
Kernel Attacks through User-Mode Callbacks

Tarjei Mandt

Norman Threat Research
tarjei.mandt@norman.com

Abstract. 15 years ago, Windows NT 4.0 introduced Win32k.sys to
address the inherent limitations of the older client-server graphics sub-
system model. Today, win32k still remains a fundamental component
of the Windows architecture and manages both the Window Manager
(User) and Graphics Device Interface (GDI). In order to properly inter-
face with user-mode data, win32k makes use of user-mode callbacks, a
mechanism allowing the kernel to make calls back into user-mode. User-
mode callbacks enable a variety of tasks such as invoking application-
defined hooks, providing event notifications, and copying data to/from
user-mode. In this paper, we discuss the many challenges and problems
concerning user-mode callbacks in win32k. In particular, we show how
win32k’s dependency on global locks in providing a thread-safe environ-
ment does not integrate well with the concept of user-mode callbacks.
Although many vulnerabilities related to user-mode callbacks have been
addressed, their complex nature suggests that more subtle flaws might
still be present in win32k. Thus, in an effort to mitigate some of the
more prevalent bug classes, we conclusively provide some suggestions as
to how users may protect themselves against future kernel attacks.

Keywords: win32k, user-mode callbacks, vulnerabilities

1 Introduction

In Windows NT, the Win32 environment subsystem allows applications to in-
terface with the Windows operating system and interact with components such
as the Window Manger (User) and the Graphics Device Interface (GDI). The
subsystem provides a set of functions, collectively known as the Win32 API, and
follows a client-server model in which client applications communicate with a
more privileged server component.

Traditionally, the server side of the Win32 subsystem was implemented in
the client-server runtime subsystem (CSRSS). In order to provide optimal per-
formance, each thread on the client side had a paired thread on the Win32
server waiting in a special interprocess communication facility called Fast LPC.
As transitions between paired threads in Fast LPC did not require a scheduling
event in the kernel, the server thread could run for the remaining time slice of
the client thread before taking its turn in the preemptive thread scheduler. Ad-
ditionally, shared memory was used for both large data transfers and providing

clients read-only access to server managed data structures to minimize the need
for transitions between clients and the Win32 server.

In spite of the performance optimizations made to the traditional Win32 sub-
system, Microsoft decided with the release of Windows NT 4.0 to migrate a large
part of the server component into kernel-mode. This lead to the introduction of
Win32k.sys, a kernel mode driver managing both the Window Manager (User)
and the Graphics Device Interface (GDI). The move to kernel-mode greatly re-
duced the overhead associated with the old subsystem design, by having far
less thread and context switches (and using the much faster user/kernel tran-
sition) and reducing memory requirements. However, as user/kernel transitions
are relatively slow compared to direct code/data access within the same priv-
ilege level, some old tricks such as caching of management structures in the
user-mode portion of the client’s address space were still maintained. Moreover,
some management structures were stored exclusively in user-mode in order to
avoid ring transitions. As Win32k needed a way to access this information and
also support basic functionality such as windows hooking, it required a way to
pass control to the user-mode client. This was realized through the user-mode
callback mechanism.

User-mode callbacks allow win32k to make calls back into user-mode and
perform tasks such as invoking application-defined hooks, providing event no-
tifications, and copying data to/from user-mode. In this paper, we discuss the
many challenges and problems concerning user-mode callbacks in win32k. In
particular, we show how win32k’s design in preserving data integrity (such as in
relying on global locking) does not integrate well with the concept of user-mode
callbacks. Recently, MS11-034 [7] and MS11-054 [8] addressed several vulnerabil-
ities in an effort to address multiple bug classes related to user-mode callbacks.
However, due to the complex nature of some of these issues and the prevalence
of user-mode callbacks, more subtle flaws are likely to still be present in win32k.
Thus, in an effort to mitigate some of the more prevalent bug classes, we con-
clusively discuss some ideas as to what both Microsoft and end-users might do
to further mitigate the risk of future attacks in the win32k subsystem.

The rest of the paper is organized as follows. In Section 2, we review back-
ground material necessary to understand the remained of the paper, focused
on user objects and user-mode callbacks. In Section 3, we discuss function name
decoration in win32k and present several vulnerability classes peculiar to win32k
and user-mode callbacks. In Section 4, we evaluate the exploitability of vulner-
abilities triggered by user-mode callbacks, while we in Section 5 attempt to ad-
dress these attacks by proposing mitigations for prevalent vulnerability classes.
Finally, in Section 6 we provide thoughts and suggestions on the future of win32k
and in Section 7 we provide a conclusion of the paper.

2 Background

In this section, we review the background information necessary to understand
the remainder of the paper. We begin by briefly introducing Win32k and its

architecture, before moving onto more specific components such as the Window
Manager (focused on user objects) and the user-mode callback mechanism.

2.1 Win32k

Win32k.sys was introduced as part of the changes made in Windows NT 4.0 to
increase graphics rendering performance and reduce the memory requirements of
Windows applications [10]. Notably, the Windows Manager (User) as well as the
Graphics Device Interface (GDI) were moved out of the client-server runtime sub-
system (CSRSS) and implemented into a kernel module of its own. In Windows
NT 3.51, graphics rendering and user interface management were performed by
CSRSS using a fast form of interprocess communication between the application
(client) and the subsystem server process (CSRSS.EXE). Although this design
was optimized for performance, the graphics intensive nature of Windows lead
developers to move to a kernel based design with the much faster system calls.

Win32k essentially consists of three major components: the Graphics Device
Interface (GDI), the Window Manager (User), and thunks to DirectX APIs to
support both the XP/2000 and Longhorn (Vista) display driver models (some-
times also considered to be a part of GDI). The Window Manager is responsible
for managing the Windows user interface, such as controlling window displays,
managing screen output, collecting input from mouse and keyboard, and pass-
ing messages to applications. GDI, on the other hand, is mostly concerned with
graphics rendering and implements GDI objects (brushes, pens, surfaces, device
contexts, etc.), the graphics rendering engine (Gre), printing support, ICM color
matching, a floating point math library, and font support.

As the traditional subsystem design of CSRSS was built around having one
process per user, each user session has its own mapped copy of win32k.sys. The
concept of sessions also allows Windows to provide a more strict separation
between users (otherwise known as session isolation). As of Windows Vista, ser-
vices were also moved into their own non-interactive session [2] to avoid the
array of problems associated with shared sessions such as shatter attacks [12]
and vulnerabilities in privileged services. Moreover, User Interface Privilege Iso-
lation (UIPI) [1] implements the concept of integrity levels and ensures that low
privilege processes cannot interact (e.g. pass messages to) processes of a higher
integrity.

In order to properly interface with the NT executive, win32k registers several
callouts (PsEstablishWin32Callouts) to support GUI oriented objects such as
desktops and window stations. Importantly, win32k also registers callouts for
threads and processes to define per-thread and per-process structures used by
the GUI subsystem.

GUI Threads and Processes As not all threads make use of the GUI sub-
system, allocating GUI structures up front for all threads would be a waste of
space. Hence, all threads on Windows start as non-GUI threads (12 KB stack).
If a thread accesses any of the USER or GDI system calls (number >= 0x1000),

Windows promotes the thread to a GUI thread (nt!PsConvertToGuiThread)
and calls the process and thread callouts. Notably, a GUI thread has a larger
thread stack to better deal with the recursive nature of win32k as well as support
user-mode callbacks which may require additional stack space1 for trap frames
and other metadata.

When the first thread of a process is converted to a GUI thread and calls
W32pProcessCallout, win32k calls win32k!xxxInitProcessInfo to initialize
the per-process W32PROCESS/PROCESSINFO2 structure. Specifically, this structure
holds GUI-related information specific to each process such as the associated
desktop, window station, and user and GDI handle counts. The function allocates
the structure itself in win32k!AllocateW32Process before the USER related
fields are initialized in win32k!xxxUserProcessCallout followed by the GDI
related fields initialized in GdiProcessCallout.

