Exploiting USB Devices with
Arduino

Greg Ose - greg@nullmethod.com
Black Hat USA 2011

Absitract

Hardware devices are continually relied upon to maintain a bridge between
physical and virtual security. From access cards to OTP tokens, hardware devices
receive limited review by application security professionals. They are often
considered vastly more complex and difficult to assess than common web- and
network-based applications.

In this talk I will cover a lightweight methodology to use when approaching the
assessment of USB-based hardware devices. This will include the identification
of trust boundaries and threat modeling, use case analysis though protocol
analysis, as well as crafting a hardware device to exploit identified
vulnerabilities.

Not only will this methodology be described, it will be detailed through the
assessment and exploitation of a hardware-based proximity sensor. Hardware-
based proximity sensors attempt to enforce desktop security and lock a user’s
desktop when the device has been removed from the vicinity of the computer. I
will describe my experience and process for assessing a USB-based proximity
sensor device and its eventual exploitation using components of the Arduino
hardware architecture. I will describe the entire process not from the view of an
electrical engineer, but from that of an application security professional with
limited knowledge of current and voltage and a hobbyist’s budget.

Infroduction

In the world of application security assessments and pentests, web applications
are king. Custom-developed applications by enterprises and service providers
are more often than not exposed externally over HTTP, making them a prime
target for security professionals to audit and external attackers to exploit. It is for
this reason that the majority of any application security professional’s day, week,
or month is spent in front of an HTTP proxy and a web browser. Standardized
tools, methodologies, and vulnerabilities classes exist for these applications, even
to the point where tools to automate the process claim to produce decent
coverage and results.

Application security professionals’ focus on web applications, combined with
time, budget, and resources constraints rarely allow for opportunities to look
beyond network-based threats and explore the world of hardware devices.
However, greater consideration should be given to the assessment of hardware
devices that are relied upon to enforce security controls. The transfer of sensitive
information, defining the application’s trust boundaries, crosses not only
externally from local hosts over a network connection but from the logical host to
physical devices over wireless and physical connections. This architecture often
does not consist of Ethernet, IP, or HTTP, introducing a perceived learning curve
and hardware budget hurdle that needs to be overcome before assessment of
these protocols can be performed.

This whitepaper will demonstrate the applicability of already known and
established assessment techniques and the use of low cost hardware to perform a
security assessment of the commercially available ScreenKeeper USB device.
Intended to lock a user’s desktop machine when the device senses it is out a
range of the locked desktop, this device will be reviewed with a methodology
familiar to any application security professional:

* Threat modeling
o Identify the components of the underlying architecture
o Identify security relevant use cases
o Identify explicit and implicit trust boundaries
* Use Case Analysis
o Identify the inputs and outputs of the enumerated use cases
o Identify the protocol and methods for these inputs
o Identify how security relevant use cases are executed

e Stimulus / Response Testing
o Produce instrumentation to execute the identified use cases
o Perform testing of the identified use cases with unexpected input to
yield unexpected output
* Exploitation
o Instrumentation of any identified vulnerabilities
o Automation of this exploitation

These steps will be demonstrated on the ScreenKeeper device using commodity
and open source software, the low cost Arduino hardware platform,
modifications of an open source USB stack for the Amtel ATmega8U2, and a
limited knowledge of the USB protocol. Each step of this methodology will be
presented with technical details of the ScreenKeeper device, culminating in the
source code for a customized USB stack for the ATmega8U?2 that will bypass the
restrictions enforced by the ScreenKeeper device.

Outline

This paper will present a device assessment methodology side-by-side with the
technical details of an assessment of the ScreenKeeper device. The methodology
will include threat modeling of the device’s architecture, its assumed trust
boundaries, and enumerate the security-relevant use cases for the device. These
use cases will be analyzed to identify their implementation within the device and
expose any significant architectural flaws within the ScreenKeeper’s design.
Inputs and outputs of the device related to these use cases will be enumerated
and identified through stimulus / response testing instrumented with
modifications to Arduino’s Amtel ATmega8U2 chip. This will include technical
details of performing these steps using commodity hardware. Finally, the
exploitation of the identified vulnerabilities will be detailed through the
customization of the ATmega8U2 firmware to circumvent the device under
review.

