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The National Security Agency (NSA) Center for Assured Software (CAS) conducted a study of static analysis tools for 

C/C++ and Java in 2010.  The purpose of this study was to determine the capabilities of commercial and open source static 

analysis tools for C/C++ and Java in order to provide objective information to organizations that are looking to purchase, 

deploy, or make the best use of static analysis tools. 

This document details the methodology of this study, including: 

 Purpose and scope of the study 

 Tool criteria and selection process 

 Software analyzed (Test Cases) 

 Environment and procedure used to run tools 

 Techniques used to automatically mark results as “True Positive”, “False Positive”, and “False Negative” 

 Grouping of results for analysis (Weakness Classes) 

 Analysis metrics calculated (Precision, Recall, F-Score, Discrimination Rate) 

 Visualizations employed  

 

Section 1: Introduction 

1.1 Background 

Software systems support and enable mission-essential 

capabilities in the Department of Defense.  Each new 

release of a defense software system provides more 

features and performs more complex operations.  As the 

reliance on these capabilities grows, so does the need for 

software that is free from intentional or accidental flaws.  

Flaws can be detected by analyzing software either 

manually or with the assistance of automated tools.  This 

study focused on the capabilities of automated, flaw-

finding, static analysis tools. 

Most static analysis tools are capable of finding multiple 

types of flaws, but the capabilities of tools are not 

necessarily uniform across the spectrum of flaws they 

detect.  Even tools that target a specific type of flaw are 

capable of finding some variants of that flaw and not 

others.  Tools’ datasheets or user manuals often do not 

explain which specific code constructs they can detect, or 

the limitations and strengths of their code checkers.  This 

level of granularity is needed to maximize the 

effectiveness of automated software evaluations. 

In order to identify the capabilities of static analysis tools, 

the National Security Agency’s Center for Assured 

Software performed this study in 2010. 

1.2 Center for Assured Software 

In order to address the growing lack of Software 

Assurance in the U.S. Government, the National Security 

Agency’s Center for Assured Software (CAS) was created 

in 2005.  The CAS’s mission is to improve the Assurance 

of software used by the U.S. Government.  The CAS 

accomplishes this mission by assisting organizations in 

deploying processes and tools to address Assurance 

throughout the software development life cycle. 

As part of an overall secure development process, the 

CAS advocates the use of static analysis tools.  The CAS 

also believes that some organizations and projects warrant 

a higher level of assurance that can be gained through the 

use of more than one static analysis tool. 

1.3 Purpose of the Study 

The purpose of this study was to determine the 

capabilities of commercial and open source static analysis 

tools for C/C++ and Java in order to provide objective 

information to organizations that are looking to purchase, 

deploy, or make the best use of static analysis tools.  By 

identifying the strengths of the tools, this study also aimed 

to determine how tools could be combined to provide a 

more thorough analysis of software by using strong tools 

in each area analyzed. 

The goal of this study was not to choose a single “best” 

tool, to create a benchmark for all tools, or to create an 

overall tool assessment that combined results across 

diverse weaknesses types.  This study focused solely on 

tool results.  Other factors that an organization should use 
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in choosing a static analysis tool, such as cost, 

performance, ease of use, and ability to customize, were 

not considered. 

1.4 Scope of the Study 

1.4.1 Static Analysis Tools 

This study examined “static analysis” tools.  That is, tools 

that analyze software for flaws without executing the 

software.  Tools of this type are sometimes called “Static 

Application Security Testing (SAST) Tools” or “Code 

Weakness Analysis Tools”.   

Many static analysis tools perform analysis on the source 

code to software.  Some tools analyze the compiled form 

of the software, either as native executables, libraries, or 

program object files or as Java bytecode (an intermediate 

representation that cannot be executed on most processors 

directly, but instead must be interpreted on a Java Virtual 

Machine or compiled into machine code by a Just-in-

Time compiler).  Tools in this study analyzed the source 

code and/or the compiled form of software and some tools 

did not specify how analysis was performed.  This study 

included tools which analyzed binaries compiled and 

linked with specific, tool-defined options to aid analysis. 

1.4.2 Languages Covered 

Static analysis tools exist for many languages, but the 

CAS limited this study to two language families due to 

resource constraints.  The language families of C/C++ and 

Java were chosen because the CAS believed that they are 

the unmanaged and managed languages most commonly 

used in software for the US Government. 

Although C and C++ are different programming 

languages, this study examines tool results on the two as a 

single unit.  This decision was made because C++ is a 

generally a superset of C.  All of the static analysis tools 

in this study which covered C or C++ supported both 

languages and supported analysis of a single project 

containing both C and C++ code.   

1.4.3 Minimum Tool Criteria 

Tools were required to meet the following minimum 

criteria in order to be considered for study, though not all 

tools meeting these criteria were included in the study: 

 Tool must have provided automated analysis.  Tools 

that only assisted a manual analysis were not 

included. 

 Tool must not have required annotations or other 

changes to the source code in order to perform 

analysis.  No annotations or comments designed to 

assist the tools were present in the code analyzed in 

this study.  As described in Section 1.4.1, tools that 

analyzed binaries built with specific configuration 

options were allowed in this study since building 

binaries using those configuration options did not 

require changes to the application’s source code. 

 Tool must have possessed the ability to identify 

security-related flaws.   

 Tool must have been in the “beta” or later stage of 

development in September 2010 when the CAS chose 

the tools used in this study. 

 Tool must have run on the Windows operating 

system. 

 Tool must have provided an export or report of 

results in a format that could be manipulated outside 

of the tool. 

 The tool must have been available to the CAS, either 

as a product already licensed by the CAS, under a 

trial license from the vendor, or as an open source or 

free tool. 

1.5 Related Work 

The CAS is aware of several projects that are related to 

this study: 

 F. Michaud and R. Carbone at Defence Research and 

Development Canada Valcartier conducted a study of 

static analysis tools and released a report titled 

“Practical verification & safeguard tools for C/C++” 

in November 2007.  The report is available at 

handle.dtic.mil/100.2/ADA479348.  