Additionally, win32k also initializes a per-thread W32THREAD/THREADINFO
structure for all threads that are converted to GUI threads. This structure holds
thread specific information related to the GUI subsystem such as information
on the thread message queues, registered windows hooks, owner desktop, menu
state, and so on. Here, W32pThreadCallout calls win32k!AllocateW32Thread to
allocate the structure, followed by GdiThreadCallout and UserThreadCallout

to initialize information peculiar to the GDI and USER subsystems respectively.
The most important function in this process is win32k!xxxCreateThreadInfo,
which is responsible for initializing the thread information structure.

2.2 Window Manager

One of the important functions of the Window Manager is to keep track of user
entities such as windows, menus, cursors, and so on. It does this by representing
such entities as user objects and maintains its own handle table to keep track
of their use within a user session. Thus, when an application requests an action
to be performed on a user entity, it provides its handle value which the handle
manager efficiently maps to the corresponding object in kernel memory.

User Objects User objects are separated into types and thus have their own
type specific structures. For instance, all window objects are defined by the
win32k!tagWND structure, while menus are defined by the win32k!tagMENU struc-
ture. Although object types are structurally different, they all share a common
header known as the HEAD structure (Listing 1).

The HEAD structure holds a copy of the handle value (h) as well as a lock count
(cLockObj), incremented whenever an object is being used. When the object is
no longer being used by a particular component, its lock count is decremented.
At the point where the lock count reaches zero, the Window Manager knows
that the object is no longer being used by the system and frees it.

1 On Vista and later, user-mode callbacks use dedicated kernel thread stacks.
2 W32PROCESS is a subset of PROCESSINFO, and deals with the GDI subsystem while
PROCESSINFO also contains information specific to the USER subsystem.

typedef struct _HEAD {

HANDLE h;

ULONG32 cLockObj;

} HEAD, *PHEAD;

Listing 1: HEAD structure

Although the HEAD structure is fairly small, objects many times use the
larger thread or process specific header structures such as THRDESKHEAD and
PROCDESKHEAD. These structures provide additional fields such as the pointer to
the thread information structure tagTHREADINFO and the pointer to the associ-
ated desktop object (tagDESKTOP). In providing this information, Windows can
restrict objects on other desktops from being accessed and thus provide isolation
between desktops. Similarly, as objects are always owned by a thread or process,
isolation between threads or processes that coexist on the same desktop can be
achieved as well. For instance, a given thread cannot destroy the window objects
of other threads by simply calling DestroyWindow. Instead, it would need to send
a window message which is subject to additional validation such as integrity level
checks. However, as the object isolation is not provided in a uniform and cen-
tralized manner, any function not performing the required checks could allow
an attacker to bypass this restriction. This was undeniably one of the reasons
for the session separation (Vista and later) between privileged services and the
logged in user session. As all processes and threads in the same session share the
same user handle table, a low-privileged process could potentially pass messages
to or interact with objects owned by a high-privileged process.

Handle Table All user objects are indexed into a per-session handle table. The
handle table is initialized in win32k!Win32UserInitialize, invoked whenever a
new instance of win32k is loaded. The handle table itself is stored at the base of a
shared section (win32k!gpvSharedBase), also set up by Win32UserInitialize.
This section is subsequently mapped into every new GUI process, thus allowing
processes to access handle table information from user-mode without having to
resort to a system call. The decision to map the shared section into user-mode
was seen as a performance benefit and was also used in the non-kernel based
Win32 subsystem design to prevent excessive context switching between client
applications and the client-server runtime subsystem process (CSRSS). On Win-
dows 7, a pointer to the handle table is stored in the shared information struc-
ture (win32k!tagSHAREDINFO). A pointer to this structure is available from both
user-mode (user32!gSharedInfo3) and kernel-mode (win32k!gSharedInfo).

3 Windows 7 only

typedef struct _HANDLEENTRY {

struct _HEAD* phead;

VOID* pOwner;

UINT8 bType;

UINT8 bFlags;

UINT16 wUniq;

} HANDLEENTRY, *PHANDLEENTRY;

Listing 2: HANDLEENTRY structure

Each entry in the user handle table is represented by a HANDLEENTRY struc-
ture, as shown in Listing 2. Specifically, this structure contains information on
the object specific to a handle, such as the pointer to the object itself (phead), its
owner (pOwner), and the object type (bType). The owner field is either a pointer
to a thread or process information structure, or a null pointer in which case it
is considered a session-wide object. An example of this would be the monitor or
keyboard layout/file object, which are considered global to a session.

The actual type of the user object is defined by the bType value, and is
under Windows 7 a value ranging from 0 up until 21 (Table 1). bFlags defines
additional object flags, and is commonly used to indicate if an object has been
destroyed. This may be the case if an object was requested destroyed, but is
still kept in memory because its lock count its lock count is non-zero. Finally,
the wUniq value is used as a uniqueness counter for computing handle values.
A handle value is computed as handle = table entry id | (wUniq << 0x10).
When an object is freed the counter is incremented to avoid subsequent objects
from immediately reusing the previous handle. It should be noted that this
mechanism cannot be seen as a security feature as the wUniq counter is only
16 bits, hence will wrap around when enough objects have been allocated and
freed.

In order to validate handles, the Window Manager may call any of the
HMValidateHandle APIs. These functions take the handle value as well as the
handle type as parameters and look up the corresponding entry in the handle
table. If the object is of the requested type, the object pointer is returned by the
function.

User Objects in Memory In Windows, user objects and their associated data
structures can reside in the desktop heap, the shared heap or the session pool.
The general rule is that objects associated with a particular desktop are stored
in the desktop heap, and the remaining objects are stored in the shared heap
or the session pool. However, the actual locality of each object type is defined
by a table known as the handle type information table (win32k!ghati). This
table holds properties specific to each object type, used by the handle manager

ID Type Owner Memory

0 Free
1 Window Thread Desktop Heap / Session Pool
2 Menu Process Desktop Heap
3 Cursor Process Session Pool
4 SetWindowPos Thread Session Pool
5 Hook Thread Desktop Heap
6 Clipboard Data Session Pool
7 CallProcData Process Desktop Heap
8 Accelerator Process Session Pool
9 DDE Access Thread Session Pool
10 DDE Conversation Thread Session Pool
11 DDE Transaction Thread Session Pool
12 Monitor Shared Heap
13 Keyboard Layout Session Pool
14 Keyboard File Session Pool
15 Event Hook Thread Session Pool
16 Timer Session Pool
17 Input Context Thread Desktop Heap
18 Hid Data Thread Session Pool
19 Device Info Session Pool
20 Touch (Win 7) Thread Session Pool
21 Gesture (Win 7) Thread Session Pool

Table 1. Owner and locality of user objects

when allocating or freeing user objects. Specifically, each entry in the handle
type information table is defined by an opaque structure (not listed) that holds
the object allocation tag, type flags, and a pointer to a type-specific destroy
routine. The latter is called whenever the lock count of an object reaches zero,
in which case the Window Manager calls the type-specific destroy routine to
properly free the object.

Critical Section Unlike objects managed by the NT executive, the Window
Manager does not exclusively lock each user object. Instead, it implements a
global lock per session using a critical section (resource) in win32k. Specifically,
each kernel routines that operates on user objects or user management structures
(typically NtUser system calls) must first enter the user critical section (i.e.
acquire the win32k!gpresUser resource). For instance, functions that update
kernel-mode structures must first call UserEnterUserCritSec and acquire the
user resource for exclusive access before modifying data. In order to reduce
the amount of lock contention in the Window Manager, system calls that only
perform read operations enter the shared critical section (EnterSharedCrit).
This allows win32k to achieve some sort of parallelism despite the global lock
design, as multiple threads may be executing NtUser calls concurrently.