Threat Modeling

The ScreenKeeper device is meant to provide physical security to desktop and
laptop computers. When a user of the computer leaves the physical vicinity of
the computer, the device will lock the user’s desktop and will subsequently

unlock the desktop when the device is back in range of the physical computer.

To implement this functionality, the ScreenKeeper architecture consists of three
components:

e USB wireless receiver
e Wireless token device
e Host software

Typical installation and usage follows:

* User installs and runs the host software and configures an unlock
password that can be used in place of the wireless token
* User inserts USB dongle into host computer
* If the wireless token is out of range or turned off, the host screen is locked
and the underlying operating system and applications cannot be accessed
* The host screen is unlocked if:
o The token is within range or
o The previously configured password is provided
* The host screen will continue to be unlocked unless the token is turned off
or moved out of range

Given this rather limited application lifecycle, the following security relevant use
cases can be enumerated:

* Device installation and registration

* Host screen lock

* Host screen unlock via wireless token

* Host screen unlock via password

The following trust boundaries are also assumed in this architecture
* Host to USB receiver
* USB receiver to wireless token

It is also necessary to consider the physical nature of the device itself. Given
implicit security requirements of the architecture, the wireless token is assumed
to be uncompromised, as this is what authenticates the unlocking of the
computer. However, malicious access to the physical computer and therefore the
attached USB receiver needs to be identified as a potential attack vector.

Use Case Analysis

For each of these use cases, specific questions were asked and analysis was
performed to determine the implementation within the ScreenKeeper
architecture. To answer these questions, USB traffic between the device and the
host system was reviewed in combination with the analysis of changes and state
within the host system.

Required Tools

USB traffic analysis can be performed using open-source and commercially
available software or hardware. On the tightest budget, traffic sent between the
USB receiver and the host system can be captured using freely available tools.

One inexpensive method to capture USB traffic utilizes VMWare virtual
machines. Debugging logging of USB traffic can be enabled for analysis through
the modification of configuration settings. To enable logging of USB traffic, the
configuration of a VMWare image needs to be modified with the following
options':

monitor = "debug"
usb.analyzer.enable = TRUE
usb.analyzer.maxLine = 8192
mouse.vusb.enable = FALSE

With these changes, the traffic of the USB device will be written to the vmware.log
tile. This log file can then be analyzed using the open source Virtual USB
Analyzer? software. Below is an illustration of a USB packet capture.

May 15 14:59:57.911: vmx| USBIO: GetDescriptor(string, 2, langId=0x0409)
May 15 14:59:57.911: vmx| USBIO: Down dev=1 endpt=0 datalen=255

numPackets=0 status=390052272 1a54dbbo
May 15 14:59:57.911: vmx| USBIO: ©00@: 80 06 02 03 09 04 ff 00

Uhttp://vusb-analyzer.sourceforge.net/tutorial.html
2 http://vusb-analyzer.sourceforge.net/

May 15 14:59:57.912: vmx| USBIO: Up dev=1 endpt=0 datalen=38
numPackets=0 status=0 0
May 15 14:59:57.912: vmx| USBIO: ©00: 80 06 ©2 03 09 04 ff 00

May 15 14:59:57.912: vmx| USBIO: ©000: 26 03 73 00 63 00 72 00 65 00 65
00 6e 00 20 00 &.s.c.r.e.e.n. .

May 15 14:59:57.912: vmx| USBIO: ©10: 6b 00 65 00 65 00 70 00 65 00 72
00 20 00 31 00 k.e.e.p.e.r. .1.

May 15 14:59:57.912: vmx| USBIO: ©020: 2e 00 30 00 41 00

For the sake of the details provided in this whitepaper, MQP’s Packet-Master
USB500 AG analyzer and packet generator® and the corresponding GraphicUSB
software was used.

Once USB traffic can be observed alongside review of the state of the host
machine, the previously identified use cases can be analyzed.

Results
The following testing and analysis was performed for each identified use case.

Device Installation and Registration

Can a USB receiver be swapped out from a locked screen and replaced
with another USB receiver and in-range token?

No, two tokens and receiver pairs were tested and swapped during a locked
screen. The USB receiver is registered upon first use on the host machine.

How is a USB receiver registered with the host computer?