 In 2008, James Walden, Adam Messer, and Alex 

Kuhl of the Northern Kentucky University 

investigated the effect of code complexity on static 

analysis.  Results of their study are described in the 

paper titled “Measuring the Effect of Code 

Complexity on Static Analysis Results”, which is 

available at faculty.cs.nku.edu/~waldenj/papers/ 

essos2009-long.pdf. 

 Martin Johns at the University of Hamburg, 

Germany, and others, conducted an evaluation of 

static analysis tools called “Scanstud” in 2007-2008.  

Slides on this project are available at 

www.owasp.org/images/7/76/Johns_jodeit_-

_ScanStud_OWASP_ Europe_2008.pdf.   

 James A. Kupsch and Barton P. Miller of the 

University of Wisconsin, Madison released a paper 

titled “Manual vs. Automated Vulnerability 

Assessment: A Case Study” in June 2009.  This paper 

is available at pages.cs.wisc.edu/~kupsch/ 

vuln_assessment/ManVsAutoVulnAssessment.pdf.  

 During 2008, 2009, and 2010, the National Institute 

for Standards and Technology (NIST) Software 

Assurance Metrics And Tool Evaluation (SAMATE) 
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project sponsored the Static Analysis Tool Exposition 

(SATE, samate.nist.gov/index.php/SATE.html), 

which examined the performance of static analysis 

tools on open source applications in C/C++ and Java.  

This study differed from SATE in three main ways: 

this study focused on synthetic test cases, this study 

attempted to systematically identify tool capabilities 

across a broad spectrum of weakness classes, and this 

study attempted to determine tool capabilities on both 

results reported by the tools (true and false positives) 

and constructs not reported by the tools (true and 

false negatives).   

Section 2: Study Procedure 

This section describes the procedure used to perform this 

study. 

2.1 Software Analyzed 

In order to study static analysis tools, the CAS needed 

software for the tools to analyze.  The CAS considered 

using “natural” software or “artificial” software in the 

study.  Natural software is software that was not created 

to test software analysis tools.  Open source projects such 

as the Apache web server (httpd.apache.org) or the 

OpenSSH suite (www.openssh.com) could have been 

used as natural software.  Artificial software, on the other 

hand, is software that contains intentional flaws and that 

was created to test software analysis tools. 

2.1.1 Limitations of Natural Code 

During the 2006 static analysis tool study, the CAS used a 

combination of natural and artificial code.  In addition, 

the CAS has followed the National Institute of Standards 

and Technology (NIST) Static Analysis Tool Exposition 

(SATE) which examined the performance of static 

analysis tools on natural code.  

Experience from these efforts indicated that using natural 

code presents specific challenges, such as: 

 Evaluating tool results to determine their correctness 

– When a static analysis tool is run on natural code, 

each result needs to be reviewed to determine if the 

code in fact has the specified type of flaw at the 

specified location (i.e. if the result is correct or a 

“false positive”).  This review is non-trivial for most 

results on natural code and often the correctness of a 

given result cannot be determined with a high degree 

of certainty in a reasonable amount of time. 

 Comparing results from different tools – Comparing 

tool results on natural code is complicated because 

different static analysis tools report results in 

different manners.  For example, many flaws involve 

a “source” of tainted data and a “sink” where that 

data is used in a dangerous manner.  Some tools may 

report the source where others report the sink.  

Sometimes multiple sources of tainted data all lead to 

one sink, which may cause different tools to report a 

different number of results.   

 Identifying flaws in the code that no tools find – 

When evaluating static analysis tools, a “standard” 

list of all flaws in the code is needed in order to 

identify which flaws each tool failed to report.  With 

natural code, creating this “standard” is difficult, 

especially identifying flaws that are not reported by 

any automated tool and therefore can only be found 

with manual code review. 

 Evaluating tool performance on constructs that do not 

appear in the code – Natural code has the limitation 

that even a combination of different projects will 

likely not contain all flaws and non-flawed constructs 

that the CAS wants to test.  Even flaw types that 

appear in the code may be obfuscated by complex 

data and control flows such that tools that report 

some flaws of that type will not report the flaws in 

the natural code.  To address this issue, the CAS 

considered using a “seeding” method to embed flaws 

and non-flaws into natural code.  Ultimately, 

“seeding” was not used in this study because the CAS 

believed that performing the study using “seeded” 

code would be overly complex and result in testing 

fewer constructs than desired. 

Based on these experiences and challenges, the CAS 

decided to develop artificial code for this study.  Using 

artificial code simplified the study because the CAS could 

control which flaws and non-flaws were included in the 

code and the location of each flaw.  

2.1.2 Limitations of Artificial Code 

Although the use of artificial code simplified this study 

and allowed for studying tool results on a large number of 

flawed and non-flawed constructs, it may limit the 

applicability of the study results in the following two 

ways: 

 Artificial code is simpler than natural code – The first 

limitation of the artificial code used in this study is 

the code’s relative simplicity.  Some test cases are 

intentionally the simplest form of the flaw being 

tested.  Even test cases which include data or control 

flow complexity are relatively simple compared to 

natural code, both in terms of the number of lines of 

code and in terms of the number and types of 

branches, loops, and function calls.  This simplicity 

may have inflated the study results in that tools may 

have reported flaws during this study that they would 

rarely report in natural, non-trivial code. 
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 Frequencies of flaws and non-flawed constructs in 

the test cases may not reflect their frequencies in 

natural code – The second limitation of the test cases 

is that the frequencies of the flaws and non-flawed 

constructs is likely very different from their 

frequencies in natural code.  Each type of flaw is 

tested once in the test cases, regardless of how 

common or rare that flaw type may be in natural 

code.  For this reason, two tools that have similar 

flaw reporting results on the test cases may provide 

very different results on natural code, such as if one 

tool finds common flaws and the other tool only finds 

rare flaws.  Even a tool with poor results on the test 

cases may have good results on natural code.  

Similarly, each non-flawed construct also appears 

only once in the test cases, regardless of how 

common the construct is in natural code.  Therefore, 

the false positive rates on the test cases may be much 

different from the rates the tools would have on 

natural code. 

2.1.3 Test Case Design 

The CAS decided that the benefits of using artificial code 

outweighed the disadvantages and created artificial code 

for this study.  The CAS built the artificial code as a 

collection of “test cases”.  Each test case contained 

exactly one intentional flaw and contained one or more 

non-flawed constructs similar to the intentional flaw.  The 

CAS used the non-flawed constructs to determine if the 

tools could discriminate flaws from non-flaws. 

