in that tools may

have reported flaws during this study that they would

rarely report in natural, non-trivial code.

- 4 -

 Frequencies of flaws and non-flawed constructs in

the test cases may not reflect their frequencies in

natural code – The second limitation of the test cases

is that the frequencies of the flaws and non-flawed

constructs is likely very different from their

frequencies in natural code. Each type of flaw is

tested once in the test cases, regardless of how

common or rare that flaw type may be in natural

code. For this reason, two tools that have similar

flaw reporting results on the test cases may provide

very different results on natural code, such as if one

tool finds common flaws and the other tool only finds

rare flaws. Even a tool with poor results on the test

cases may have good results on natural code.

Similarly, each non-flawed construct also appears

only once in the test cases, regardless of how

common the construct is in natural code. Therefore,

the false positive rates on the test cases may be much

different from the rates the tools would have on

natural code.

2.1.3 Test Case Design

The CAS decided that the benefits of using artificial code

outweighed the disadvantages and created artificial code

for this study. The CAS built the artificial code as a

collection of “test cases”. Each test case contained

exactly one intentional flaw and contained one or more

non-flawed constructs similar to the intentional flaw. The

CAS used the non-flawed constructs to determine if the

tools could discriminate flaws from non-flaws.

For example, one test case the CAS created illustrated a

type of buffer overflow vulnerability. The flawed code in

the test case passed the strcpy function a destination

buffer that was smaller than the source string. The non-

flawed construct passed a large enough destination to

strcpy.

The CAS created two sets of test cases for this study, one

for C/C++ and one for Java. These test cases were

publicly released in March 2011 through the National

Institute for Standards and Technology (NIST) as the

Juliet Test Suites at samate.nist.gov/SRD/testsuite.php.
a

2.1.4 Test Case Scope

The test cases used in this study focused on functions

available on the underlying platform rather than the use of

third-party libraries. This section provides further details

on the scope of the test cases, including the types of

control and data flows studied.

a
 The Juliet Test Suites are not the exact test cases used in

the CAS’s 2010 study (they incorporate minor bug fixes).

2.1.4.1 C/C++ Test Case Scope

Wherever possible, the C/C++ test cases used only

Application Programming Interface (API) calls to the C

standard library, which is available on all platforms. In

order to cover more issues, some test cases targeted the

Microsoft Windows platform (using Windows-specific

API functions). No third-party C or C++ library functions

are used.

The C test case code targeted the C89 standard so that the

test cases could be compiled and analyzed using a wide

variety of tools that may not support newer versions of the

C language.

The test cases limited the use of C++ constructs and

features to only the test cases that require them (such as

test cases related to C++ classes or the “new” operator).

Unless necessary for the flaw type targeted, test cases did

not use the C++ standard library.

2.1.4.2 Java Test Case Scope

The Java test cases limited the use of features to those

found in Java 1.4 unless features introduced in later

versions were necessary for the flaw being tested. The

test cases covered issues that could affect standalone Java

applications or Java Servlets. No test cases specifically

covered Java Applets or Java Server Pages (JSPs).

The Java Servlet test cases made use of the Java Servlet

API version 2.4 or above. The test cases were developed

and distributed with Apache’s implementation of this

API.

Some of the Java Servlet test cases made use of the

StringEscapeUtils class from the Apache Commons Lang

library in order to prevent incidental security issues. No

other third party library functions were used in the test

cases.

2.1.4.3 Data and Control Flows Studied

The test cases aimed to exercise the ability of tools to

follow various control and data flows in order to properly

report flaws and properly disregard non-flaws. The type

of control or data flow present in a test case was specified

by the “Flow Variant” number included in the name of

each test case. Test cases with the same Flow Variant

number (but testing different flaw types) used the same

type of control or data flow.

Test cases with a flow variant of “01” were the simplest

form of the flaws and did not contain added control or

data flow complexity. This set of test cases is referred to

as the “Baseline” test cases.

Test cases with a flow variant from “02” to “19”

(inclusive) covered various types of control flow

constructs and are referred to as the “Control Flow” test

cases. Test cases with a flow variant of “31” or greater

- 5 -

covered various types of data flow constructs and are

referred to as the “Data Flow” test cases.

Not all flaw types had test cases with all flow variants.

There were several reasons for this:

 Some flaw types do not involve “data” and therefore

could not be used in Data Flow test cases.

 Some flaw types are inherent in a C++ or Java class

and could not be placed in Control or Data flows

(only a Baseline test case was possible for these flaw

types).