Through the monitoring of Windows’ registry writes and reads, it was identified
that a per-receiver identifier was set in the registry upon the first insert of a
ScreenKeeper device. This is stored as a REG_BINARY key under
HKEY_CURRENT_USERN\ Software\ CalvinTech\ ScreenKeeper entry.

An example of this value is show below:

3 http://www.mqp.com/usb500.htm

Edit Binary Yalue

Walue name:

21

kﬁhl

Value data:

0010 38 00 33 00

0000 34 00 41 00 33 00 33 00
0008 45 00 46 00 38 00 45 00

4.4.3.3.
E.F.8.E.
8.3.

[o 1]

Cancel

This is the Unicode of the string 4A33EF8ES3.

What information is sent from the USB receiver when inserted into the host

computer?

The USB receiver follows the USB standard for registering using a USB Device

Descriptor. The following information is provided by the device as part of

registering as a HID-class device to the host computer:

Field Value Meaning

bLength 18 Valid Length

bDescriptorType 1 DEVICE

bcdUSB 0x0200 Spec Version

bDeviceClass 0x00 Class Information in Interface
Description

bDeviceSubClass 0x00 Class Information in Interface
Descriptor

bDeviceProtocol 0x00 Class Information in Interface
Descriptor

bMaxPacketSize0 32 Max EPO Packet Size

idVendor 0x1915 Nordic Semiconductor ASA

idProject 0x001F Unknown

bcdDevice 0x0100 Device Release Number

iManufacturer 1 Index to Manufacturer String (Not
known)

iProduct 2 Index to Product String “screen keeper

1.0A”

iSerialNumber 3 Index to Serial Number String
“4A33EFSE83”
bNumConfigurations 1 Number of Possible Configurations

One interesting point to note is that the value sent for iSerialNumber in the device
descriptor table is the same as our host’s registry entry.

Host Screen Lock

What USB traffic is sent when the wireless device is out of range or turned
off to indicate that the screen should be locked?

No traffic is sent over the registered USB device in this situation. It appears that
the lack of USB traffic indicates that the device is out of range and the screen
should be locked.

Does the host remain locked when the physical USB device is removed?
Yes, the removal of the physical USB receiver does not unlock the host device.

Can the host be unlocked after the physical USB receiver has been
removed and reinserted?

Yes, through testing, it was identified that the device can be removed and
reinserted. This introduces the possibility of an attacker compromising the USB
receiver for a period of time and establishes that the USB receiver has to be
assumed as compromised.

Host Screen Unlock via Token

What USB traffic is sent when the wireless device is in range?

A HID Report inbound message is sent to the host every two seconds by the
device. Typically, HID Report messages are sent structured in a way previously
defined via HID Report Definition messages. However, the device is using these
messages to transmit a static 24-byte identifier. This can be seen in the following
analysis:

When the wireless device was turned on and in-range, the following USB traffic
was sent:

RA13212..413214 (=1 Interrupt Transfer Addr Endp Data (24 bytes) Status
17.545,904 s & | HID Reportin J0x02] Ox1 340041 0033 003300...] OK
#595629...595631 (=1 Interrupt Transfer Addr Endp Data (24 bytes) Status
19.570,298 s < | HID Reportin J0x02] Ox1 340041 0033 0033 00...] OK
RTT5290..775202 2= Interrupt Transfer Addr Endp Data (24 bytes) Status
21.562,685 s < | HID ReportIn 002 Ox1 340044 00 33 003300...| OK
RA55715.. 955717 (2= Interrupt Transfer Addr Endp Data (24 bytes) Status
23.563,074 s & | HID ReportIn 002 Ox1 |3400 44 00 33003300...| OK

If the device was turned off or was not in range, no USB traffic was sent from the
receiver. Finally, if the device was then re-activated or returned to range, the
following traffic was sent:

#1538242...1538244 (=1 Interrupt Transfer Addr Endp Data (24 bytes) Status
30.036,332 s < | HID Reportin J0x02]| Ox1 |3400 41 00330033 00...] OK

#1718460...17 18452 (=1 Interrupt Transfer Addr Endp Data (24 bytes) Status
32.036,721s & | HID ReportIn JOx02] Ox1 |340044 00 33003300...| OK

#1896623...1896625 2= Interrupt Transfer Addr Endp Data (24 bytes) Status
34.021,106 s & | HID ReportIn 002 Ox1 |3400 44 00 3300 3300..| OK

How is this unique identifier stored / verified?
It is stored in the registry, the full contents of the data of this packet is shown

below:

Offset ASCII

000: 34 00 41 ©00 33 00 45 ©00 46 ©00 38 ©0 45 00 4.A.3.3.E.F.8.E
010: 38 00 33 ©0 30 00 31 00 8.3.0.1.