For example, one test case the CAS created illustrated a 

type of buffer overflow vulnerability.  The flawed code in 

the test case passed the strcpy function a destination 

buffer that was smaller than the source string.  The non-

flawed construct passed a large enough destination to 

strcpy.   

The CAS created two sets of test cases for this study, one 

for C/C++ and one for Java.  These test cases were 

publicly released in March 2011 through the National 

Institute for Standards and Technology (NIST) as the 

Juliet Test Suites at samate.nist.gov/SRD/testsuite.php.
a
 

2.1.4 Test Case Scope 

The test cases used in this study focused on functions 

available on the underlying platform rather than the use of 

third-party libraries.  This section provides further details 

on the scope of the test cases, including the types of 

control and data flows studied. 

                                                           
a
 The Juliet Test Suites are not the exact test cases used in 

the CAS’s 2010 study (they incorporate minor bug fixes).  

2.1.4.1 C/C++ Test Case Scope 

Wherever possible, the C/C++ test cases used only 

Application Programming Interface (API) calls to the C 

standard library, which is available on all platforms.  In 

order to cover more issues, some test cases targeted the 

Microsoft Windows platform (using Windows-specific 

API functions).  No third-party C or C++ library functions 

are used. 

The C test case code targeted the C89 standard so that the 

test cases could be compiled and analyzed using a wide 

variety of tools that may not support newer versions of the 

C language.  

The test cases limited the use of C++ constructs and 

features to only the test cases that require them (such as 

test cases related to C++ classes or the “new” operator).  

Unless necessary for the flaw type targeted, test cases did 

not use the C++ standard library. 

2.1.4.2 Java Test Case Scope 

The Java test cases limited the use of features to those 

found in Java 1.4 unless features introduced in later 

versions were necessary for the flaw being tested.  The 

test cases covered issues that could affect standalone Java 

applications or Java Servlets.  No test cases specifically 

covered Java Applets or Java Server Pages (JSPs). 

The Java Servlet test cases made use of the Java Servlet 

API version 2.4 or above.  The test cases were developed 

and distributed with Apache’s implementation of this 

API.  

Some of the Java Servlet test cases made use of the 

StringEscapeUtils class from the Apache Commons Lang 

library in order to prevent incidental security issues.  No 

other third party library functions were used in the test 

cases. 

2.1.4.3 Data and Control Flows Studied 

The test cases aimed to exercise the ability of tools to 

follow various control and data flows in order to properly 

report flaws and properly disregard non-flaws.  The type 

of control or data flow present in a test case was specified 

by the “Flow Variant” number included in the name of 

each test case.  Test cases with the same Flow Variant 

number (but testing different flaw types) used the same 

type of control or data flow. 

Test cases with a flow variant of “01” were the simplest 

form of the flaws and did not contain added control or 

data flow complexity.  This set of test cases is referred to 

as the “Baseline” test cases. 

Test cases with a flow variant from “02” to “19” 

(inclusive) covered various types of control flow 

constructs and are referred to as the “Control Flow” test 

cases.  Test cases with a flow variant of “31” or greater 
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covered various types of data flow constructs and are 

referred to as the “Data Flow” test cases. 

Not all flaw types had test cases with all flow variants.  

There were several reasons for this: 

 Some flaw types do not involve “data” and therefore 

could not be used in Data Flow test cases. 

 Some flaw types are inherent in a C++ or Java class 

and could not be placed in Control or Data flows 

(only a Baseline test case was possible for these flaw 

types). 

 Some flaw types could not be generated by the 

CAS’s custom Test Case Template Engine.  Test 

cases for those flaw types were manually created.  

Only Baseline (“01” flow variant) test cases were 

created for these flaw types due to resource 

constraints.   

 Some flaw types are incompatible with some control 

and data flows in that the CAS’s engine created a test 

case that would not compile or did not function 

appropriately.  Some of these issues are unavoidable 

because the problem is inherent in the combination of 

the flaw type and the flow variant.  Others of these 

issues were limitations of the CAS’s engine. 

2.1.5 Test Case Selection 

The CAS used several sources when selecting flaw types 

for test cases:  

 The test case development team’s experiences in 

Software Assurance 

 Flaw types used in the CAS’s 2009 tool study 

 Vendor information regarding the types of flaws their 

tools identify 

 Weakness information in MITRE’s Common 

Weakness Enumeration (CWE) 

While each test case used a CWE identifier as part of its 

name, a specific CWE entry for a flaw type was not 

required in order to create a test case.  Test cases were 

created for all appropriate flaw types and each test case 

was named using the most relevant CWE entry (which 

may have been rather generic and/or abstract). 

2.1.6 Test Case Statistics 

This tool study was conducted using the 2010 version of 

the test case suite.  The suite contained two projects: one 

for C/C++ and one for Java.  Table 1 contains statistics on 

the size and scope of the tested version of the test cases. 

 
CWE 

Entries 
Covered 

Flaw 
Types 

Test 
Cases 

Lines of 
Code

b
 

C/C++  116 1,432 45,324 6,338,548 

Java 106 527 13,801 3,238,667 

All Test 
Cases 

177 1,959 59,125 9,577,215 

Table 1 – Test Case Statistics 

The test cases cover twenty of the 2010 CWE/SANS Top 

25 Most Dangerous Programming Errors
c
.  Of the five 

CWE entries on the Top 25 that the test cases do not 

cover, four are design issues that do not fit into the 

structure of the CAS test cases and one is an issue specific 

to the PHP language (which is not in scope for this study). 

2.2 Tools Studied 

The CAS selected tools for this study based on several 

factors: 

 Evaluaton of promotional material supplied by the 

tool vendors 

 Online reviews 

 Evaluation of tool methodology and available rule 

sets 

 Results on a small amount of sample code 

The criteria that the tools were required to meet for this 

study are contained in Section 1.4.  The tool versions 

considered were the most recent release available as of 

September 1, 2010.   