2.3 User-Mode Callbacks

Win32k is many times required to make calls back into user-mode for per-
forming tasks such as invoking application-defined hooks, providing event no-
tifications, and copying data to/from user-mode. Such calls are commonly re-
ferred to as user-mode callbacks [11][3]. The mechanism itself is implemented in
KeUserModeCallback (Listing 3), exported by the NT executive, and operates
much like a reverse system call.

NTSTATUS KeUserModeCallback (

IN ULONG ApiNumber,

IN PVOID InputBuffer,

IN ULONG InputLength,

OUT PVOID *OutputBuffer,

IN PULONG OutputLength);

Listing 3: KeUserModeCallback

When win32k makes a user-mode callback, it calls KeUserModeCallback with
the ApiNumber of the user-mode function it wants to call. Here, ApiNumber is
an index into a function pointer table (USER32!apfnDispatch) whose address is
copied to the Process Environment Block (PEB.KernelCallbackTable) during
initialization of USER32.dll in a given process (Listing 4). Win32k provides the
input parameters to the respective callback function by filling the InputBuffer,
and receives the output from user-mode in OutputBuffer.

0:004> dps poi($peb+58)

00000000‘77b49500 00000000‘77ac6f74 USER32!_fnCOPYDATA

00000000‘77b49508 00000000‘77b0f760 USER32!_fnCOPYGLOBALDATA

00000000‘77b49510 00000000‘77ad67fc USER32!_fnDWORD

00000000‘77b49518 00000000‘77accb7c USER32!_fnNCDESTROY

00000000‘77b49520 00000000‘77adf470 USER32!_fnDWORDOPTINLPMSG

00000000‘77b49528 00000000‘77b0f878 USER32!_fnINOUTDRAG

00000000‘77b49530 00000000‘77ae85a0 USER32!_fnGETTEXTLENGTHS

00000000‘77b49538 00000000‘77b0fb9c USER32!_fnINCNTOUTSTRING

...

Listing 4: User-mode callback function dispatch table in USER32.dll

Upon invoking a system call, nt!KiSystemService or nt!KiFastCallEntry
stores a trap frame (TRAP FRAME) on the kernel thread stack to save the current
thread context and be able to restore registers upon returning to user-mode.
In order to make the transition back to user-mode in a user-mode callback,
KeUserModeCallback first copies the input buffer to the user-mode stack using
the trap frame information held by the thread object. It then creates a new
trap frame with EIP set to ntdll!KiUserCallbackDispatcher, replaces the
thread object’s TrapFrame pointer, and finally calls nt!KiServiceExit to return
execution to the user-mode callback dispatcher.

As user-mode callbacks need a place to store the thread state information
such as the trap frame, Windows XP and 2003 would grow the kernel stack in
order to ensure that enough space was available. However, because stack space
can quickly be exhausted by calling callbacks recursively, Vista and Windows
7 moved to create a new kernel thread stack on each user-mode callback. In
order to keep track of the previous stacks and so on, Windows reserves space
for a KSTACK AREA structure (Listing 5) at the base of the stack, followed by the
forged trap frame.

kd> dt nt!_KSTACK_AREA

+0x000 FnArea : _FNSAVE_FORMAT

+0x000 NpxFrame : _FXSAVE_FORMAT

+0x1e0 StackControl : _KERNEL_STACK_CONTROL

+0x1fc Cr0NpxState : Uint4B

+0x200 Padding : [4] Uint4B

kd> dt nt!_KERNEL_STACK_CONTROL -b

+0x000 PreviousTrapFrame : Ptr32

+0x000 PreviousExceptionList : Ptr32

+0x004 StackControlFlags : Uint4B

+0x004 PreviousLargeStack : Pos 0, 1 Bit

+0x004 PreviousSegmentsPresent : Pos 1, 1 Bit

+0x004 ExpandCalloutStack : Pos 2, 1 Bit

+0x008 Previous : _KERNEL_STACK_SEGMENT

+0x000 StackBase : Uint4B

+0x004 StackLimit : Uint4B

+0x008 KernelStack : Uint4B

+0x00c InitialStack : Uint4B

+0x010 ActualLimit : Uint4B

Listing 5: Stack area and stack control structures

Once a user-mode callback has completed, it calls NtCallbackReturn (List-
ing 6) to resume execution in the kernel. This function copies the result of the

callback back to the original kernel stack and restores the original trap frame
(PreviousTrapFrame) and kernel stack by using the information held in the
KERNEL STACK CONTROL structure. Before jumping to the location where it pre-
viously left off (in nt!KiCallUserMode), the kernel callback stack is deleted.

NTSTATUS NtCallbackReturn (

IN PVOID Result OPTIONAL,

IN ULONG ResultLength,

IN NTSTATUS Status);

Listing 6: NtCallbackReturn

As recursive or nested callbacks could cause the kernel stack to grow infinitely
(XP) or create an arbitrary number of stacks, the kernel keeps track of the
callback depth (kernel stack space used by user-mode callbacks in total) for
every running thread in the thread object structure (KTHREAD->CallbackDepth).
Upon each callback, the bytes already used on a thread stack (stack base -
stack pointer) are added to the CallbackDepth variable. Whenever the kernel
attempts to migrate to a new stack, nt!KiMigrateToNewKernelStack ensures
that the total CallbackDepth never exceeds 0xC000 bytes, or otherwise returns
a STATUS STACK OVERFLOW error code.

3 Kernel Attacks through User-Mode Callbacks

In this section, we present several attack vectors that may allow an adversary
to perform privilege escalation attacks from user-mode callbacks. We begin by
looking at how user-mode callbacks deal with the user critical section, before
discussing each attack vector in more detail.

3.1 Win32k Naming Convention

As described in Section 2.2, the Window Manager uses critical sections and global
locking when operating on internal management structures. As user-mode call-
backs could potentially allow applications to freeze the GUI subsystem, win32k
always leaves the critical section before calling back into user-mode. This way,
win32k may perform other tasks while user-mode code is being executed. Upon
returning from the callback, win32k re-enters the critical section before the func-
tion resumes execution in the kernel. We can observe this behavior in any func-
tion that calls KeUserModeCallback, such as the one shown in Listing 7.

Upon returning from a user-mode callback, win32k must ensure that refer-
enced objects and data structures are still in the excepted state. As the critical

call _UserSessionSwitchLeaveCrit@0

lea eax, [ebp+var_4]

push eax

lea eax, [ebp+var_8]

push eax

push 0

push 0

push 43h

call ds:__imp__KeUserModeCallback@20

call _UserEnterUserCritSec@0

Listing 7: Leaving the critical section before a user-mode callback

section is left before entering a callback, user-mode code is free to alter the prop-
erties of objects, reallocate arrays, and so on. For instance, a callback could call
SetParent() to change the parent of a window. If the kernel stores a reference
to the parent before invoking a callback and continues to operate on it after re-
turning without performing the proper checks or object locking, this could open
up to security vulnerabilities.

As it’s very important to keep track of the functions that potentially make
calls back to user-mode (in order for developers to take the necessary precau-
tions), win32k.sys uses its own function naming convention. In particular, func-
tions are prefixed xxx or zzz depending on how they may invoke a user-mode
callback. Functions prefixed xxx will in most cases leave the critical section and
invoke a user-mode callback. However, in some cases the function might require
a specific set of arguments in order to branch to the path where the callback
is actually invoked. This is why you’ll sometimes see non-prefixed functions call
xxx functions, because the arguments they provide to the xxx function never
results in a callback.

Functions prefixed zzz invoke asynchronous or deferred callbacks. This is
typically the case with certain types of window events that for various rea-
sons cannot or should not be processed immediately. In this case, win32k calls
xxxFlushDeferredWindowEvents to flush the event queue. An important thing
to note about zzz functions is that they require win32k!gdwDeferWinEvent to
be non-null before calling xxxWindowEvent. If this is not the case, the callback
is processed immediately.