 Some flaw types could not be generated by the

CAS’s custom Test Case Template Engine. Test

cases for those flaw types were manually created.

Only Baseline (“01” flow variant) test cases were

created for these flaw types due to resource

constraints.

 Some flaw types are incompatible with some control

and data flows in that the CAS’s engine created a test

case that would not compile or did not function

appropriately. Some of these issues are unavoidable

because the problem is inherent in the combination of

the flaw type and the flow variant. Others of these

issues were limitations of the CAS’s engine.

2.1.5 Test Case Selection

The CAS used several sources when selecting flaw types

for test cases:

 The test case development team’s experiences in

Software Assurance

 Flaw types used in the CAS’s 2009 tool study

 Vendor information regarding the types of flaws their

tools identify

 Weakness information in MITRE’s Common

Weakness Enumeration (CWE)

While each test case used a CWE identifier as part of its

name, a specific CWE entry for a flaw type was not

required in order to create a test case. Test cases were

created for all appropriate flaw types and each test case

was named using the most relevant CWE entry (which

may have been rather generic and/or abstract).

2.1.6 Test Case Statistics

This tool study was conducted using the 2010 version of

the test case suite. The suite contained two projects: one

for C/C++ and one for Java. Table 1 contains statistics on

the size and scope of the tested version of the test cases.

CWE

Entries
Covered

Flaw
Types

Test
Cases

Lines of
Code

b

C/C++ 116 1,432 45,324 6,338,548

Java 106 527 13,801 3,238,667

All Test
Cases

177 1,959 59,125 9,577,215

Table 1 – Test Case Statistics

The test cases cover twenty of the 2010 CWE/SANS Top

25 Most Dangerous Programming Errors
c
. Of the five

CWE entries on the Top 25 that the test cases do not

cover, four are design issues that do not fit into the

structure of the CAS test cases and one is an issue specific

to the PHP language (which is not in scope for this study).

2.2 Tools Studied

The CAS selected tools for this study based on several

factors:

 Evaluaton of promotional material supplied by the

tool vendors

 Online reviews

 Evaluation of tool methodology and available rule

sets

 Results on a small amount of sample code

The criteria that the tools were required to meet for this

study are contained in Section 1.4. The tool versions

considered were the most recent release available as of

September 1, 2010.

Although there are numerous commercial and open

source/free static analysis tools available, the resource

limitations led the CAS to test only a limited number of

tools. For C and C++, the CAS chose six commercial and

one open source and/or free static analysis tools. For Java,

the CAS chose five commercial and two open source

and/or free static analysis tools. Table 2 contains an

anonymized list of tools and versions studied.

b
 Lines that are not blank or only comments. Counted

using CLOC (cloc.sourceforge.net).
c
 Christey, Steve, ed., “2010 CWE/SANS Top 25 Most

Dangerous Programming Errors”, MITRE Corporation,

http://cwe.mitre.org/top25/ (accessed February 15, 2011).

- 6 -

Tool License Model C/C++ Java

Tool 1 Commercial
Tool 2 Commercial
Tool 3 Commercial
Tool 4 Commercial
Tool 5 Commercial
Tool 6 Commercial
Tool 7 Open Source
Tool 8 Open Source
Tool 9 Open Source

Table 2 – Static Analysis Tools Studied

2.3 Tool Run Process

The CAS followed a standard process for running each

tool on the test cases. This section provides an overview

of the process. Detailed, step-by-step records of each tool

run were documented during the study.

2.3.1 Test Environment

Using VMware, the CAS set up a “base” virtual machine

running the 32-bit version of the Microsoft Windows XP

operating system. The “base” virtual machine contained

software needed to compile and run the test cases. The

software installed on the “base” virtual machine included

7zip, Apache Ant, CmdHere Powertoy, Sun Java JDK 6,

Sun Java JRE 6, Microsoft File Checksum Integrity

Verifier, Microsoft Visual Studio 2008 Professional,

Notepad++, Python 3.2.1, and VMware Tools.

For each tool run, the CAS either copied the “base”

virtual machine or created a new snapshot in the “base”

virtual machine. The virtual machine was not connected

to the Internet. All steps for the tool run were performed

as the local administrative account.

2.3.2 Tool Installation, Execution, and

Results Export

Each static analysis tool was installed into a separate

virtual machine or snapshot in order to prevent conflicts

and test each tool in isolation. The CAS copied the

installation and license files for the static analysis tool

into the virtual machine. Next, the tool was installed

using default settings and according to the installation

instructions provided with the tool.