Although there are numerous commercial and open 

source/free static analysis tools available, the resource 

limitations led the CAS to test only a limited number of 

tools. For C and C++, the CAS chose six commercial and 

one open source and/or free static analysis tools. For Java, 

the CAS chose five commercial and two open source 

and/or free static analysis tools.  Table 2 contains an 

anonymized list of tools and versions studied. 

                                                           
b
 Lines that are not blank or only comments.  Counted 

using CLOC (cloc.sourceforge.net). 
c
 Christey, Steve, ed., “2010 CWE/SANS Top 25 Most 

Dangerous Programming Errors”, MITRE Corporation, 

http://cwe.mitre.org/top25/ (accessed February 15, 2011). 



 

- 6 - 

Tool License Model C/C++ Java 

Tool 1 Commercial   
Tool 2 Commercial   
Tool 3 Commercial   
Tool 4 Commercial   
Tool 5 Commercial   
Tool 6 Commercial   
Tool 7 Open Source   
Tool 8 Open Source   
Tool 9 Open Source   

Table 2 – Static Analysis Tools Studied 

2.3 Tool Run Process 

The CAS followed a standard process for running each 

tool on the test cases.  This section provides an overview 

of the process.  Detailed, step-by-step records of each tool 

run were documented during the study.   

2.3.1 Test Environment 

Using VMware, the CAS set up a “base” virtual machine 

running the 32-bit version of the Microsoft Windows XP 

operating system.  The “base” virtual machine contained 

software needed to compile and run the test cases.  The 

software installed on the “base” virtual machine included 

7zip, Apache Ant, CmdHere Powertoy, Sun Java JDK 6, 

Sun Java JRE 6, Microsoft File Checksum Integrity 

Verifier, Microsoft Visual Studio 2008 Professional, 

Notepad++, Python 3.2.1, and VMware Tools.  

For each tool run, the CAS either copied the “base” 

virtual machine or created a new snapshot in the “base” 

virtual machine.  The virtual machine was not connected 

to the Internet.  All steps for the tool run were performed 

as the local administrative account. 

2.3.2 Tool Installation, Execution, and 

Results Export 

Each static analysis tool was installed into a separate 

virtual machine or snapshot in order to prevent conflicts 

and test each tool in isolation.  The CAS copied the 

installation and license files for the static analysis tool 

into the virtual machine.  Next, the tool was installed 

using default settings and according to the installation 

instructions provided with the tool. 

The CAS then ran the static analysis tool using the tools’ 

command line interface. The CAS ran the analysis using 

the default configuration of the tool and in accordance 

with the tool’s documentation.  No adjustments were 

made to the tool configuration and no changes or 

annotations were made to the source code of the test 

cases.  The CAS did not consult with tool vendors to 

optimize or configure the tool.  

After the analysis finished, the CAS exported the results 

of the analysis from the tool.  Unfortunately, each tool 

exported the results in a different format.  The exported 

results were then transformed into standard comma 

separated value (CSV) format by a Python script or 

Extensible Stylesheet Language (XSL) transform created 

by the CAS. 

2.3.3 Scoring of Tool Results 

The next step in the tool run process was to determine 

which results represented real flaws in the test cases (true 

positives) and which did not (false positives).  A new 

column named “result type” was added to the result CSV 

file to hold the result of the scoring process. 

The “scoring” of results only included result types that 

were related to the test case in which they appear.  Tool 

results indicating a weakness that was not the focus of the 

test case (such as a tool result indicating a memory leak in 

a buffer overflow test case) were ignored in scoring and 

analysis.  

In past studies, each tool result was scored manually.  In 

the 2010 study, most results were scored using a CAS 

created tool called the AutoScorer. 

2.3.3.1 Weakness ID Mappings  

For each tool, the CAS created an XML file to map the 

tool’s weakness IDs to the test cases.  For example, if a 

tool had a weakness ID that indicated occurrences of 

memory leaks, then it would be mapped to the CWE-401 

(Memory Leak) test cases. Using these mappings, the 

CAS tool was able to determine which result types were 

related to which test cases.  

2.3.3.2 Automated Scoring Process (Pass 1) 

The AutoScorer was run two times on each individual 

tool’s results. During the first run, most tool results 

related to the test case in which they appear are marked as 

true positives and false positives.  The AutoScorer is able 

to do this by using the Weakness ID Mapping to 

determine which result types are related to which test 

cases.  All of these related results are “positives”.  The 

AutoScorer scores those results in “bad” functions and 

classes as true positives and results in “good” functions 

and classes as false positives. 

2.3.3.3 Manual Scoring 

Some tools report findings for some test cases in locations 

outside of a function or class, such as in a typedef.  In 

these cases, the AutoScorer could not determine whether 

a result should be scored as a True Positive or False 

Positive, and therefore it was scored as an “error”. These 

“error” results were scored manually by the CAS as either 

a True Positive or False Positive.  
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2.3.3.4 Automated Scoring Process (Pass 2) 

Upon completion of the manual scoring, the AutoScorer 

was once again run on the tool results CSV.  During this 

second run, the AutoScorer added rows to the CSV for 

False Negative results (test cases where the tool did not 

report a True Positive). 

During analysis of the results, the CAS also identified a 

small set of test cases
d
 that were invalid (did not exhibit 

the intended flaw).  These 38 C and 36 Java test cases 

were excluded from analysis by scoring tool results for 

those test cases as “ITC” in this second pass of the 

AutoScorer.  

2.3.3.5 Summary of Result Types 

At the end of the scoring process, each row in the result 

CSV file was assigned one of the result types in Table 3. 

Result Type Explanation 

True Positive 
(TP) 

Tool correctly reported the flaw that was the 
target of the test case. 

False Positive 
(FP) 

Tool reported a flaw with a type that is the target 
of the test case, but the flaw was reported in non-
flawed code. 

False 
Negative (FN) 

This row is not a tool result.  It was added by the 
AutoScorer to indicate that the tool failed to 
report the target flaw in a test case. 

Invalid Test 
Case (ITC) 

The test case in which this result appeared 
contained an error.  This row was not included in 
the data analysis. 

(blank) This row is a tool result where none of the result 
types above apply.  More specifically, either: 

 The tool result was not in a test case file 

 The tool result type was not associated with 
the test case in which it was reported 

This row was not included in the data analysis.  