The problem with the naming convention used by win32k is the lack of con-
sistency. Several functions in win32k invoke callbacks, but are not labeled as they
should. The reason for this is unclear, but one possible explanation can be that
functions have been modified over time without the necessary updates made to
the function names. Consequently, developers may be led into thinking that a
function may never actually invoke a callback, hence avoids making the seem-
ingly unnecessary validation (e.g. objects remain unlocked and pointers are not

Windows 7 RTM Windows 7 (MS11-034)

MNRecalcTabStrings xxxMNRecalcTabStrings

FreeDDEHandle xxxFreeDDEHandle

ClientFreeDDEHandle xxxClientFreeDDEHandle

ClientGetDDEFlags xxxClientGetDDEFlags

ClientGetDDEHookData xxxClientGetDDEHookData

Table 2. Functions prefixed properly as a result of MS11-034

revalidated). In addressing the vulnerabilities of MS11-034 [7], several function
names were updated to properly reflect their use of user-mode callbacks (Table
2).

3.2 User Object Locking

As explained in Section 2.2, user objects implement reference counting to keep
track of when objects are used and should be freed from memory. As such,
objects expected to be valid after the kernel leaves the user critical section must
be locked. Generally, there’s two forms of locking – thread locking and assignment
locking.

Thread Locking Thread locking is generally used to lock objects or buffers
within a function. Each thread locked entry is stored in a thread lock structure
(win32k! TL) in a singly linked thread lock list, pointed to by the thread infor-
mation structure (THREADINFO.ptl). The thread lock list operates much like a
FIFO queue in which entries are pushed and pop’ed off the list. In win32k, thread
locking is usually performed inline, and can be recognized by inlined pointer in-
crements, normally before an xxx function is called (Listing 8). When a given
function in win32k no longer needs the object or buffer, it calls ThreadUnlock()
to remove the locked entry from the thread lock list.

In the event that objects have been locked but not unlocked properly (e.g.
due to a process termination while processing a user-mode callback), win32k
processes the thread lock list to release any remaining entries on thread termi-
nation. This can be observed in the xxxDestroyThreadInfo function in making
the call to DestroyThreadsObjects.

Assignment Locking Unlike thread locking, assignment locking is used for
more long-term locking of user objects. For instance, when creating a window
inside a desktop, win32k assignment locks the desktop object at the proper offset
in the window object structure. Rather than operating on lists, assignment locked
entries are simply pointers (to the locked object) stored in memory. If a pointer
already exists at the place where win32k needs to assignment lock an object, the
module unlocks the existing entry before locking and replacing it with the one
requested.

mov ecx, _gptiCurrent

add ecx, tagTHREADINFO.ptl ; thread lock list

mov edx, [ecx]

mov [ebp+tl.next], edx

lea edx, [ebp+tl]

mov [ecx], edx ; push new entry on list

mov [ebp+tl.pobj], eax ; window object

inc [eax+tagWND.head.cLockObj]

push [ebp+arg_8]

push [ebp+arg_4]

push eax

call _xxxDragDetect@12 ; xxxDragDetect(x,x,x)

mov esi, eax

call _ThreadUnlock1@0 ; ThreadUnlock1()

Listing 8: Thread locking and release in win32k

The handle manager provides functions for assignment locking and unlock-
ing. In locking an object, win32k calls HMAssignmentLock(Address,Object)

and similarly HMAssignmentUnlock(Address) for releasing the object reference.
Notably, assignment locking does not provide the safety net that thread locking
does. Should a thread be terminated in a callback, the thread or user object
cleanup routine itself is responsible for releasing these references individually.
Failure to do so could result in memory leaks or the reference count could over-
flow4 if the operation can be repeated arbitrarily.

Window Object Use-After-Free (CVE-2011-1237) In installing a computer-
based training (CBT) hook, an application may receive various notifications
about window handling, keyboard and mouse input, and message queue process-
ing. For instance, before a new window is created, the HCBT CREATEWND callback
allows an application to inspect and modify the parameters used in determin-
ing the size and orientation of the window using the provided CBT CREATEWND5

structure. This structure also allows the application to choose the z-order of the
window, by providing the handle to the window after which the new window will
be inserted (hwndInsertAfter). In setting this handle, xxxCreateWindowEx ob-
tains the corresponding object pointer and later uses it when linking the new
window into the z-order chain. However, as the function failed to properly lock
this pointer, an attacker could destroy the window provided in hwndInsertAfter

4 On 64-bit platforms, this seems practically infeasible because of 64-bit length of the
object PointerCount field.

5 http://msdn.microsoft.com/en-us/library/ms644962(v=vs.85).aspx

in a subsequent callback and coerce win32k to operate on freed memory upon
return.

In Listing 9, xxxCreateWindowEx calls PWInsertAfter to get the window
object pointer (using HMValidateHandleNoSecure) for the hwndInsertAfter

handle provided in the CBT CREATEWND hook structure. The function then stores
the object pointer in a local variable.

.text:BF892EA1 push [ebp+cbt.hwndInsertAfter]

.text:BF892EA4 call _PWInsertAfter@4 ; PWInsertAfter(x)

.text:BF892EA9 mov [ebp+pwndInsertAfter], eax ; window object

Listing 9: Getting window object from CBT structure

As win32k does not lock pwndInsertAfter, an attacker could free the window
supplied in the CBT hook in a subsequent callback (e.g. by calling DestroyWindow).
At the end of the function (Listing 10), xxxCreateWindowEx uses the window
object pointer and attempts to link it into (via LinkWindow) the window z-order
chain. As the window object may no longer exist, this becomes a use-after-
free vulnerability which may allow an attacker to execute arbitrary code in the
context of the kernel. We discuss exploitation of user-after-free vulnerabilities
affecting user objects in Section 4.

.text:BF893924 push esi ; parent window

.text:BF893925 push [ebp+pwndInsertAfter]

.text:BF893928 push ebx ; new window

.text:BF893929 call _LinkWindow@12 ; LinkWindow(x,x,x)

Listing 10: Linking into z-order chain

Keyboard Layout Object Use-After-Free (CVE-2011-1241) Keyboard
layout objects are used in setting the active keyboard layout for a thread or pro-
cess. In loading a keyboard layout, an application calls LoadKeyboardLayout and
specifies the name of the input local identifier to load. Windows also provides
the undocumented LoadKeyboardLayoutEx function, which takes an additional
keyboard layout handle argument that win32k first attempts to unload before

loading the new layout. In providing this handle, win32k failed to lock the corre-
sponding keyboard layout object. Thus, an attacker could unload the provided
keyboard layout in a user-mode callback and trigger a use-after-free condition.

In Listing 11, LoadKeyboardLayoutEx takes the handle of the keyboard lay-
out to first unload and calls HKLToPKL to get the keyboard layout object pointer.
HKLtoPKL traverses the list of active keyboard layouts (THREADINFO.spklActive)
until it finds the one matching the supplied handle. LoadKeyboardLayoutEx then
stores the object pointer in a local variable on the stack.

.text:BF8150C7 push [ebp+hkl]

.text:BF8150CA push edi

.text:BF8150CB call _HKLtoPKL@8 ; get keyboard layout object

.text:BF8150D0 mov ebx, eax

.text:BF8150D2 mov [ebp+pkl], ebx ; store pointer

Listing 11: Converting keyboard object handle to pointer

As LoadKeyboardLayoutEx did not sufficiently lock the keyboard layout ob-
ject pointer, an attacker could unload the keyboard layout in a user-mode call-
back and thus free the object. This was possible as the function subsequently
called xxxClientGetCharsetInfo to retrieve character set information from
user-mode. In Listing 12, LoadKeyboardLayoutEx continues to use the keyboard
layout object pointer previously stored, hence could be operating on freed mem-
ory.