This is the same value that was stored within the serial registry entry appended
with a trailing 01 Unicode string.

How is this unique identifier generated or initially registered?
It is per device, if we look at the device descriptor table it is the same as used as
the device serial number in the initial device descriptor table.

10

Host Screen Unlock via Password

How is this user-supplied password stored?

This value is also stored within the registry. It appears to not be stored in
plaintext, but as an encrypted format that is the same length as the plaintext
password. While this is likely done in an insecure manner, under typical
scenarios, this registry entry would not be obtainable from an external attacker.

Conclusion

With this analysis one can derive a number of details about how trust is
established between the USB device and the host computer. Each USB device
registers with a unique serial number that is sent as part of the USB device
descriptor table. When the device is in range, this serial number is sent as the
data of a HID Report message, indicating to the host software to keep the
computer unlocked. When this message is not sent, the software locks the
computer.

Based on this knowledge, we can conclude an external attacker can obtain the
unique serial number registered with the host. Using this serial number we can
spoof the registered device by sending an identical device descriptor table. As a
registered device we can send the expected message, the serial number, and
unlock the target host computer.

Stimulus / Response Testing

In the previous step, we identified the use case to unlock and lock is controlled
completely via USB traffic to and from the USB receiver. The USB receiver not
only contains the unique identifier required to unlock the host computer, it also
provides the mechanism for which this request is sent to the host computer. We
now need to instrument two steps to generate and replay the input that triggers
the unlock functionality within the host software:

1. Register a USB device with the host that matches the expected

configuration and identification of the ScreenKeeper USB receiver
2. Submit a USB HID Report message with the required data

Required Tools
To properly submit valid messages to the host USB bus, we need to either
provide or emulate a USB device to the target host computer. Again, on to

11

smallest of budgets, this can be accomplished by utilizing the low-cost Arduino
hardware architecture.

The latest revision of the Arduino hardware, the Arduino Uno, replaces previous
generations” FTDI USB-to-serial chip with the Amtel ATmega8U2*. This chip
allows much more flexibility and customization through the ability to modify the
tirmware though the USB Device Firmware Upgrade (DFU) standard.

Furthermore, the open-source Lightweight USB Framework for AVRs (LUFA)
library® provides the base of the firmware for the ATmega8U2 used by Arduino.
The source for this library can be downloaded, modified, and re-flashed on the
Arduino’s ATmega8U2. This will provide a simple method of registering and
submitting traffic as a USB device.

The following steps can be taken to modify the device descriptors and traffic sent
by the ATmega8U2 of the Arduino device.

Create firmware compilation environment for the ATmega8u2
The following source libraries will need to be downloaded to properly flash the
ATmega8U2.

1. Download the 100807 version of the LUFA firmware
2. Download the Arduino source code®. This contains the LUFA
implementation used for the Arduino’s USB-to-serial firmware.

Copy the /hardware/arduino/firmwares/arduino-usbserial source directory from the
Arduino source to the LUFA source tree under the Project directory.

To cross-compile the LUFA firmware and flash it to the ATmega8U2 chip, the
following tools are also required:
* dfu-programmer’
* A AVR GNU compiler suite —
o AVR CrossPack for OSX®

* http://arduino.cc/en/Main/ArduinoBoardUno

5 http://www.fourwalledcubicle.com/LUFA.php

¢ http://www.arduino.cc/en/Main/Software

7 http://dfu-programmer.sourceforge.net/

8 http://www.obdev.at/products/crosspack/index.html

12

o Others toolchains exist for Linux and Windows?®

With these tools configured, the Arduino USB-to-serial firmware from the LUFA
library can be compiled with a simple make command in the arduino-usbserial
directory.