Table 3 – Summary of Results Types  

2.4 Data Analysis 

With the study of each individual static code analysis tool 

complete, the data collected was analyzed to provide an 

overview of the results at a more abstract level.  This 

analysis is the basis for this paper and enables an 

understanding of the strengths of each tool. 

2.4.1 Weakness Classes 

To help understand the areas in which a given tool 

excelled, similar test cases were grouped into Weakness 

Classes. Weakness classes are defined using CWE entries 

that contain similar weaknesses.  Since each test case is 

associated with the CWE entry in its name, each test case 

is contained in a Weakness Class.   

Note that buffer handling errors were only represented in 

C/C++ test cases.  The Miscellaneous Weakness Class 

was used to hold a collection of individual weaknesses 

                                                           
d
 These invalid test cases were fixed prior to the public 

release of the test cases as the Juliet Test Suites. 

that did not fit into the other twelve classes. Therefore, the 

weaknesses in the Miscellaneous Weakness Class did not 

have a common theme. 

For example, Stack-based Buffer Overflow (CWE-121) 

and Heap-based Buffer Overflow (CWE-122) were both 

placed in the Buffer Handling Weakness Class. Therefore, 

all of the test cases associated with CWE entries 121 and 

122 were mapped to the Buffer Handling Weakness 

Class.  Table 4 provides a summary list of Weakness 

Classes used in this study, along with an example 

weakness and the number of test cases in that Weakness 

Class for each language family. 

Weakness Class 
Example Weakness 

(CWE Entry) 

C/C++ 
Test 

Cases 

Java 
Test 

Cases 

Authentication and 
Access Control 

CWE-620: Unverified 
Password Change 

604 422 

Buffer Handling 
CWE-121: Stack-based 
Buffer Overflow 

11,386 - 

Code Quality CWE-561: Dead Code 440 410 

Control Flow 
Management 

CWE-362: Race 
Condition 

598 527 

Encryption and 
Randomness 

CWE-328: Reversible 
One-Way Hash 

298 950 

Error Handling 
CWE-252: Unchecked 
Return Value 

2,790 437 

File Handling 
CWE-23: Relative Path 
Traversal 

2,520 718 

Information Leaks 
CWE-534: Information 
Leak Through Debug 
Log Files 

283 468 

Initialization and 
Shutdown 

CWE-415: Double Free 9,894 450 

Injection  CWE-89: SQL Injection 6,882 5,970 

Miscellaneous 
CWE-480: Use of 
Incorrect Operator 

2,304 222 

Number Handling 
CWE-369: Divide by 
Zero 

6,017 2,802 

Pointer and 
Reference 
Handling 

CWE-476: Null Pointer 
Dereference 

1,308 425 

Table 4 – Weakness Classes 

The following sections provide a brief description of the 

Weakness Classes used in the 2010 tool study. 

2.4.1.1 Authentication and Access Control 

Attackers can gain access to a system if the proper 

authentication and access control mechanisms are not in 

place. An example would be a hardcoded password or a 

violation of the least privilege principle. The test cases in 

this Weakness Class test the tools’ ability to check 

whether or not the source code is preventing unauthorized 

access to the system. 

2.4.1.2 Buffer Handling 

Improper buffer handling can lead to attackers crashing or 

gaining complete control of a system. An example would 

be a buffer overflow that allows an adversary to execute 

his/her code. The test cases in this Weakness Class test 
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the tools’ ability to find buffer access violations in the 

source code.  

2.4.1.3 Code Quality 

Code quality issues are typically not security related; 

however they can lead to maintenance and performance 

issues. An example would be unused code. This is not an 

inherent security risk; however it may lead to 

maintenance issues in the future. The test cases in this 

Weakness Class test the tools’ ability to find poor code 

quality issues in the source code. 

The test cases in this Weakness Class cover some 

constructs that may not be relevant to all audiences.  The 

test cases are all based on weaknesses in CWE, but even 

persons interested in code quality may not consider some 

of the tested constructs to be weaknesses.  For example, 

this Weakness Class includes test cases for flaws such as 

an omitted break statement in a switch (CWE-484), an 

omitted default case in a switch (CWE-478), and a 

suspicious comment (CWE-546). 

2.4.1.4 Control Flow Management 

Control flow management deals with timing and 

synchronization issues that can cause unexpected results 

when the code executed. An example would be a race 

condition. One possible consequences of a race condition 

is a deadlock which leads to a denial of service. The test 

cases in this Weakness Class test the tools’ ability to find 

issues in the order of execution within the source code. 

2.4.1.5 Encryption and Randomness 

Encryption is used to provide data confidentiality. 

However, if the wrong or a weak encryption algorithm is 

used an attacker may be able to covert the ciphertext into 

its original plain text. An example would be the use of a 

weak pseudo random number generator (PRNG). Using a 

weak PRNG could allow an attacker to guess the next 

number that is generated. The test cases in this Weakness 

Class test the tools’ ability to check for proper encryption 

and randomness in the source code. 

2.4.1.6 Error Handling 

Error handling is used when a program behaves 

unexpectedly. However, if a program fails to handle 

errors properly it could lead to unexpected consequences. 

An example would be an unchecked return value. If a 

programmer attempts to allocate memory and fails to 

check if the allocation routine was successful then a 

segmentation fault could occur if the memory failed to 

allocate properly. The test cases in this Weakness Class 

test the tools’ ability to check for proper error handling 

within the source code.   

2.4.1.7 File Handling 

File handling deals with reading from and writing to files. 

An example would be reading from a user-provided file 

on the hard disk. Unfortunately, adversaries can 

sometimes provide relative paths to a file that contain 

periods and slashes. An attacker can use this method to 

read to or write to a file in a different location on the hard 

disk than the developer expected. The test cases in this 

Weakness Class test the tools’ ability to check for proper 

file handling within the source code. 

2.4.1.8 Information Leaks 

Information leaks can cause unintended data to be made 

available to a user. For example, developers often use 

error messages to inform users that an error has occurred. 

Unfortunately, if sensitive information is provided in the 

error message an adversary could use it to launch future 

attacks on the system. The test cases in this Weakness 

Class test the tools’ ability to check for information leaks 

within the source code. 