.text:BF8153FC mov ebx, [ebp+pkl] ; KL object pointer

.text:BF81541D mov eax, [edi+tagTHREADINFO.ptl]

.text:BF815423 mov [ebp+tl.next], eax

.text:BF815426 lea eax, [ebp+tl]

.text:BF815429 push ebx

.text:BF81542A mov [edi+tagTHREADINFO.ptl], eax

.text:BF815430 inc [ebx+tagKL.head.cLockObj] ; freed memory ?

Listing 12: Using keyboard layout object pointer after user-mode callbacks

3.3 Object State Validation

In order to keep track of how objects are used, win32k associates several flags
as well as pointers with user objects. Objects assumed to be in a certain state,
should always have their state validated. User-mode callbacks could potentially
alter the state and update properties of objects, such as changing the parent of
a window, causing a drop down menu to no longer be active, or terminating the
partner in a DDE conversation. Lack of state checking could result in bugs such
as NULL pointer dereferences and use-after-frees, depending on how win32k uses
the object.

DDE Conversation State Vulnerabilities The Dynamic Data Exchange
(DDE) protocol is a legacy protocol using messages and shared memory to ex-
change data between applications. A DDE conversation is internally represented
by the Window Manger as a DDE conversation object, one defined for both
the sender and receiver. In order to keep track of which and to whom objects
are engaged in a conversation with, the conversation object structure (undocu-
mented) holds a pointer to the conversation object of the opposite party (using
assignment locking). Thus, if either window or thread owning the conversation
object terminates, its assignment locked pointer in the partner object is unlocked
(cleared).

As DDE conversations store data in user-mode, they rely on user-mode call-
backs to copy data to and from user-mode. Upon sending a DDE message,
win32k calls xxxCopyDdeIn to copy the data in from user-mode. Similarly, in
receiving a DDE message, win32k calls xxxCopyDDEOut to copy the data back
out to user-mode. After the copy has taken place, win32k may notify the partner
conversation object to act on the data, e.g. if it expects a response.

.text:BF8FB8A7 push eax

.text:BF8FB8A8 push dword ptr [edi]

.text:BF8FB8AA call _xxxCopyDdeIn@16

.text:BF8FB8AF mov ebx, eax

.text:BF8FB8B1 cmp ebx, 2

.text:BF8FB8B4 jnz short loc_BF8FB8FC

.text:BF8FB8C5 push 0 ; int

.text:BF8FB8C7 push [ebp+arg_4] ; int

.text:BF8FB8CA push offset _xxxExecuteAck@12

.text:BF8FB8CF push dword ptr [esi+10h] ; conversation object

.text:BF8FB8D2 call _AnticipatePost@24

Listing 13: Absent check in conversation object handling

After processing user-mode callbacks to copy data in or out from user-mode,
several functions failed to properly revalidate the partner conversation object. An
attacker could terminate a conversation in a user-mode callback and thus unlock
the partner conversation object from the sender’s or receiver’s object structure.
In Listing 13, we see that the a callback may be invoked in xxxCopyDdeIn, but
the function fails to revalidate the partner conversation object pointer before
passing it to AnticipatePost. This in turn results in a NULL pointer dereference
and allows an attacker to control the conversation object in mapping the null
page (see Section 4.3).

Menu State Handling Vulnerabilities Menu management is one of the most
complex components of win32k and holds uncharted code presumably dating
back to the early days of the modern Windows operating system. Although
menu objects (tagMENU) themselves are fairly simplistic and only contain infor-
mation related to the actual menu items, menu handling as a whole depends
on multiple fairly complex functions and structures. For instance, in creating
popup menus, applications call TrackPopupMenuEx6 to create a menu classed
window in which the menu content is displayed. The menu window then pro-
cesses message input through a system-defined menu window class procedure
(win32k!xxxMenuWindowProc), in order to handle various menu specific mes-
sages. Moreover, in order to keep track of how a menu is used, win32k also asso-
ciates a menu state structure (tagMENUSTATE) with the currently active menu.
This way, functions can be aware of whether a menu is involved in a drag and
drop operation, inside a menu loop, about to be terminated, and so on.

push [esi+tagMENUSTATE.pGlobalPopupMenu]

or [esi+tagMENUSTATE._bf4], 200h ; fInCallHandleMenuMessages

push esi

lea eax, [ebp+var_1C]

push eax

mov [ebp+var_C], edi

mov [ebp+var_8], edi

call _xxxHandleMenuMessages@12 ; xxxHandleMenuMessages(x,x,x)

and [esi+tagMENUSTATE._bf4], 0FFFFFDFFh ; <-- may have been freed

mov ebx, eax

mov eax, [esi+tagMENUSTATE._bf4]

cmp ebx, edi

jz short loc_BF968B0B ; message processed?

Listing 14: Use-after-free in menu state handling

6 http://msdn.microsoft.com/en-us/library/ms648003(v=vs.85).aspx

In processing various types of menu messages, win32k did not properly val-
idate menus after user-mode callbacks. Specifically, in closing a menu (e.g. by
sending the MN ENDMENU message to the menu window class procedure) while
processing a callback, win32k would in many cases fail to properly check if the
menu state was still active or if the object pointers referenced by related struc-
tures such as the popup menu structure (win32k!tagPOPUPMENU) were non-null.
In Listing 14, win32k attempts to handle certain types of menu messages by
calling xxxHandleMenuMessages. As this function may invoke a callback, sub-
sequent use of the menu state pointer (ESI) would cause win32k to operate on
freed memory. This particular case could have been avoided by locking the menu
state using the dwLockCount variable of the tagMENUSTATE structure (not listed).

3.4 Buffer Reallocation

Many user objects have item arrays or other forms of buffers associated with
them. Item arrays where elements are added or removed are usually resized to
conserve memory. For instance, if the number of elements go above or below a
certain threshold the buffer is reallocated with a more suitable size. Similarly,
if an array is emptied, the buffer is freed. Importantly, any buffer that can be
reallocated or freed during a callback must be rechecked upon return (Figure 1).
Any function failing to do this could potentially be operating on freed memory,
hence allow an attacker to control assignment locked pointers or corrupt the
memory of subsequent allocations.

Get pointer to

array

Get number

of items in

array (k)

Item =

array[n]

Operate on item

(user-mode callback)

if (++n < k)

Resize or

delete array

in callback

Should revalidate

buffer pointer

Kernel User

Should revalidate

number of items (k)

Fig. 1. Buffer reallocation

Menu Item Array Use-After-Free In order to keep track of the menu items
held by popup or drop down menu, menu objects (win32k!tagMENU) define a
pointer (rgItems) to the array of menu items. Each menu item (win32k!tagITEM)
defines properties such as the displayed text string, embedded image, pointer to
submenu and so on. The menu object structure keeps track of the number of
items contained by the array in the cItems variable, and also how many items
that may fit in the allocated buffer in the cAlloced variable. In adding or remov-
ing elements from the menu items array, for instance by calling InsertMenuItem()

or DeleteMenu(), win32k attempts to resize the array if it notices that cAlloced
is about to become less than cItems (Figure 2), or if the difference between
cItems and cAllocated is more than 8 items.

MENU

Object

CreatePopupMenu() or

CreateMenu()

First InsertMenuItem(…) creates menu

items array of 8 tagITEM entries

9th InsertMenuItem(…) expands array

by 8 items and forces reallocation

Fig. 2. Menu items array reallocation

Several functions inside win32k did not sufficiently validate the menu item
array buffer after user-mode callbacks. As there is no way to ”lock” a menu
item, such as the case is with user objects, any function that could invoke a
callback would be required to revalidate the menu item array. This also applies
to functions that take menu items as arguments. If the menu item array buffer
is reallocated in a user-mode callback, subsequent code could be operating on
freed memory or data controlled by the attacker.