The CAS then ran the static analysis tool using the tools’

command line interface. The CAS ran the analysis using

the default configuration of the tool and in accordance

with the tool’s documentation. No adjustments were

made to the tool configuration and no changes or

annotations were made to the source code of the test

cases. The CAS did not consult with tool vendors to

optimize or configure the tool.

After the analysis finished, the CAS exported the results

of the analysis from the tool. Unfortunately, each tool

exported the results in a different format. The exported

results were then transformed into standard comma

separated value (CSV) format by a Python script or

Extensible Stylesheet Language (XSL) transform created

by the CAS.

2.3.3 Scoring of Tool Results

The next step in the tool run process was to determine

which results represented real flaws in the test cases (true

positives) and which did not (false positives). A new

column named “result type” was added to the result CSV

file to hold the result of the scoring process.

The “scoring” of results only included result types that

were related to the test case in which they appear. Tool

results indicating a weakness that was not the focus of the

test case (such as a tool result indicating a memory leak in

a buffer overflow test case) were ignored in scoring and

analysis.

In past studies, each tool result was scored manually. In

the 2010 study, most results were scored using a CAS

created tool called the AutoScorer.

2.3.3.1 Weakness ID Mappings

For each tool, the CAS created an XML file to map the

tool’s weakness IDs to the test cases. For example, if a

tool had a weakness ID that indicated occurrences of

memory leaks, then it would be mapped to the CWE-401

(Memory Leak) test cases. Using these mappings, the

CAS tool was able to determine which result types were

related to which test cases.

2.3.3.2 Automated Scoring Process (Pass 1)

The AutoScorer was run two times on each individual

tool’s results. During the first run, most tool results

related to the test case in which they appear are marked as

true positives and false positives. The AutoScorer is able

to do this by using the Weakness ID Mapping to

determine which result types are related to which test

cases. All of these related results are “positives”. The

AutoScorer scores those results in “bad” functions and

classes as true positives and results in “good” functions

and classes as false positives.

2.3.3.3 Manual Scoring

Some tools report findings for some test cases in locations

outside of a function or class, such as in a typedef. In

these cases, the AutoScorer could not determine whether

a result should be scored as a True Positive or False

Positive, and therefore it was scored as an “error”. These

“error” results were scored manually by the CAS as either

a True Positive or False Positive.

- 7 -

2.3.3.4 Automated Scoring Process (Pass 2)

Upon completion of the manual scoring, the AutoScorer

was once again run on the tool results CSV. During this

second run, the AutoScorer added rows to the CSV for

False Negative results (test cases where the tool did not

report a True Positive).

During analysis of the results, the CAS also identified a

small set of test cases
d
 that were invalid (did not exhibit

the intended flaw). These 38 C and 36 Java test cases

were excluded from analysis by scoring tool results for

those test cases as “ITC” in this second pass of the

AutoScorer.

2.3.3.5 Summary of Result Types

At the end of the scoring process, each row in the result

CSV file was assigned one of the result types in Table 3.

Result Type Explanation

True Positive
(TP)

Tool correctly reported the flaw that was the
target of the test case.

False Positive
(FP)

Tool reported a flaw with a type that is the target
of the test case, but the flaw was reported in non-
flawed code.

False
Negative (FN)

This row is not a tool result. It was added by the
AutoScorer to indicate that the tool failed to
report the target flaw in a test case.

Invalid Test
Case (ITC)

The test case in which this result appeared
contained an error. This row was not included in
the data analysis.

(blank) This row is a tool result where none of the result
types above apply. More specifically, either:

 The tool result was not in a test case file

 The tool result type was not associated with
the test case in which it was reported

This row was not included in the data analysis.

Table 3 – Summary of Results Types

2.4 Data Analysis

With the study of each individual static code analysis tool

complete, the data collected was analyzed to provide an

overview of the results at a more abstract level. This

analysis is the basis for this paper and enables an

understanding of the strengths of each tool.

2.4.1 Weakness Classes

To help understand the areas in which a given tool

excelled, similar test cases were grouped into Weakness

Classes. Weakness classes are defined using CWE entries

that contain similar weaknesses. Since each test case is

associated with the CWE entry in its name, each test case

is contained in a Weakness Class.

Note that buffer handling errors were only represented in

C/C++ test cases. The Miscellaneous Weakness Class

was used to hold a collection of individual weaknesses

d
 These invalid test cases were fixed prior to the public

release of the test cases as the Juliet Test Suites.

that did not fit into the other twelve classes. Therefore, the

weaknesses in the Miscellaneous Weakness Class did not

have a common theme.

