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Introduction
The underlying problem behind many security vulnerabilities of today is memory 
corruption bugs.  There are a variety of different techniques available to try to find such 
vulnerabilities.  One of the most common techniques is fuzzing.  Of the different 
approaches to fuzzing, one of the simplest and also most successful is mutation based 
fuzzing, which amounts to making random changes to an input and testing it within the 
application.  One of the major limitations with this type of approach is not that it doesnʼt 
find problems, but rather it can find too many problems.  The limiting factor in finding 
and exploiting (or fixing) security vulnerabilities in this case is not finding the 
vulnerabilities, but rather prioritizing the ones found and determining their root cause.  
This is a problem for two sets of people.  One group is security researchers and exploit 
developers who donʼt know which crashes to look at and have the time consuming task 
of trying to determine the root cause of the problem from an invalid input and a crash.  
The other group are developers who are also interested in the underlying cause of the 
crash, but instead of trying to exploit it, they are trying to fix it.  Understanding the cause 
of the vulnerability is important to fixing it correctly, otherwise the fix may correct one 
aspect of the vulnerability or code path to the bug, but not all code paths.  For 
developers, even with source code in hand, this is not always an easy task.

This whitepaper attempts to alleviate this problem by introducing a solution using 
BitBlaze, a binary analysis tool.  This toolset can help to quickly determine whether a 
particular crash, found by mutation based fuzzing, is exploitable and also to help 
determine the underlying cause of the crash.

One of the first researcherʼs to point out the problem of finding too many crashes was 
Ben Nagy in his Syscan 2009 talk, “Finding Microsoft Vulnerabilities by Fuzzing Binary 
Files with Ruby - A New Fuzzing Framework” [Nagy].  He fuzzed Microsoft Word using a 
variety of different fuzzing techniques.  He found approximately 200,000 crashes which 
he categorized into 61 distinct bins.  Later, he would find that of these 61 bins of 
crashes, 4 represented critical security vulnerabilities.  However, he did not have the 
resources to examine all 61 distinct crashes, as this would take too much time.  He had 
to give the crashes to Microsoft to help him analyze them.

One of us (Charlie) found a similar problem and discussed it in his CanSecWest 2010 
talk, “Babysitting an Army of Monkeys - An analysis of fuzzing 4 products with 5 lines of 
Python”.  When fuzzing the PDF format in Preview, the default viewer for Mac OS X, he 
found crashes at 1373 different instruction pointers.  Of these, somewhere between 
220-280 were unique crashes and automatic tools from Apple identified over 60 as 
exploitable.  If you consider many complicated vulnerabilities can take at least a day 
and sometimes a week to diagnose, it is a daunting task to try to analyze that many 
crashes.  Likewise, he found around 30-40 unique crashes when fuzzing Adobe Reader.  
Some of these crashes are highlighted later in this document as examples of how to use 
BitBlaze to evaluate crashes.  This paper also uses some OpenOffice crashes he found 
and documented in that presentation.  In OpenOffice, he found somewhere around 70 
distinct crashes.
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Currently there are a variety of tools and utilities to help sort and prioritize crashes.  
These include tools such as crash.exe [filefuzz], !exploitable [!exploitable], and 
crashwrangler [crashwrangler].  While these tools seem to do a fairly good job sorting 
crashes into bins, their ability to evaluate which crashes are exploitable is limited.  For 
example, in the crashes mentioned in the previous paragraph, !exploitable rated more 
than half as “unknown” with regards to exploitability.  In other words, more than half the 
time the tools provides no additional information.

As for actually taking a crash and determining the root cause of the underlying 
vulnerability, researchers have a variety of tools such as debuggers, disassemblers, 
memory dumpers, etc.  BlackHat USA this year presents some other work in this area 
by other researchers as well.  Still, with existing tools, this can be a long and frustrating 
process.