SetMenuInfo allows applications to set various properties of a specified menu.
In setting the MIM APPLYTOSUBMENUS flag mask value in the provided menu in-
formation structure (MENUINFO), win32k also applies the updates to all of a
menu’s submenus. This behavior can be observed in xxxSetMenuInfo as the
function iterates over each menu item entry and recursively processes each sub-
menu to propagate the updated settings. Before processing the menu items ar-
ray and making any recursive calls, xxxSetMenuInfo stores the number of menu
items (cItems) as well as the menu items array pointer (rgItems) in local vari-
ables/registers (Listing 15).

.text:BF89C779 mov eax, [esi+tagMENU.cItems]

.text:BF89C77C mov ebx, [esi+tagMENU.rgItems]

.text:BF89C77F mov [ebp+cItems], eax

.text:BF89C782 cmp eax, edx

.text:BF89C784 jz short loc_BF89C7CC

Listing 15: Storing number of menu items and array pointer

Once xxxSetMenuInfo has reached the innermost menu, the recursion stops
and the entry is processed. At this point, the function may invoke a user-mode
callback in calling xxxMNUpdateShownMenu, hence could possibly allow the menu
item array to be resized. However, as xxxMNUpdateShownMenu returns and upon
returning from the recursive call, xxxSetMenuInfo fails to sufficiently validate
the menu item array buffer as well as the number of items held by the ar-
ray. If an attacker resizes the menu items array by calling InsertMenuItem()

or DeleteMenu() from within the callback invoked by xxxMNUpdateShownMenu,
ebx in Listing 16 may point to freed memory. Moreover, as cItems reflects the
number of elements contained by the array at the point where the function was
called, xxxSetMenuInfo may operate on items outside the allocated array.

.text:BF89C786 add ebx, tagITEM.spSubMenu

.text:BF89C789 mov eax, [ebx] ; spSubMenu

.text:BF89C78B dec [ebp+cItems]

.text:BF89C78E cmp eax, edx

.text:BF89C790 jz short loc_BF89C7C4

...

.text:BF89C7B2 push edi

.text:BF89C7B3 push dword ptr [ebx]

.text:BF89C7B5 call _xxxSetMenuInfo@8 ; xxxSetMenuInfo(x,x)

.text:BF89C7BA call _ThreadUnlock1@0 ; ThreadUnlock1()

.text:BF89C7BF xor ecx, ecx

.text:BF89C7C1 inc ecx

.text:BF89C7C2 xor edx, edx

...

.text:BF89C7C4 add ebx, 6Ch ; next menu item

.text:BF89C7C7 cmp [ebp+cItems], edx ; more items ?

.text:BF89C7CA jnz short loc_BF89C789

Listing 16: Insufficient buffer validation after user-mode callbacks

In order to address vulnerabilities involving processing of menu items, Mi-
crosoft introduced the new MNGetpItemFromIndex function in win32k. This func-
tion takes the menu object pointer and requested menu item index as arguments
and returns the item based on the information provided in the menu object.

SetWindowPos Array Use-After-Free Windows allows applications to de-
fer window position updates such that multiple windows can be updated at the
same time. For this, Windows uses a special SetWindowsPos object that holds
a pointer to an array of window position structures. The SWP object as well as
this array is initialized when the application calls BeginDeferWindowPos(). This
function takes the number of array elements (window position structures) to pre-
allocate. Window position updates are then deferred by calling DeferWindowPos(),
in which the next available position structure is filled. Should the requested
number of deferred updates exceed the number of preallocated entries, win32k
reallocates the array with a more suitable size (4 additional entries). Once all
the requested window position updates have been deferred, the application calls
EndDeferWindowPos() to process the list of windows to update.

SMWP

Object

BeginDeferWindowPos(4)

Creates SMWP array of 4

entries

DeferWindowPos(…) fills

SMWP array entries

5th DeferWindowPos(…) expands

array by 4 items and forces reallocation

Fig. 3. SMWP array reallocation

In operating on the SMWP array, win32k did not always properly validate the
array pointer after user-mode callbacks. In calling EndDeferWindowPos to pro-
cess the multiple window position structure, win32k calls xxxCalcValidRects

to calculate the position and size of each window referenced in the SMWP array.
This function iterates over each entry and performs various operations such as
notifying each window that its position is changing (WM WINDOWPOSCHANGING).
As this message may invoke a user-mode callback, an attacker could make multi-
ple DeferWindowPos calls on the same SWP object in order to cause the SMWP
array to be reallocated (Listing 17). This would in turn result in a use-after-free
as xxxCalcValidRects writes the window handle back into the original buffer.

.text:BF8A37B8 mov ebx, [esi+14h] ; SMWP array

.text:BF8A37BB mov [ebp+var_20], 1

.text:BF8A37C2 mov [ebp+cItems], eax ; SMWP array count

.text:BF8A37C5 js loc_BF8A3DE3 ; exit if no entries

...

.text:BF8A3839 push ebx

.text:BF8A383A push eax

.text:BF8A383B push WM_WINDOWPOSCHANGING

.text:BF8A383D push esi

.text:BF8A383E call _xxxSendMessage@16 ; user-mode callback

.text:BF8A3843 mov eax, [ebx+4]

.text:BF8A3846 mov [ebx], edi ; window handle

...

.text:BF8A3DD7 add ebx, 60h ; get next entry

.text:BF8A3DDA dec [ebp+cItems] ; decrement cItems

.text:BF8A3DDD jns loc_BF8A37CB

Listing 17: Insufficient pointer and size validation in xxxCalcValidRects

Unlike menu items, vulnerabilities involving SMWP array handling were ad-
dressed by disallowing buffer reallocation while the SMWP array is being pro-
cessed. This can be seen in win32k!DeferWindowPos, where the function now
checks for a ”being processed” flag and only allows entries to be added if it
doesn’t result in a buffer reallocation.

4 Exploitability

In this section, we evaluate the exploitability of vulnerabilities triggered by user-
mode callbacks. As we’re mostly concerned with two vulnerability primitives –
use-after-frees and NULL pointer dereferences – we’ll focus on how an attacker
may be able to leverage such bug classes in exploiting win32k vulnerabilities.
Assessing their exploitability is vital in order to propose reasonable mitigations
or workarounds in Section 5.

4.1 Kernel Heap

As mentioned in Section 2.2, user objects and their associated data structures
are either stored in the session pool, the shared heap, or the desktop heap.
Objects and data structures stored in the desktop heap or the shared heap
are managed by the kernel heap allocator. The kernel heap allocator can be
considered a stripped down version of the user-mode heap allocator, and uses
familiar functions such as RtlAllocateHeap and RtlFreeHeap exported by the
NT executive in managing heap blocks.

Although the user and kernel heaps are strikingly similar, there are some
key differences. Unlike the user-mode heap, kernel heaps as used by win32k do
not employ any front end allocators. This can be observed by looking at the
ExtendedLookup value of the HEAP LIST LOOKUP structure, referenced by the
heap base (HEAP). When set to null, the heap allocator does not use any lookaside
lists or low fragmentation heaps [13]. Furthermore, in dumping the heap base
structure (Listing 18), we can observe that no encoding or obfuscation of heap
management structures is used as both EncodingFlagMask and PointerKey are
set to null. The former decides if heap header encoding should be used, while
the latter is used for encoding the CommitRoutine pointer, called whenever the
heap needs to be extended.

kd> dt nt!_HEAP fea00000

...

+0x04c EncodeFlagMask : 0

+0x050 Encoding : _HEAP_ENTRY

+0x058 PointerKey : 0

...

+0x0b8 BlocksIndex : 0xfea00138 Void

...

+0x0c4 FreeLists : _LIST_ENTRY [0xfea07f10 - 0xfea0e4d0]

...