For example, Stack-based Buffer Overflow (CWE-121)

and Heap-based Buffer Overflow (CWE-122) were both

placed in the Buffer Handling Weakness Class. Therefore,

all of the test cases associated with CWE entries 121 and

122 were mapped to the Buffer Handling Weakness

Class. Table 4 provides a summary list of Weakness

Classes used in this study, along with an example

weakness and the number of test cases in that Weakness

Class for each language family.

Weakness Class
Example Weakness

(CWE Entry)

C/C++
Test

Cases

Java
Test

Cases

Authentication and
Access Control

CWE-620: Unverified
Password Change

604 422

Buffer Handling
CWE-121: Stack-based
Buffer Overflow

11,386 -

Code Quality CWE-561: Dead Code 440 410

Control Flow
Management

CWE-362: Race
Condition

598 527

Encryption and
Randomness

CWE-328: Reversible
One-Way Hash

298 950

Error Handling
CWE-252: Unchecked
Return Value

2,790 437

File Handling
CWE-23: Relative Path
Traversal

2,520 718

Information Leaks
CWE-534: Information
Leak Through Debug
Log Files

283 468

Initialization and
Shutdown

CWE-415: Double Free 9,894 450

Injection CWE-89: SQL Injection 6,882 5,970

Miscellaneous
CWE-480: Use of
Incorrect Operator

2,304 222

Number Handling
CWE-369: Divide by
Zero

6,017 2,802

Pointer and
Reference
Handling

CWE-476: Null Pointer
Dereference

1,308 425

Table 4 – Weakness Classes

The following sections provide a brief description of the

Weakness Classes used in the 2010 tool study.

2.4.1.1 Authentication and Access Control

Attackers can gain access to a system if the proper

authentication and access control mechanisms are not in

place. An example would be a hardcoded password or a

violation of the least privilege principle. The test cases in

this Weakness Class test the tools’ ability to check

whether or not the source code is preventing unauthorized

access to the system.

2.4.1.2 Buffer Handling

Improper buffer handling can lead to attackers crashing or

gaining complete control of a system. An example would

be a buffer overflow that allows an adversary to execute

his/her code. The test cases in this Weakness Class test

- 8 -

the tools’ ability to find buffer access violations in the

source code.

2.4.1.3 Code Quality

Code quality issues are typically not security related;

however they can lead to maintenance and performance

issues. An example would be unused code. This is not an

inherent security risk; however it may lead to

maintenance issues in the future. The test cases in this

Weakness Class test the tools’ ability to find poor code

quality issues in the source code.

The test cases in this Weakness Class cover some

constructs that may not be relevant to all audiences. The

test cases are all based on weaknesses in CWE, but even

persons interested in code quality may not consider some

of the tested constructs to be weaknesses. For example,

this Weakness Class includes test cases for flaws such as

an omitted break statement in a switch (CWE-484), an

omitted default case in a switch (CWE-478), and a

suspicious comment (CWE-546).

2.4.1.4 Control Flow Management

Control flow management deals with timing and

synchronization issues that can cause unexpected results

when the code executed. An example would be a race

condition. One possible consequences of a race condition

is a deadlock which leads to a denial of service. The test

cases in this Weakness Class test the tools’ ability to find

issues in the order of execution within the source code.

2.4.1.5 Encryption and Randomness

Encryption is used to provide data confidentiality.

However, if the wrong or a weak encryption algorithm is

used an attacker may be able to covert the ciphertext into

its original plain text. An example would be the use of a

weak pseudo random number generator (PRNG). Using a

weak PRNG could allow an attacker to guess the next

number that is generated. The test cases in this Weakness

Class test the tools’ ability to check for proper encryption

and randomness in the source code.

2.4.1.6 Error Handling

Error handling is used when a program behaves

unexpectedly. However, if a program fails to handle

errors properly it could lead to unexpected consequences.

An example would be an unchecked return value. If a

programmer attempts to allocate memory and fails to

check if the allocation routine was successful then a

segmentation fault could occur if the memory failed to

allocate properly. The test cases in this Weakness Class

test the tools’ ability to check for proper error handling

within the source code.

2.4.1.7 File Handling

File handling deals with reading from and writing to files.

An example would be reading from a user-provided file

on the hard disk. Unfortunately, adversaries can

sometimes provide relative paths to a file that contain

periods and slashes. An attacker can use this method to

read to or write to a file in a different location on the hard

disk than the developer expected. The test cases in this

Weakness Class test the tools’ ability to check for proper

file handling within the source code.