2.4.1.9 Initialization and Shutdown 

Initializing and shutting down resources occurs often in 

source code. For example, in C/C++ if memory is 

allocated on the heap it must be deallocated after use. If 

the memory is not deallocated, it could cause memory 

leaks and affect system performance. The test cases in this 

Weakness Class test the tools’ ability to check for proper 

initialization and shutdown of resources in the source 

code. 

2.4.1.10 Injection 

Code injection can occur when user input is not validated 

properly. One of the most common types of injection 

flaws is cross-site scripting. An attacker can place query 

strings in an input field that could cause unintended data 

to be displayed. This can often be prevented using proper 

input validation and/or data encoding. The test cases in 

this Weakness Class test the tools’ ability to check for 

injection weaknesses in the source code. 

2.4.1.11 Miscellaneous 

The weaknesses in this class do not fit into the previously 

detailed Weakness Classes. An example would be a 

logic/time bomb. An attacker or devious developer can 

place code into the application that will cause the program 

to crash at a certain point in time or when a certain logical 

condition is met. Although this is a serious flaw, it does 

not fit into the other Weakness Classes. 

2.4.1.12 Number Handling 

Number handling issues include incorrect calculations as 

well as number storage and conversions. An example is 

an integer overflow. On a 32-bit system, a signed 

integer’s maximum value is 2,147,483,647. If this value is 
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increased by one, its new value will be a negative number 

rather than the expected 2,147,483,648 due to the 

limitation of the number of bits used to store the number. 

The test cases in this Weakness Class test the tools’ 

ability to check for proper number handling in the source 

code. 

2.4.1.13 Pointer and Reference Handling 

Pointers are often used in source code to refer to a block 

of memory without having to reference the memory block 

directly. One of the most common pointer errors is a null 

pointer dereference (NPD). This occurs when the pointer 

is expected to point to a block of memory, but instead it 

points to the value of NULL. This can cause an exception 

and lead to a system crash. The test cases in this 

Weakness Class test the tools’ ability to check for proper 

pointer and reference handling. 

2.4.2 Precision and Recall  

One set of analysis performed on the test case results 

calculated the Precision and Recall of the tools based on 

the number of true positive (TP), false positive (FP), and 

false negative (FN) findings for that tool on the test cases.  

The following sections describe Precision and Recall in 

greater detail. 

2.4.2.1 Precision 

In the context on this report, Precision (also known as 

“positive predictive value") means the ratio of weaknesses 

reported by a tool to the set of actual weaknesses in the 

code analyzed.  It is defined as the number of weaknesses 

correctly reported (true positives) divided by the total 

number of weaknesses actually reported (true positives 

plus false positives). 

FPTP

TP
Precision

##

#


  

Precision is synonymous with the true positive rate, and is 

the complement of the false positive rate.  It is also 

important to highlight that Precision and Accuracy are not 

the same.  In this study, Precision describes how well 

does a tool identifies flaws, whereas accuracy describes 

how well does a tool identifies flaws and non-flaws as 

well. 

Note that if a tool does not report any weaknesses, then 

Precision is undefined, i.e. 0/0.  If defined, Precision is 

greater than or equal to 0, and less than or equal to 1.  For 

example, a tool that reported 40 issues (false positives and 

true positives), of which only 10 were real flaws (true 

positives), would have a Precision of 10 out of 40, or 

0.25.  

Precision helps understand how much trust can be given 

to a tool's report of weaknesses.  Higher values indicate 

more trust that issues reported correspond to actual 

weaknesses.  For example, a tool that achieves a Precision 

of 1 only reported issues that are real flaws on the test 

cases.  That is, it did not report any false positives.  

Conversely, a tool that has a Precision of 0 always 

reported issues incorrectly.  That is, it only reported false 

positives. 

When calculating the Precision values in this study, 

duplicate true positive values were ignored.  That is, if a 

tool reported two or more true positives on the same test 

case, the Precision is calculated as if the tool reported 

only one true positive on that test case.  Duplicate false 

positive results are included in the calculation, however. 

2.4.2.2 Recall 

The Recall metric (also known as "sensitivity" or 

“soundness”) represents the fraction of real flaws that 

were reported by a tool.  Recall is defined as the number 

of real flaws that a tool reported (true positives), divided 

by the total number of real flaws – reported or unreported 

– that existed in the code (true positives plus false 

negatives). 

FNTP

TP
Recall

##

#


  

Recall is always a value greater than or equal to 0, and 

lesser than or equal to 1. For example, a tool that reported 

10 real flaws in a piece of code that contained 20 flaws 

would have a Recall 10 out of 20, or 0.5. 

A high Recall means that the tool correctly identified a 

high number of the target weaknesses within the test 

cases.  For example, a tool that achieves a Recall of 1 

reported every flaw in the test cases.  That is, it had no 

false negatives.  In contrast, a tool that has a Recall of 0 

reported none of the real flaws.  That is, it had a high false 

negative rate. 

Like with Precision, duplicate true positive values were 

ignored when calculating Recall in this study.  That is, if a 

tool reported two or more true positives on the same test 

case, the Recall was calculated as if the tool reported only 

one true positive on that test case.   

2.4.2.3 F-score 

In addition to the Precision and Recall metrics, an F-score 

was calculated by taking the harmonic mean of the 

Precision and Recall values.  Since a harmonic mean is a 

type of average, the value for F-score will always be 

between the values for Precision and Recall (unless 

Precision and Recall are equal, in which case the F-score 

will be that same value).  Note that the harmonic mean is 

always less than the arithmetic mean (again, unless the 

Precision and Recall are equal). 

The F-score provides weighted guidance in identifying a 

good static analysis tool by capturing how many of the 

weaknesses were found (true positives) and how much 
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noise (false positives) was produced.  An F-score is 

computed using the following formula: 















RecallPrecision

RecallPrecision
scoreF 2­  

Table 5 shows example F-scores for some example 

Precision and Recall values: 

Weakness Class Precision F-score Recall 

Weakness Class A .80 .80 .80 

Weakness Class B .80 .69 .60 

Weakness Class C .80 .53 .40 

Weakness Class D .80 .32 .20 

Weakness Class E .80 .18 .10 

Weakness Class F .20 .32 .80 

Weakness Class G .20 .20 .20 

Weakness Class H .50 .50 .50 

Table 5 – Example F-score Values 

A harmonic mean is desirable since it ensures that a tool 

must perform reasonably well with respect to both 

Precision and Recall metrics.  In other words, a tool will 

not get a high F-score with a very high score in one metric 

but a low score in the other metric.  Simply put, a tool that 

is very poor in one area would not be considered stronger 

than a tool that is average in both.  See Weakness Class F 

and Weakness Class H in Table 5 above for an example 

of this point. 