+0x0d0 CommitRoutine : 0x93a4692d win32k!UserCommitDesktopMemory

+0x0d4 FrontEndHeap : (null)

+0x0d8 FrontHeapLockCount : 0

+0x0da FrontEndHeapType : 0 ’’

kd> dt nt!_HEAP_LIST_LOOKUP fea00138

+0x000 ExtendedLookup : (null)

...

Listing 18: Desktop heap base and BlocksIndex structures

When dealing with kernel heap corruptions such as use-after-frees, it is vital
to know exactly how the kernel heap manager works. There are many great pa-
pers detailing the inner workings of the user-mode heap implementation [13][6][9]
which may be used as reference when studying the kernel heap. For the purpose of
this discussion, it is sufficient to understand that the kernel heap is one contigu-
ous piece of memory that can be extended or shrunk depending on the amount
of memory allocated. As no front-end managers are used, all the free blocks are
indexed into a single free list. As a general rule, the heap manager always tries
to allocate the most recently freed block (e.g. through the use of list hints) in
order to better make use of the CPU cache.

4.2 Use-After-Free Exploitation

In order to exploit use-after-free vulnerabilities in win32k, an attacker needs to be
able to reallocate the freed memory and to a certain degree control its content.
Because user objects and associated data structures are stored together with
strings, it is possible to force arbitrarily sized allocations and fully control the
content of recently freed memory by setting object properties that are stored
as Unicode strings. As long as WORD NULLs are avoided (except for the string
terminator), any byte combination can be used in manipulating memory accessed
as objects or data structures.

For use-after-free vulnerabilities in the desktop heap, an attacker may set
the text of a window’s title bar using SetWindowTextW to force arbitrarily sized
desktop heap allocations. Similarly, arbitrarily sized session pool allocations can
be triggered by calling SetClassLongPtr and specifying GCLP MENUNAME to set
the menu name string of a menu resource associated with a window class.

eax=41414141 ebx=00000000 ecx=ffb137e0 edx=8e135f00 esi=fe74aa60 edi=fe964d60

eip=92d05f53 esp=807d28d4 ebp=807d28f0 iopl=0 nv up ei pl nz na pe cy

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010207

win32k!xxxSetPKLinThreads+0xa9:

92d05f53 89700c mov dword ptr [eax+0Ch],esi ds:0023:4141414d=????????

kd> dt win32k!tagKL @edi -b

+0x000 head : _HEAD

+0x000 h : 0x41414141

+0x004 cLockObj : 0x41414142

+0x008 pklNext : 0x41414141

+0x00c pklPrev : 0x41414141

...

Listing 19: String as keyboard layout object (CVE-2011-1241)

In Listing 19 (showing the vulnerability described in Section 3.2), the key-
board layout object has been replaced by a user controlled string allocated in
the desktop heap. In this particular case, the keyboard layout object has been
freed, but win32k attempts to link it into the keyboard layout object list. This
allows the attacker to choose the address where esi is written by controlling the
pklNext pointer of the freed keyboard layout object.

As objects often contain pointers to other objects, win32k uses assignment
locking to ensure that object dependencies are satisfied. As such, use-after-frees
affecting objects whose body contain an assignment locked pointer may allow
an attacker to decrement an arbitrary address as win32k attempts to release the
object reference. One possible way of leveraging this is a variation of an attack

described in [11], in which a destroyed menu handle index was returned from a
user-mode callback. Upon thread termination, this lead to the destroy routine of
the free type (0) to be called. As the free type does not define a destroy routine,
win32k would call the null page which users are allowed to map on Windows
(see Section 4.3).

eax=deadbeeb ebx=fe954990 ecx=ff910000 edx=fea11888 esi=fea11888 edi=deadbeeb

eip=92cfc55e esp=965a1ca0 ebp=965a1ca0 iopl=0 nv up ei ng nz na pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010286

win32k!HMUnlockObject+0x8:

92cfc55e ff4804 dec dword ptr [eax+4] ds:0023:deadbeef=????????

965a1ca0 92cfc9e0 deadbeeb 00000000 fe954978 win32k!HMUnlockObject+0x8

965a1cb0 92c60cb1 92c60b8b 004cfa54 002dfec4 win32k!HMAssignmentLock+0x45

965a1cc8 92c60bb3 965a1cfc 965a1cf8 965a1cf4 win32k!xxxCsDdeInitialize+0x67

965a1d18 8284942a 004cfa54 004cfa64 004cfa5c win32k!NtUserDdeInitialize+0x28

965a1d18 779864f4 004cfa54 004cfa64 004cfa5c nt!KiFastCallEntry+0x12a

Listing 20: String as DDE object (CVE-2011-1242)

As an attacker may infer the address of the user handle table in kernel mem-
ory, he or she could decrement the type (bType) value of a window object handle
table entry (1). Upon destroying the window, this would result in destroy routine
for the free type (0) to be called and allow for arbitrary kernel code execution.
In Listing 20, the attacker controls the assignment unlocked pointer, leading to
arbitrary kernel decrement.

4.3 Null Pointer Exploitation

Unlike other platforms such as Linux, Windows (in staying true to backwards
compatibility) allows non-privileged users to map the null page within the con-
text of a user process. As kernel and user-mode components share the same
virtual address space, an attacker may potentially be able to exploit kernel null
dereference vulnerabilities by mapping the null page and controlling the derefer-
enced data. In order to allocate the null page on Windows, an application may
simply call NtAllocateVirtualMemory and request a base address larger than
null but less than the size of a page. Applications may also memory map the
null page by calling NtMapViewOfSection using such a base address and the
MEM DOS LIM compatibility flag to enable page aligned sections (x86 only).

Null pointer vulnerabilities in win32k are many times caused by insufficient
checks in regards to user object pointers. Hence, the attacker may be able to
exploit such vulnerabilities by creating fake null page objects and subsequently

pwnd = (PWND) 0;

pwnd->head.h = hWnd; // valid window handle

pwnd->head.pti = NtCurrentTeb()->Win32ThreadInfo;

pwnd->bServerSideWindowProc = TRUE;

pwnd->lpfnWndProc = (PVOID) xxxMyProc;

Listing 21: Setting up a fake window object at the null page

trigger arbitrary memory writes or control the value of a function pointer. For
instance, as many of the recent null pointer vulnerabilities in win32k are con-
cerned with window object pointers, an attacker could position a fake window
object at the null page and define a custom server-side window procedure (List-
ing 21). This would allow the attacker to obtain arbitrary kernel code execution
if any messages are later passed to the null object.

5 Mitigations

In this section, we evaluate ways of mitigating the vulnerability classes discussed
in Section 4.

5.1 Use-After-Free Vulnerabilities

As mentioned in the previous section, use-after-free exploitability relies on the
attacker’s ability to reallocate and control the contents of the previously freed
memory. Unfortunately, attempting to mitigate use-after-free vulnerabilities is
very difficult as the CPU has no legitimate way of telling whether memory
belongs to a particular object or data structure, as these are just abstractions
made by the operating system. If we look more closely at the problem, these
issues essentially boil down to the attacker being able to free an object or buffer
while processing a callback, and then reallocate that memory before it is again
used by win32k.sys upon callback return. Thus, it may be possible to mitigate
exploitability of use-after-frees by reducing the predictability of kernel pool or
heap allocations or by isolating certain allocations such that easily controllable
primitivies such as strings are not allocated from the same resource as, say, user
objects.

As the system always is aware of whenever callbacks are active (e.g. through
KTHREAD.CallbackDepth), a delayed free approach can be used while processing
a user-mode callback. This would prevent an attacker from immediately reusing
the freed memory. However, such a mechanism would not counter exploitation in
situations where multiple consecutive callbacks are invoked before the use-after-
free condition is triggered. Additionally, as the user-mode callback mechanism is

not implemented in win32k.sys, additional logic would have to be implemented
upon callback return to perform the necessary delayed free list processing.