2.4.1.8 Information Leaks

Information leaks can cause unintended data to be made

available to a user. For example, developers often use

error messages to inform users that an error has occurred.

Unfortunately, if sensitive information is provided in the

error message an adversary could use it to launch future

attacks on the system. The test cases in this Weakness

Class test the tools’ ability to check for information leaks

within the source code.

2.4.1.9 Initialization and Shutdown

Initializing and shutting down resources occurs often in

source code. For example, in C/C++ if memory is

allocated on the heap it must be deallocated after use. If

the memory is not deallocated, it could cause memory

leaks and affect system performance. The test cases in this

Weakness Class test the tools’ ability to check for proper

initialization and shutdown of resources in the source

code.

2.4.1.10 Injection

Code injection can occur when user input is not validated

properly. One of the most common types of injection

flaws is cross-site scripting. An attacker can place query

strings in an input field that could cause unintended data

to be displayed. This can often be prevented using proper

input validation and/or data encoding. The test cases in

this Weakness Class test the tools’ ability to check for

injection weaknesses in the source code.

2.4.1.11 Miscellaneous

The weaknesses in this class do not fit into the previously

detailed Weakness Classes. An example would be a

logic/time bomb. An attacker or devious developer can

place code into the application that will cause the program

to crash at a certain point in time or when a certain logical

condition is met. Although this is a serious flaw, it does

not fit into the other Weakness Classes.

2.4.1.12 Number Handling

Number handling issues include incorrect calculations as

well as number storage and conversions. An example is

an integer overflow. On a 32-bit system, a signed

integer’s maximum value is 2,147,483,647. If this value is

- 9 -

increased by one, its new value will be a negative number

rather than the expected 2,147,483,648 due to the

limitation of the number of bits used to store the number.

The test cases in this Weakness Class test the tools’

ability to check for proper number handling in the source

code.

2.4.1.13 Pointer and Reference Handling

Pointers are often used in source code to refer to a block

of memory without having to reference the memory block

directly. One of the most common pointer errors is a null

pointer dereference (NPD). This occurs when the pointer

is expected to point to a block of memory, but instead it

points to the value of NULL. This can cause an exception

and lead to a system crash. The test cases in this

Weakness Class test the tools’ ability to check for proper

pointer and reference handling.

2.4.2 Precision and Recall

One set of analysis performed on the test case results

calculated the Precision and Recall of the tools based on

the number of true positive (TP), false positive (FP), and

false negative (FN) findings for that tool on the test cases.

The following sections describe Precision and Recall in

greater detail.

2.4.2.1 Precision

In the context on this report, Precision (also known as

“positive predictive value") means the ratio of weaknesses

reported by a tool to the set of actual weaknesses in the

code analyzed. It is defined as the number of weaknesses

correctly reported (true positives) divided by the total

number of weaknesses actually reported (true positives

plus false positives).

FPTP

TP
Precision

##

#

Precision is synonymous with the true positive rate, and is

the complement of the false positive rate. It is also

important to highlight that Precision and Accuracy are not

the same. In this study, Precision describes how well

does a tool identifies flaws, whereas accuracy describes

how well does a tool identifies flaws and non-flaws as

well.

Note that if a tool does not report any weaknesses, then

Precision is undefined, i.e. 0/0. If defined, Precision is

greater than or equal to 0, and less than or equal to 1. For

example, a tool that reported 40 issues (false positives and

true positives), of which only 10 were real flaws (true

positives), would have a Precision of 10 out of 40, or

0.25.

Precision helps understand how much trust can be given

to a tool's report of weaknesses. Higher values indicate

more trust that issues reported correspond to actual

weaknesses. For example, a tool that achieves a Precision

of 1 only reported issues that are real flaws on the test

cases. That is, it did not report any false positives.

Conversely, a tool that has a Precision of 0 always

reported issues incorrectly. That is, it only reported false

positives.

When calculating the Precision values in this study,

duplicate true positive values were ignored. That is, if a

tool reported two or more true positives on the same test

case, the Precision is calculated as if the tool reported

only one true positive on that test case. Duplicate false

positive results are included in the calculation, however.

2.4.2.2 Recall

The Recall metric (also known as "sensitivity" or

“soundness”) represents the fraction of real flaws that

were reported by a tool. Recall is defined as the number

of real flaws that a tool reported (true positives), divided

by the total number of real flaws – reported or unreported

– that existed in the code (true positives plus false

negatives).