Note that this report uses equal weighting for both 

Precision and Recall when calculating the F-score.  

Alternate F-scores could be calculated by using higher 

weights for Precision (thus establishing a preference that 

tool results will be correct) or by using higher weights for 

Recall (thus establishing a preference that tools will find 

more weaknesses). 

2.4.2.4 Precision-Recall Tables and Averages 

To summarize each tool’s Precision, Recall, and F-score 

on the test cases, a table was produced to show how the 

tool performed regarding each metric.  However, when 

interpreted in isolation, each metric can be deceptive in 

that it does not reflect how a tool performed with respect 

to other tools, i.e., it is not known what a “good” number 

is.  It is impossible for an analyst to know if a Precision of 

0.45 is a good value or not.  If every other tool had a 

Precision value of 0.20, then a value of 0.45 would 

suggest that the tool outperformed its peers.  On the other 

hand, if every other tool had a Precision of 0.80, then a 

value of 0.45 would suggest that the tool underperformed 

on this metric. 

To help understand the Precision, Recall, and F-score 

results for a tool, each metric was compared against the 

average of the all tools.  Note that when a tool did not 

report any findings in a given Weakness Class, it was 

excluded from the calculation of the average for that 

Weakness Class.  This kept the average focused on the 

tools that demonstrated a capability for finding flaws 

within the given Weakness Class.  The average allowed 

the CAS to relate a single tool's metric in the context of 

the larger group of tools that were capable of finding the 

same kind of weaknesses.  The average also effectively 

anonymizes the performance of individual tools. 

If the tool had a higher value than the average, a small 

green triangle pointing up was used.  For values below 

average, a small red triangle pointing down was used.  If 

the value was within 0.05 of the average, then no icon 

was used and the tool results were close to average. 

 Sample 
Size 

Tool Results 

Weakness Class # of Flaws Precision F-Score Recall 

Weakness Class A 511 ▼ .25 ▼ .20 ▼ .17 

Weakness Class B 953  -  -  0 

Weakness Class C 433 ▲ .96 ▲ .72 ▲ .58 

Weakness Class D 720 ▼ .56  .57 ▲ .58 

Weakness Class E 460  1  .29  .17 

Legend: 
▲ = .05 or more 
above average 

▼ = .05 or more  
below average 

Table 6 – Precision-Recall Results for SampleTool by 

Weakness Class 

In this example, Table 6 shows that SampleTool was 

more than 0.05 above the average with respect to 

Precision, Recall, and F-score for Weakness Class C.  Its 

performance was mixed in Weakness Class D, with 

below-average Precision and above-average Recall.  

Within Weakness Class E, SampleTool had average 

results – even though the Precision was 1 – which 

suggests that all tools had high Precision within this 

Weakness Class. 

Note that if a tool does not produce any true positive 

findings or false positive findings for a given Weakness 

Class, then Precision cannot be calculated because of 

division by zero, which is reflected as a dash (“-”) in the 

table.  This can be interpreted as an indication that the 

tool does not attempt to find flaws related to the given 

Weakness Class, or at least does not attempt to find the 

flaw types represented by the test cases for that Weakness 

Class. 

Also note that the number of flaws represents the total 

number of test cases in that Weakness Class.  This 

represents a sample size and gives the analyst an idea of 

how many opportunities a tool had to produce findings.  

In general, when there are more opportunities, one can 

have more statistical confidence in the metric. 

2.4.2.5 Precision-Recall Graphs 

Precision-Recall Graphs are used to show the tool results 

for both the Recall and Precision metrics.  Examining just 

a single metric does not give the whole picture and 

obscures details that were important in understanding a 

tool's strengths.  For example, just looking at Recall 

would tell the analyst how many issues are found, but 
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these issues could be hidden in a sea of false positives, 

making it extremely time-consuming to interpret the 

results.  The Recall metric alone did not give the analyst 

this perspective.  By examining both the Recall and 

Precision values on the same graph, the analyst could get 

a better picture of the tool's overall strengths. 

Figure 1 shows an example of a Precision-Recall Graph.  

Notice that the Precision metric is mapped to the vertical 

axis and the Recall metric is mapped to the horizontal 

axis.  A tool's relation to both metrics is represented by a 

point on the graph.  The closer the point is to the top right, 

the stronger the tool is the given area.  The background of 

the graph is shaded according to the F-Score at each 

point.  An F-Score of 1 is indicated by a white 

background and an F-Score of 0 is indicated by a dark 

grey background. 

 

Figure 1 – Example Precision-Recall Graph 

When graphing results for different tools on the same 

Weakness Class, square markers (in white) are used on 

the Precision-Recall Graph to represent the Precision and 

Recall for each tool and a black circle is used to represent 

the average Precision and Recall for all tools that 

produced findings for the Weakness Class 

When used in to graph results for a single tool across 

different Weakness Classes, a Precision-Recall Graph 

shows two distinct points for each Weakness Class.  A 

square marker (in white) represents the tool’s Precision 

and Recall for the specified Weakness Class.  Another 

point, shown as a black circle, represents the average 

Precision and Recall values for all the tools that produced 

findings for the given Weakness Class.   

A solid line is drawn between the two related points and 

helps visually state how a given tool compared to the 

average. Note that the longer the line, the greater the 

difference between the tool and the average.  In general, 

movement of a specific tool away from the average 

toward the upper right demonstrates a relatively greater 

capability in the given area.  Further explanations are 

provided next. 

In the example in Figure 2, the graph shows that the 

SampleTool is strong when focusing on Weakness Class 

C.  Both Precision and Recall for the tool are above 

average, and the line moves from the black dot toward the 

upper right.  SampleTool is not strong related to 

Weakness Class A.  Both metrics are below average, and 

the line moves from the black dot toward the lower left. 