In the next section, we'll introduce BitBlaze, a generic binary analysis platform which 
can be applied to this problem. As you'll see in the examples later in the paper, it can 
handle real applications and real bugs found with actual fuzzing runs, including all their 
inherent complexities. BitBlaze offers a variety of functionalities to a researcher.  For 
example, it can take a taint-enhanced trace of an execution leading to a program crash. 
From that taint-enhanced execution trace, a researcher can perform offline data flow 
analysis using the tools BitBlaze provides. For data flowing in the forward direction in 
time, the researcher can visualize the taint information in the execution trace. For 
backwards in time, the researcher can slice data to see where it originated. By 
comparison, !exploitable only slices the current basic block and assumes all data is 
tainted. Using the tools that BitBlaze provides, a researcher can make a more informed 
decision about the crash. The drawback is that while !exploitable runs almost instantly, 
collecting an execution trace with BitBlaze can take much longer. However, once an 
execution trace has been captured, a variety of analyses can be performed in a
repeatable way, without worrying about non-deterministic behavior such as different 
memory addresses being used or different thread interleaving altering the execution. 
For example, a researcher could use BitBlaze to also take an execution trace of a good 
run and compare the good execution with the one that caused the crash, using the trace 
alignment tool that BitBlaze provides, to identify points when execution differs. Such 
points are of interest as they may contribute to the cause of the crash.

The rest of this paper is outlined as follows. First, the BitBlaze platform will be 
introduced at length. Next, some general results of its use with regards to the Adobe 
Reader crashes from CanSecWest 2010 will be discussed. After that, detailed examples 
of using BitBlaze for particular crashes from Adobe Reader and Open Office will be 
given. These examples will show exactly how to use BitBlaze to perform meaningful 
analysis on actual crashes. Finally, some conclusions will be presented.
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BitBlaze
The BitBlaze Binary Analysis Platform is a flexible infrastructure for analyzing off-the-
shelf binaries12.  Binary analysis is critical for both defensive and offensive security 
applications: we must often analyze either malicious software or commercial vulnerable 
software that lack source code. However, the complexity of binary analysis has limited 
the development of tools in this area. The BitBlaze platform provides a toolbox of 
components that can be used on their own or as building blocks in new analysis 
systems. In this section we explain the design of BitBlaze and its key components, and 
give examples of the variety of security applications it enables. We start with an 
overview of the BitBlaze architecture (Section 2.2), then discuss the components for 
static analysis (Section 2.3), dynamic analysis (Section 2.4), and symbolic exploration 
(Section 2.5). We then describe the tools for trace-based vulnerability analysis that are 
the used in this paper (Section 2.6), and some other applications of the BitBlaze 
framework (Section 2.7).  The remainder of this paper, beginning with section 3, will 
show how BitBlaze can be applied to the problem of crash analysis. 

Design and Architecture
In this section, we first describe the challenges of binary analysis for security 
applications, then the desired properties of a binary analysis platform catering to 
security applications, and finally outline the architecture of the BitBlaze Binary Analysis 
Platform.

Challenges
There are several main challenges for binary code analysis, some of which are specific 
to security applications.

Complexity.  The first major challenge for binary analysis is that binary code is 
complex. Binary analysis needs to model this complexity accurately in order for the 
analysis itself to be accurate. However, the sheer number and complexity of instructions 
in modern architectures makes accurate modeling a significant challenge. Popular 
modern architectures typically have hundreds of different instructions, with new ones 
added at each processor revision. Further, each instruction can have complex 
semantics, such as single instruction loops, instructions which behave differently based 
upon their operand values, and implicit side effects such as setting processor flags. For 
example, the IA-32 manuals describing the semantics of x86 weigh over 11 pounds.

As an example, consider the problem of determining the control flow in the following x86 
assembly program: 
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// instruction dst, src
add  a, b     // a = a+b
shl  a, x     // a << x
jz   target   // jump if zero to address target

The first instruction, add a,b, computes a := a+b. The second instruction, shl a,x, 
computes a := a << x. The last instruction, jz a, jumps to address a if the processor zero 
flag is set.

One problem is that both the add and shl instruction have implicit side effects. Both 
instructions calculate up to six other bits of information that are stored as processor 
status flags. In particular, they calculate whether the result is zero, the parity of the 
result, whether there is an unsigned or BCD carry, whether the result is signed, and 
whether an overflow has occurred.

Conditional control flow, such as the jz instruction, is determined by the implicitly 
calculated processor flags. Thus, either the add instruction calculates the zero flag, or 
the shl will. However, which instruction, add or shl, determines whether the branch is 
taken? Answering this question is not straight-forward. The shl instruction behaves 
differently depending upon the operands: it only updates the zero flag if x is not zero.

Lack of Higher-Level Semantics.  The second major challenge is that binary code is 
different than source code, and in particular, lacks higher-level semantics present in 
source code.