FNTP

TP
Recall

##

#

Recall is always a value greater than or equal to 0, and

lesser than or equal to 1. For example, a tool that reported

10 real flaws in a piece of code that contained 20 flaws

would have a Recall 10 out of 20, or 0.5.

A high Recall means that the tool correctly identified a

high number of the target weaknesses within the test

cases. For example, a tool that achieves a Recall of 1

reported every flaw in the test cases. That is, it had no

false negatives. In contrast, a tool that has a Recall of 0

reported none of the real flaws. That is, it had a high false

negative rate.

Like with Precision, duplicate true positive values were

ignored when calculating Recall in this study. That is, if a

tool reported two or more true positives on the same test

case, the Recall was calculated as if the tool reported only

one true positive on that test case.

2.4.2.3 F-score

In addition to the Precision and Recall metrics, an F-score

was calculated by taking the harmonic mean of the

Precision and Recall values. Since a harmonic mean is a

type of average, the value for F-score will always be

between the values for Precision and Recall (unless

Precision and Recall are equal, in which case the F-score

will be that same value). Note that the harmonic mean is

always less than the arithmetic mean (again, unless the

Precision and Recall are equal).

The F-score provides weighted guidance in identifying a

good static analysis tool by capturing how many of the

weaknesses were found (true positives) and how much

- 10 -

noise (false positives) was produced. An F-score is

computed using the following formula:

RecallPrecision

RecallPrecision
scoreF 2

Table 5 shows example F-scores for some example

Precision and Recall values:

Weakness Class Precision F-score Recall

Weakness Class A .80 .80 .80

Weakness Class B .80 .69 .60

Weakness Class C .80 .53 .40

Weakness Class D .80 .32 .20

Weakness Class E .80 .18 .10

Weakness Class F .20 .32 .80

Weakness Class G .20 .20 .20

Weakness Class H .50 .50 .50

Table 5 – Example F-score Values

A harmonic mean is desirable since it ensures that a tool

must perform reasonably well with respect to both

Precision and Recall metrics. In other words, a tool will

not get a high F-score with a very high score in one metric

but a low score in the other metric. Simply put, a tool that

is very poor in one area would not be considered stronger

than a tool that is average in both. See Weakness Class F

and Weakness Class H in Table 5 above for an example

of this point.

Note that this report uses equal weighting for both

Precision and Recall when calculating the F-score.

Alternate F-scores could be calculated by using higher

weights for Precision (thus establishing a preference that

tool results will be correct) or by using higher weights for

Recall (thus establishing a preference that tools will find

more weaknesses).

2.4.2.4 Precision-Recall Tables and Averages

To summarize each tool’s Precision, Recall, and F-score

on the test cases, a table was produced to show how the

tool performed regarding each metric. However, when

interpreted in isolation, each metric can be deceptive in

that it does not reflect how a tool performed with respect

to other tools, i.e., it is not known what a “good” number

is. It is impossible for an analyst to know if a Precision of

0.45 is a good value or not. If every other tool had a

Precision value of 0.20, then a value of 0.45 would

suggest that the tool outperformed its peers. On the other

hand, if every other tool had a Precision of 0.80, then a

value of 0.45 would suggest that the tool underperformed

on this metric.

To help understand the Precision, Recall, and F-score

results for a tool, each metric was compared against the

average of the all tools. Note that when a tool did not

report any findings in a given Weakness Class, it was

excluded from the calculation of the average for that

Weakness Class. This kept the average focused on the

tools that demonstrated a capability for finding flaws

within the given Weakness Class. The average allowed

the CAS to relate a single tool's metric in the context of

the larger group of tools that were capable of finding the

same kind of weaknesses. The average also effectively

anonymizes the performance of individual tools.

If the tool had a higher value than the average, a small

green triangle pointing up was used. For values below

average, a small red triangle pointing down was used. If

the value was within 0.05 of the average, then no icon

was used and the tool results were close to average.

 Sample
Size

Tool Results

Weakness Class # of Flaws Precision F-Score Recall

Weakness Class A 511 ▼ .25 ▼ .20 ▼ .17

Weakness Class B 953 - - 0

Weakness Class C 433 ▲ .96 ▲ .72 ▲ .58

Weakness Class D 720 ▼ .56 .57 ▲ .58

Weakness Class E 460 1 .29 .17

Legend:
▲ = .05 or more
above average

▼ = .05 or more
below average

Table 6 – Precision-Recall Results for SampleTool by

Weakness Class

In this example, Table 6 shows that SampleTool was

more than 0.05 above the average with respect to

Precision, Recall, and F-score for Weakness Class C. Its

performance was mixed in Weakness Class D, with

below-average Precision and above-average Recall.