Flashing the ATmega8U2
To test and ensure that the firmware image was properly built, the arduino-
usbserial.hex file can be flashed to the ATmega8U2 using the following steps.!
* Set the ATmega8U2 on the Arduino to DFU mode
o Hold the bottom left pin of the ATmega8U2 to ground
o Hold ground to the bottom lead of the capacitor above the
oscillator
o These two spots have been highlighted in the image below
o This will cause the Arduino’s LED to blink and then enumerate the
Arduino’s USB as an Arduino Uno DFU
o Remove all connections
* Run make dfu to use dfu-programmer to flash the ATmega8U2
* Remove and reinsert the USB connection to the host
* The device should enumerate again as an Arduino Uno

? http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
10 http://arduino.cc/forum/index.php?topic=111.0

13

Customizing Firmware

With the ability to compile and re-flash the ATmega8U2, a custom firmware can
be created. Two main files are of interest when modifying the firmware.

Descriptors.c
This file contains the data that is used when creating the USB Device Descriptor
messages. These can be modified to match the enumeration of our target device.

Arduino-usbserial.c

This file contains the source of what is actually executed by the USB device. The
main function is just that, the entry point for the program. This includes a routine
to setup the hardware and a loop that handles the actual protocol of the device.

With the ability to create a custom firmware to dictate the device’s enumeration
and output, we can instrument stimulus and response testing the same as if we
were testing a traditional web- or network-based application.

Exploitation

Given our ability to change the device descriptor used to enumerate our
modified ATmega8U2 chip and to control the messages sent by this device, it is
possible to program the ATmega8U2 to masquerade as a registered
ScreenKeeper device and unlock the targeted host computer. The following steps
were taken to exploit the ScreenKeeper device.

Obtain Device Serial Number
Since the USB device serial number is used as the unique serial number to unlock
the host, the following steps can be utilized to obtain the serial number.
1. Remove the ScreenKeeper device from target host computer
2. Insert ScreenKeeper device into attacker controlled host
3. Use system_profiler or equivalent system tools to obtain the USB serial
number descriptor

Under OSX, this process is shown below:
$ system _profiler SPUSBDataType | grep 'screen keeper' -A 10
screen keeper 1.0A:

Product ID: ox001f
Vendor ID: 0x1915 (Nordic Semiconductor ASA)

14

Version: 1.00

Serial Number: 4A33EF8ES83
Speed: Up to 12 Mb/sec
Manufacturer: SEMI-LINK
Location ID: ©x04100000
Current Available (mA): 500
Current Required (mA): 100

The device descriptor tables of the ATmega8U2 then need to be updated to
reflect the descriptors of the ScreenKeeper device. The changes to Descriptors.c
and Arduino-screenkeeper.c in the Arduino ScreenKeeper source code fully
identify these changes.

The following high-level changes were made to the Arduino firmware source.

Descriptors.c

Update the device information string references to be identical to that of the
ScreenKeeper device. The additional SerialNum descriptor can be added as an
index in the DeviceDescriptor struct, a new PROGMEM string reference added as
a USB_Descriptor_String_t and a new DTYPE_String case statement added to the
CALLBACK_USB_GetDescriptor function to properly set the descriptor string’s
address and size.

Arduino-screenkeeper.c

The main function was modified to write the given serial number to the
enumerated endpoint in an infinite loop. This was done using the
Endpoint_Write_PStream_LE" function from the LUFA library and is shown
below.

int main(void)

{
SetupHardware();
sei();
for (53)
{
Endpoint_Write PStream_ LE((void*)&SerialNumberString.UnicodeString,
USB_STRING_LEN(SERIAL_NUMBER_LEN)+4, NO_STREAM_CALLBACK);
Endpoint_ClearIN();
HID Device USBTask(&Generic_HID_Interface);
USB_USBTask();
}
}

T http://www .fourwalledcubicle.com/files/LUFA/Doc/091122/html/a00265.html

15

By obtaining the USB serial number from the ScreenKeeper device, flashing the
Arduino device with this serial number and updated code to send the serial
number and modified device descriptors, an attack could easily compromise any
host protected by the ScreenKeeper device.

16

Conclusion

Due to the trust boundaries of the ScreenKeeper architecture, it is possible to
completely bypass the security provided by the device. The physically attached
and potentially compromised USB receiver contains the information required to
authenticate and unlock the protected desktop. Additionally, there are no
restrictions on obtaining this information if the USB receiver is compromised.
Due to this vulnerability, it is trivial to craft a malicious device to emulate the
required actions and compromise the protected host.

17