• No Functions. The function abstraction does not exist at the binary level. Instead, 
control flow in a binary program is performed by jumps. For example, the x86 
instruction call x is just shorthand for storing the current instruction pointer (eip) at the 
address named by the register esp, decrementing esp by the word size, then loading 
the eip with number x. Indeed, it is perfectly valid in assembly, and sometimes 
happens in practice, that code may call into the middle of a “function”, or have a single 
“function” separated into non-contiguous pieces. 

• Memory vs. Buffers. Binary code does not have buffers, it has memory. While the OS 
may determine a particular memory page is not valid, memory does not have the 
semantics of a user-specified type and size. One implication of the difference between 
buffers and memory is that in binary code there is no inherent concept of a buffer 
overflow. While we may say a particular store violates a higher-level semantics given 
by the source code, such inferences require assumptions beyond the binary code 
itself.

 
• No Types. The only types available in machine language are those provided by the 

hardware: registers and memory. Even register types are not necessarily informative, 
since it is common to store values from one register type (e.g., 32-bit register) and 
read them as another (e.g., 8-bit register). 
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For these reasons, the prospect of performing analysis directly on machine instructions 
is daunting. Handling all of the possible instructions in a complex modern architecture is 
tedious and error-prone, and verifying that such an analysis is correct would be even 
more difficult. Further, an assembly-level approach is specific to a single architecture. All 
analysis would have to be ported each time we want to consider a new architecture. 
Thus, analysis could not take advantage of the common semantics across many 
different assembly languages.

Whole-System View.  Many security applications require the ability to analyze 
operations in the operating system kernel and interactions between multiple processes. 
This requires a whole-system view, presenting greater challenges than in traditional 
single-program analysis.

Code Obfuscation.  Some security applications require analyzing malicious code. 
Malicious code may employ anti-analysis techniques such as code packing, encryption, 
and obfuscation to make program analysis difficult, posing greater challenges than 
analyzing benign programs.

Design Rationale
The goal of the BitBlaze Binary Analysis Platform is to design and develop techniques 
and the core utilities that cater the common needs of security applications and enable 
others to build upon and develop new solutions to security problems more easily and 
effectively. Given the aforementioned challenges, we have a few design guidelines 
motivating the architecture of the BitBlaze Binary Analysis Platform:

Accuracy.  We would like to enable accurate analysis, motivating us to build precise, 
formal models of instructions that allow the tool to accurately model the program 
execution behavior symbolically.

Extensibility.  Given the complexity of binary analysis, we would like to develop core 
utilities which can then be re-used and easily extended to enable other more 
sophisticated analysis on binaries, or easily re-targeted to different architectures. 

Fusion of Static and Dynamic Analysis.  Static and dynamic analysis both have 
advantages and disadvantages. Static analysis can give more complete results as it 
covers different execution paths, however, it may be difficult due to the complexity of 
pointer aliasing, the prevalence of indirect jumps, and the lack of types and other 
higher-level abstractions in binaries. Even telling what is code and what is data statically 
is an undecidable problem in general. Moreover, it is particularly challenging for static 
analysis to deal with dynamically generated code and other anti-static-analysis 
techniques employed in malicious code. Furthermore, certain instructions such as 
kernel and floating point instructions may be extremely challenging to accurately model. 
On the other hand, dynamic analysis naturally avoids many of the difficulties that static 
analysis faces, at the cost of analyzing one path at a time. Thus, we would like to 
combine static and dynamic analysis whenever possible to have the benefits of both.
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Figure 1: The BitBlaze Binary Analysis Platform Overview

Architecture
Motivated by the aforementioned challenges and design rationale, the BitBlaze Binary 
Analysis Platform is based on three core infrastructure components: Vine, the static 
analysis component, TEMU, the dynamic analysis component, and Rudder, BitFuzz, 
and FuzzBALL, tools for symbolic exploration that combine dynamic and static analysis, 
as shown in Figure 1.

Vine translates assembly instructions from a binary or trace into a simple, formally 
specified intermediate language (IL) and provides a set of core utilities for common 
analysis on the IL, such as control flow, data flow, optimization, symbolic execution, and 
weakest precondition calculation.

TEMU performs whole-system dynamic analysis, enabling whole-system fine-grained 
monitoring and dynamic binary instrumentation. It provides a set of core utilities for 
extracting OS-level semantics, user-defined dynamic taint analysis, and a clean plug-in 
interface for user-defined activities.