Within Weakness Class E, SampleTool had average

results – even though the Precision was 1 – which

suggests that all tools had high Precision within this

Weakness Class.

Note that if a tool does not produce any true positive

findings or false positive findings for a given Weakness

Class, then Precision cannot be calculated because of

division by zero, which is reflected as a dash (“-”) in the

table. This can be interpreted as an indication that the

tool does not attempt to find flaws related to the given

Weakness Class, or at least does not attempt to find the

flaw types represented by the test cases for that Weakness

Class.

Also note that the number of flaws represents the total

number of test cases in that Weakness Class. This

represents a sample size and gives the analyst an idea of

how many opportunities a tool had to produce findings.

In general, when there are more opportunities, one can

have more statistical confidence in the metric.

2.4.2.5 Precision-Recall Graphs

Precision-Recall Graphs are used to show the tool results

for both the Recall and Precision metrics. Examining just

a single metric does not give the whole picture and

obscures details that were important in understanding a

tool's strengths. For example, just looking at Recall

would tell the analyst how many issues are found, but

- 11 -

these issues could be hidden in a sea of false positives,

making it extremely time-consuming to interpret the

results. The Recall metric alone did not give the analyst

this perspective. By examining both the Recall and

Precision values on the same graph, the analyst could get

a better picture of the tool's overall strengths.

Figure 1 shows an example of a Precision-Recall Graph.

Notice that the Precision metric is mapped to the vertical

axis and the Recall metric is mapped to the horizontal

axis. A tool's relation to both metrics is represented by a

point on the graph. The closer the point is to the top right,

the stronger the tool is the given area. The background of

the graph is shaded according to the F-Score at each

point. An F-Score of 1 is indicated by a white

background and an F-Score of 0 is indicated by a dark

grey background.

Figure 1 – Example Precision-Recall Graph

When graphing results for different tools on the same

Weakness Class, square markers (in white) are used on

the Precision-Recall Graph to represent the Precision and

Recall for each tool and a black circle is used to represent

the average Precision and Recall for all tools that

produced findings for the Weakness Class

When used in to graph results for a single tool across

different Weakness Classes, a Precision-Recall Graph

shows two distinct points for each Weakness Class. A

square marker (in white) represents the tool’s Precision

and Recall for the specified Weakness Class. Another

point, shown as a black circle, represents the average

Precision and Recall values for all the tools that produced

findings for the given Weakness Class.

A solid line is drawn between the two related points and

helps visually state how a given tool compared to the

average. Note that the longer the line, the greater the

difference between the tool and the average. In general,

movement of a specific tool away from the average

toward the upper right demonstrates a relatively greater

capability in the given area. Further explanations are

provided next.

In the example in Figure 2, the graph shows that the

SampleTool is strong when focusing on Weakness Class

C. Both Precision and Recall for the tool are above

average, and the line moves from the black dot toward the

upper right. SampleTool is not strong related to

Weakness Class A. Both metrics are below average, and

the line moves from the black dot toward the lower left.

Figure 2 – Precision-Recall Graph for SampleTool by

Weakness Class

For the results associated with Weakness Class E and

Weakness Class D, where the line moves to the upper left

or the lower right, more analysis is often needed. In these

situations, the tool is above average for one metric but

below average for the other.

2.4.3 Discriminations and Discrimination

Rate

Another analysis performed on the test case results looked

for areas where a tool showed it could discriminate

between flaws and non-flaws. This section describes this

analysis in greater detail.

The purpose of this analysis was to differentiate

unsophisticated tools doing simple pattern matching from

tools that perform more complex analysis.

For example, consider a test case for a buffer overflow

where the flaw uses the strcpy function with a destination

buffer smaller than the source data. The non-flaw on this

test case may also use strcpy, but with a sufficiently large

destination buffer. A tool that simply searches for the use

- 12 -

of “strcpy” would correctly report the flaw in this test

case, but also report a false positive on the non-flaw.

If a tool behaved in this way on all test cases in a

Weakness Class, the tool would have a Recall of 1, a

Precision of .5, and an F-Score of .67 (assuming that each

test case had only one “good” or non-flawed construct).

These scores don’t accurately reflect the tool’s

unsophisticated behavior. In particular, the tool is “noisy”

(generates many false positive results), which is not

reflected in its Precision of .5.