Rather than attempting to address use-after-free exploitation by focusing on
allocation predictability, we can also look at how exploitation would typically
be performed. As discussed in Section 4, unicode strings as well as allocations
where a large portion of the data can be controlled (e.g. window objects with
cbWndExtra defined) are very useful to an attacker. Hence, isolating such allo-
cations could be used to prevent an attacker from using flexible primitives (e.g.
strings) for easily reallocating the memory of freed objects.

5.2 Null Pointer Vulnerabilities

In order to address null pointer exploitation on Windows we need to deny user
mode applications the ability to map and control the contents of the null page.
Although there are multiple ways to approach this problem such as through
system call hooking7 or page table entry (PTE) modification, using virtual ad-
dress descriptors (VADs) appears to be a more well suited solution [5]. As VADs
describe the process memory space and provide Windows with the information
needed to set up page table entries correctly, they can be used to prevent null
page mappings in a uniform and generic way. However, preventing null page
mappings also comes at the cost of backwards compatibility, as the NTVDM
subsystem in 32-bit versions of Windows relies on this ability to properly sup-
port 16-bit executables.

6 Remarks

As we’ve shown in this paper, user-mode callbacks appear to have caused many
problems and introduced many vulnerabilities in the win32k subsystem. This
is partly because win32k, or the Window Manager specifically, was designed to
use a global locking mechanism (the user critical section) to allow the module
to be thread-safe. Although addressing these vulnerabilities on a case-by-case
basis may suffice as a short-term solution, win32k will at some point require an
overhaul in order to better support multicore architectures and provide better
performance in window management. In the current design, no two threads in the
same session can process their message queues simultaneously, even if they are in
two separate applications on separate desktops. Ideally, win32k should follow the
much more consistent design of the NT executive, and perform mutual exclusion
on a per-object or per-structure basis.

An important step in mitigating exploitation in win32k and kernel exploita-
tion in general on Windows, is to get rid of the shared memory sections between
user and kernel-mode. Traditionally, these were seen as optimizations in that
the Win32 subsystem would not need to resort to a system call, hence avoid the

7 System call hooking is discouraged by Microsoft and cannot easily be used on 64-bit
platforms due to the integrity checks enforced by Kernel Patch Protection.

overhead associated with them. Since this design decision was made, system calls
no longer use the slower interrupt based approach, hence the performance gain is
probably minimal. Although shared sections may still be preferred in some cases,
the information shared should be kept at a bare minimum. Currently, the win32k
subsystem provides an adversary with a tremendous amount of kernel address
space information and also opens up to additional attack vectors as illustrated
in the exploitation of a recent CSRSS vulnerability [4]. Because memory in the
subsystem is shared between processes regardless of their privilege level, an at-
tacker has the ability to manipulate the address space of a privileged process
from a non-privileged process.

7 Conclusion

In this paper, we’ve discussed the many challenges and problems concerning
user-mode callbacks in win32k. In particular, we’ve shown that the global lock-
ing design of the Window Manager does not integrate well with the concept of
user-mode callbacks. Although a large amount of vulnerabilities involving insuf-
ficient validation around the use of user-mode callbacks have been addressed, the
complex nature of some of these issues suggests that more subtle flaws are likely
to still be present in win32k. Thus, in an effort to mitigate some of the more
prevalent bug classes, we conclusively discussed some ideas as to what both Mi-
crosoft and end-users might do to reduce the risk of future attacks in the win32k
subsystem.

References

[1] Edgar Barbosa: Windows Vista UIPI. http://www.coseinc.com/en/index.php?

rt=download&act=publication&file=Vista_UIPI.ppt.pdf

[2] Alex Ionescu: Inside Session 0 Isolation and the UI Detection Service. http://www.
alex-ionescu.com/?p=59

[3] ivanlef0u: You Failed! http://www.ivanlef0u.tuxfamily.org/?p=68
[4] Matthew ’j00ru’ Jurczyk: CVE-2011-1281: A story of a Windows CSRSS Privilege

Escalation vulnerability. http://j00ru.vexillium.org/?p=893
[5] Tarjei Mandt: Locking Down the Windows Kernel: Mitigat-

ing Null Pointer Exploitation. http://mista.nu/blog/2011/07/07/

mitigating-null-pointer-exploitation-on-windows/

[6] John McDonald, Chris Valasek: Practical Windows XP/2003 Heap Exploita-
tion. Black Hat Briefing USA 2009. https://www.blackhat.com/presentations/
bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-PAPER.pdf

[7] Microsoft Security Bulletin MS11-034. Vulnerabilities in Windows Kernel-Mode
Drivers Could Allow Elevation of Privilege. http://www.microsoft.com/technet/
security/bulletin/ms11-034.mspx

[8] Microsoft Security Bulletin MS11-054. Vulnerabilities in Windows Kernel-Mode
Drivers Could Allow Elevation of Privilege. http://www.microsoft.com/technet/
security/bulletin/ms11-054.mspx

[9] Brett Moore: Heaps About Heaps. http://www.insomniasec.com/publications/
Heaps_About_Heaps.ppt

http://www.coseinc.com/en/index.php?rt=download&act=publication&file=Vista_UIPI.ppt.pdf
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=Vista_UIPI.ppt.pdf
http://www.alex-ionescu.com/?p=59
http://www.alex-ionescu.com/?p=59
http://www.ivanlef0u.tuxfamily.org/?p=68
http://j00ru.vexillium.org/?p=893
http://mista.nu/blog/2011/07/07/mitigating-null-pointer-exploitation-on-windows/
http://mista.nu/blog/2011/07/07/mitigating-null-pointer-exploitation-on-windows/
https://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-PAPER.pdf
https://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-PAPER.pdf
http://www.microsoft.com/technet/security/bulletin/ms11-034.mspx
http://www.microsoft.com/technet/security/bulletin/ms11-034.mspx
http://www.microsoft.com/technet/security/bulletin/ms11-054.mspx
http://www.microsoft.com/technet/security/bulletin/ms11-054.mspx
http://www.insomniasec.com/publications/Heaps_About_Heaps.ppt
http://www.insomniasec.com/publications/Heaps_About_Heaps.ppt

[10] MS Windows NT Kernel-mode User and GDI White Paper. http://technet.

microsoft.com/en-us/library/cc750820.aspx

[11] mxatone: Analyzing Local Privilege Escalations in Win32k. Uninformed Journal
vol. 10. http://uninformed.org/?v=10&a=2

[12] Chris Paget: Click Next to Continue: Exploits & Information about Shatter At-
tacks. https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-paget.
pdf

[13] Chris Valasek: Understanding the Low Fragmentation Heap. Black Hat Briefings
USA 2010. http://illmatics.com/Understanding_the_LFH.pdf

http://technet.microsoft.com/en-us/library/cc750820.aspx
http://technet.microsoft.com/en-us/library/cc750820.aspx
http://uninformed.org/?v=10&a=2
https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-paget.pdf
https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-paget.pdf
http://illmatics.com/Understanding_the_LFH.pdf

	Introduction
	Background
	Win32k
	GUI Threads and Processes

	Window Manager
	User Objects
	Handle Table
	User Objects in Memory
	Critical Section

	User-Mode Callbacks

	Kernel Attacks through User-Mode Callbacks
	Win32k Naming Convention
	User Object Locking
	Thread Locking
	Assignment Locking
	Window Object Use-After-Free (CVE-2011-1237)
	Keyboard Layout Object Use-After-Free (CVE-2011-1241)

	Object State Validation
	DDE Conversation State Vulnerabilities
	Menu State Handling Vulnerabilities

	Buffer Reallocation
	Menu Item Array Use-After-Free
	SetWindowPos Array Use-After-Free

	Exploitability
	Kernel Heap
	Use-After-Free Exploitation
	Null Pointer Exploitation

	Mitigations
	Use-After-Free Vulnerabilities
	Null Pointer Vulnerabilities

	Remarks
	Conclusion