Rudder, BitFuzz, and FuzzBALL uses the core functionalities provided by Vine and 
TEMU to enable dynamic symbolic execution at the binary level. For a given program 
execution path, they identify the symbolic path predicates that symbolic inputs need to 
satisfy to follow the program path. By querying a decision procedure, they can 
determine whether the path is feasible and what inputs could lead the program 
execution to follow the given path. Thus, they can automatically generate inputs leading 
program execution down different paths, exploring different parts of the program 
execution space. The tools provide a set of core utilities and interfaces enabling users 
to control the exploration state and provide new path selection policies. 

Vine: the Static Analysis Component
In this section, we give an overview of Vine, the static analysis component of the 
BitBlaze Binary Analysis Platform, describing its intermediate language (IL), its front end 
and back end components, and implementation. 
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Vine Overview

Figure 2: Vine Overview

Figure 2 shows a high-level picture of Vine. The Vine static analysis component is 
divided into a platform-specific front-end and a platform-independent back-end. At the 
core of Vine is a platform-independent intermediate language (IL) for assembly. The IL 
is designed as a small and formally specified language that faithfully represents the 
assembly languages. Assembly instructions in the underlying architecture are translated 
to the Vine IL via the Vine front-end. All back-end analyses are performed on the 
platform-independent IL. Thus, program analyses can be written in an architecture-
independent fashion and do not need to directly deal with the complexity of an 
instruction set such as x86. This design also provides extensibility—users can easily 
write their own analysis on the IL by building on top of the core utilities provided in Vine.
The Vine front-end currently supports translating x86 [Int08] and ARMv4 [ARM05] to the 
IL. It uses a set of third-party libraries to parse different binary formats and perform 
disassembly. The parsed instruction semantics are then translated into the Vine IL in a 
syntax-directed manner.

The Vine back-end supports a variety of core program analysis utilities. The back-end 
has utilities for creating a variety of different graphs, such as control flow and program 
dependence graphs. The back-end also provides an optimization framework. The 
optimization framework is usually used to simplify a specific set of instructions. We also 
provide program verification capabilities such as symbolic execution, calculating 
weakest preconditions, and interfacing with decision procedures.

To combine static and dynamic analysis, we also provide an interface for Vine to read 
an execution trace generated by a dynamic analysis component such as TEMU. The 
execution trace can be lifted to the IL for various further analysis. 

The Vine Intermediate Language
progr
am

::
= decl* stmt*decl* stmt*

decl ::
= var var;var var;
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stmt ::
=
lval = exp; | jmp(exp); | cjmp(exp, exp, 
exp); | halt(exp); | assert(exp);
lval = exp; | jmp(exp); | cjmp(exp, exp, 
exp); | halt(exp); | assert(exp);

  | label label: | special string; | { decl* 
stmt*}
| label label: | special string; | { decl* 
stmt*}

label ::
= identifieridentifier

lval ::
= var | var[exp]var | var[exp]

exp ::
=
( exp ) | lval | name(label) | exp ◇b exp | 
◇u exp | const
( exp ) | lval | name(label) | exp ◇b exp | 
◇u exp | const

  
| let lval = exp in exp | cast(exp)
cast_kind:τreg

| let lval = exp in exp | cast(exp)
cast_kind:τreg

cast_
kind

::
=
Unsigned | U | Signed | S | High | H | 
Low | L
Unsigned | U | Signed | S | High | H | 
Low | L

var ::
= identifier:τidentifier:τ

◇b ::
=
+ | - | * | / | /$ | % | %$ | << | >> | @>> | & |  
^ | |
+ | - | * | / | /$ | % | %$ | << | >> | @>> | & |  
^ | |

  | == | <> | < | <= | > | >= | <$ | <=$ | >$ | 
>=$
| == | <> | < | <= | > | >= | <$ | <=$ | >$ | 
>=$

◇u ::
= - | !- | !

const ::
=
integer:τreginteger:τreg

τ ::
= τreg | τmemτreg | τmem

τreg
::
=
reg1_t | reg8_t | reg16_t | reg32_t | 
reg64_t
reg1_t | reg8_t | reg16_t | reg32_t | 
reg64_t

τmem
::
= mem32l_t | mem64l_t | τreg[const]mem32l_t | mem64l_t | τreg[const]

Table 1: The grammar of the Vine Intermediate Language (IL).

The Vine IL is the target language during translation, as well as the analysis language 
for back-end program analysis. The semantics of the IL are designed to be faithful to 
assembly languages. Table 1 shows the syntax of Vine IL. The lexical syntax of 
identifiers, strings and comments are as in C. Integers may be specified in decimal, or in 
hexadecimal with a prefix of 0x.