This reflects a limitation in the test cases that there are

typically only one or two non-flaws for every flaw. Noisy

tools can have good Recall and a respectable Precision on

the test cases because there are far fewer opportunities for

false positives in the test cases than there would be in real

software.

2.4.3.1 Discriminations

To address the issue described above, the CAS defined a

metric called “Discriminations”. A tool is given credit for

a Discrimination when it correctly reports the flaw (a true

positive) in a test case without incorrectly reporting the

flaw in non-flawed code (that is, without any false

positives). For every test case, each tool receives 0 or 1

Discriminations.

In the example above, an unsophisticated tool that is

simply searching for the use of “strcpy” would not get

credit for a Discrimination on the test case because while

it correctly reported the flaw, it also incorrectly reported a

false positive.

Discriminations must be determined for each test case

individually. The number of Discriminations in a

Weakness Class (or other set of test cases) cannot be

calculated from the total number of true positives and

false positives.

Over a set of test cases, a tool can report as many

Discriminations as there are test cases (an ideal tool

would report a Discrimination on each test case). The

number of Discriminations will always be less than or

equal to the number of true positives over a set of test

cases (because a true positive is necessary, but not

sufficient, for a Discrimination).

2.4.3.2 Discrimination Rate

Over a Weakness Class (or other set of test cases), the

Discrimination Rate is the fraction of test cases where the

tool reported a Discrimination. That is:

Flaws

tionsDiscrimina
RatetionDiscrimina

#

#

The Discrimination Rate is always a value greater than or

equal to 0, and less than or equal to 1.

Over a set of test cases, the Discrimination Rate will

always be less than or equal to the Recall. This is because

Recall is the fraction of test cases where the tool reported

true positive(s), regardless of if it reported false

positive(s). Every test case where the tool reported a

Discrimination “counts” toward a tool’s Recall and

Discrimination Rate, but other, non-Discrimination test

cases may also count toward Recall (but not toward

Discrimination Rate).

2.4.3.3 Discrimination Results Tables

A tool’s Discriminations and Discrimination Rates on

each Weakness Class are shown in a table like Table 7.

Sample

Size
Tool Results

Weakness Class
of

Flaws
Discrimin-

ations
Disc.
Rate

Weakness Class A 511 50 0.10

Weakness Class B 953 0 0.00

Weakness Class C 433 234 0.54

Weakness Class D 720 150 0.21

Weakness Class E 460 15 0.03

Table 7 – Discrimination Results for SampleTool by

Weakness Class

2.4.3.4 Discrimination Rate Graphs

Discrimination Rate Graphs like Figure 3 are used to

show the Discriminations Rates for a tool across different

Weakness Classes. Even when all values are relatively

small, the Y-axis scale on these graphs is not adjusted in

order to compare tools to the ideal Discrimination Rate of

1.

Figure 3 – Discrimination Graph for SampleTool by

Weakness Class

- 13 -

Section 3: Conclusion

3.1 Study Assessment

Overall, the CAS and its customers found the 2010 study

of static analysis tools to be a success. This study

accomplished the purpose described in Section 1.3 in that

it determined the capabilities of commercial and open

source static analysis tools for C/C++ and Java and

provided objective information to organizations looking

to purchase, deploy, or make the best use of static analysis

tools. By identifying the strengths of the tools, this study

also determined how tools could be combined to provide

a more thorough analysis of software by using strong

tools in each area analyzed.

3.2 Suggestions for Further Study

There are several follow on projects could be undertaken

based on this study:

 Tool vendors are continually improving their

products and releasing new versions. In addition,

new tools may enter the static analysis market in the

future. Therefore, additional studies of new tools and

tool versions will be required as the results of this

study are only valid for the specific tools and

versions tested.

 As described in Section 2.3.2, this study was

conducted using the default installation and

configuration of each tool. It may be possible to

obtain improved results from the tools by adjusting

their settings, either through testing and

experimentation or through interactions with the tool

vendors or developers.

 As described in Section 2.1.4, there are limitations to

the scope of test cases used in this study. Future

studies could expand the scope of test cases to cover

additional languages, flaw types, data flows, and/or

control flows.

 As described in Section 2.1.2, there are limitations to

the results in this study due to the fact that the

relative frequencies of flaws and non-flaws in the test

cases likely vary from those frequencies in natural

software. Further study on natural code or natural

code with intentionally introduced vulnerabilities

may provide results that more accurately predict

results when using the tools outside of controlled

studies.