 

Figure 2 – Precision-Recall Graph for SampleTool by 

Weakness Class 

For the results associated with Weakness Class E and 

Weakness Class D, where the line moves to the upper left 

or the lower right, more analysis is often needed.  In these 

situations, the tool is above average for one metric but 

below average for the other. 

2.4.3 Discriminations and Discrimination 

Rate 

Another analysis performed on the test case results looked 

for areas where a tool showed it could discriminate 

between flaws and non-flaws.  This section describes this 

analysis in greater detail. 

The purpose of this analysis was to differentiate 

unsophisticated tools doing simple pattern matching from 

tools that perform more complex analysis.   

For example, consider a test case for a buffer overflow 

where the flaw uses the strcpy function with a destination 

buffer smaller than the source data.  The non-flaw on this 

test case may also use strcpy, but with a sufficiently large 

destination buffer.  A tool that simply searches for the use 
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of “strcpy” would correctly report the flaw in this test 

case, but also report a false positive on the non-flaw. 

If a tool behaved in this way on all test cases in a 

Weakness Class, the tool would have a Recall of 1, a 

Precision of .5, and an F-Score of .67 (assuming that each 

test case had only one “good” or non-flawed construct).  

These scores don’t accurately reflect the tool’s 

unsophisticated behavior.  In particular, the tool is “noisy” 

(generates many false positive results), which is not 

reflected in its Precision of .5.   

This reflects a limitation in the test cases that there are 

typically only one or two non-flaws for every flaw.  Noisy 

tools can have good Recall and a respectable Precision on 

the test cases because there are far fewer opportunities for 

false positives in the test cases than there would be in real 

software. 

2.4.3.1 Discriminations 

To address the issue described above, the CAS defined a 

metric called “Discriminations”.  A tool is given credit for 

a Discrimination when it correctly reports the flaw (a true 

positive) in a test case without incorrectly reporting the 

flaw in non-flawed code (that is, without any false 

positives).  For every test case, each tool receives 0 or 1 

Discriminations. 

In the example above, an unsophisticated tool that is 

simply searching for the use of “strcpy” would not get 

credit for a Discrimination on the test case because while 

it correctly reported the flaw, it also incorrectly reported a 

false positive. 

Discriminations must be determined for each test case 

individually.  The number of Discriminations in a 

Weakness Class (or other set of test cases) cannot be 

calculated from the total number of true positives and 

false positives. 

Over a set of test cases, a tool can report as many 

Discriminations as there are test cases (an ideal tool 

would report a Discrimination on each test case).  The 

number of Discriminations will always be less than or 

equal to the number of true positives over a set of test 

cases (because a true positive is necessary, but not 

sufficient, for a Discrimination). 

2.4.3.2 Discrimination Rate 

Over a Weakness Class (or other set of test cases), the 

Discrimination Rate is the fraction of test cases where the 

tool reported a Discrimination.  That is: 

Flaws

tionsDiscrimina
RatetionDiscrimina

#

#
  

The Discrimination Rate is always a value greater than or 

equal to 0, and less than or equal to 1. 

Over a set of test cases, the Discrimination Rate will 

always be less than or equal to the Recall.  This is because 

Recall is the fraction of test cases where the tool reported 

true positive(s), regardless of if it reported false 

positive(s).  Every test case where the tool reported a 

Discrimination “counts” toward a tool’s Recall and 

Discrimination Rate, but other, non-Discrimination test 

cases may also count toward Recall (but not toward 

Discrimination Rate). 

2.4.3.3 Discrimination Results Tables 

A tool’s Discriminations and Discrimination Rates on 

each Weakness Class are shown in a table like Table 7. 

 
Sample 

Size 
Tool Results 

Weakness Class 
# of 

Flaws 
Discrimin-

ations 
Disc. 
Rate 

Weakness Class A 511 50 0.10 

Weakness Class B 953 0 0.00 

Weakness Class C 433 234 0.54 

Weakness Class D 720 150 0.21 

Weakness Class E 460 15 0.03 

Table 7 – Discrimination Results for SampleTool by 

Weakness Class 

2.4.3.4 Discrimination Rate Graphs 

Discrimination Rate Graphs like Figure 3 are used to 

show the Discriminations Rates for a tool across different 

Weakness Classes.  Even when all values are relatively 

small, the Y-axis scale on these graphs is not adjusted in 

order to compare tools to the ideal Discrimination Rate of 

1. 

 

Figure 3 – Discrimination Graph for SampleTool by 

Weakness Class 
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Section 3: Conclusion 

3.1 Study Assessment 

Overall, the CAS and its customers found the 2010 study 

of static analysis tools to be a success.  This study 

accomplished the purpose described in Section 1.3 in that 

it determined the capabilities of commercial and open 

source static analysis tools for C/C++ and Java and 

provided objective information to organizations looking 

to purchase, deploy, or make the best use of static analysis 

tools.  By identifying the strengths of the tools, this study 

also determined how tools could be combined to provide 

a more thorough analysis of software by using strong 

tools in each area analyzed. 

3.2 Suggestions for Further Study 

There are several follow on projects could be undertaken 

based on this study: 

 Tool vendors are continually improving their 

products and releasing new versions.  In addition, 

new tools may enter the static analysis market in the 

future.  Therefore, additional studies of new tools and 

tool versions will be required as the results of this 

study are only valid for the specific tools and 

versions tested. 

 As described in Section 2.3.2, this study was 

conducted using the default installation and 

configuration of each tool.  It may be possible to 

obtain improved results from the tools by adjusting 

their settings, either through testing and 

experimentation or through interactions with the tool 

vendors or developers. 

 As described in Section 2.1.4, there are limitations to 

the scope of test cases used in this study.  Future 

studies could expand the scope of test cases to cover 

additional languages, flaw types, data flows, and/or 

control flows. 

 As described in Section 2.1.2, there are limitations to 

the results in this study due to the fact that the 

relative frequencies of flaws and non-flaws in the test 

cases likely vary from those frequencies in natural 

software.  Further study on natural code or natural 

code with intentionally introduced vulnerabilities 

may provide results that more accurately predict 

results when using the tools outside of controlled 

studies. 

 