The base types in the Vine IL are 1, 8, 16, 32, and 64-bit-wide bit vectors, also called 
registers. 1-bit registers are used as booleans; false and true are allowed as syntactic 
sugar for 0:reg1_t and 1:reg1_t respectively. There are also two kinds of aggregate 
types, which we call arrays and memories. Both are usually used to represent the 
memory of a machine, but at different abstraction levels. An array consists of distinct 
elements of a fixed register type, accessed at consecutive indices ranging from 0 up to 
one less than their declared size. By contrast, memory indices are always byte offsets, 
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but memories may be read or written with any type between 8 and 64 bits. Accesses 
larger than a byte use a sequence of consecutive bytes, so accesses at nearby 
addresses might partially overlap, and it is observable whether the memory is little-
endian (storing the least significant byte at the lowest address) or big-endian (storing 
the most significant byte at the lowest address). Generally, memories more concisely 
represent the semantics of instructions, but arrays are easier to analyze, so Vine 
analyses will convert memories into arrays, a process called normalization that we 
discuss in more detail below.

Expressions in Vine are side-effect free. Variables and constants must be labeled with 
their type (separated with a colon) whenever they appear. The binary and unary 
operators are similar to those of C, with the following differences: 

• Not-equal-to is <>, rather than !=. 
• The division, modulus, right shift, and ordered comparison operators are explicitly 

marked for signedness: the unadorned versions are always unsigned, while the signed 
variants are suffixed with a $ (for “signed”), or in the case of right shift prefixed with an 
@ (for “arithmetic”). 

• There is no distinction between logical and bitwise operators, so & also serves for &&, 
| also serves for ||, and ! also serves for ~. 

There is no implicit conversion between types of different widths; instead, all 
conversions are through an explicit cast operator that specifies the target type. 
Widening casts are either Unsigned (zero-extending) or Signed (sign-extending), while 
narrowing casts can select either the High or Low portion of the larger value. (For 
brevity, these are usually abbreviated by their first letters.) A let expression, as in 
functional languages, allows the introduction of a temporary variable.

A program in Vine is a sequence of variable declarations, followed by a sequence of 
statements; block structure is supported with curly braces. (In fact, the parser allows 
declarations to be intermixed with statements, but the effect is as if the declarations had 
all appeared first.) We sometimes refer to statements as “instructions,” but note that 
more complex machine instructions translate into several Vine statements. The most 
frequent kind of statement is an assignment to a variable or to a location in an array or 
memory variable. Control flow is unstructured, as in assembly language: program 
locations are specified with labels, and there are unconditional (jmp) and conditional 
(cjmp) jumps. The argument to jmp and the second and third arguments to cjmp may be 
either labels (introduced by name), or a register expression to represent a computed 
jump. The first argument to cjmp is a reg1_t that selects the second (for 1) or third (for 
0) argument as the target.

A program can halt normally at any time by issuing the halt statement. We also provide 
assert, which acts similar to a C assert: the asserted expression must be true, else the 
machine halts. A special in Vine corresponds to a call to an externally defined procedure 
or function. The argument of a special indexes what kind of special, e.g., what system 
call. The semantics of special is up to the analysis; its operational semantics are not 
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defined. We include special as an instruction type to explicitly distinguish when such 
calls may occur that alter the soundness of an analysis. A typical approach to dealing 
with special is to replace special with an analysis-specific summary written in the Vine 
IL that is appropriate for the analysis.

(a) (b) (c)
// x86 instr dst,src
1. mov [eax], 
0xaabbccdd
2. mov ebx, eax
3. add ebx, 0x3
4. mov eax, 0x1122
5. mov [ebx], ax
6. sub ebx, 1
7. mov ax, [ebx]

Figure 3: An example of little-endian stores as found in x86 that partially overlap. (b) 
shows memory after executing line 1, and (c) shows memory after executing line 5. Line 
7 will load the value 0x22bb.

1. mem4 = let mem1 = store(mem0,eax, 0xdd, reg8_t) in 
           let mem2 = store(mem1, eax+1, 0xcc, reg8_t) in 
           let mem3 = store(mem2, eax+2, 0xbb, reg8_t) in 
               store(mem3, eax+3, 0xcc, reg8_t);
...
5. mem6 = let mem5 = store(mem4, ebx, 0x22, reg8_t) in 
             store(mem5, ebx+1, 0x22, reg8_t) 
...
7. value = let b1 = load(mem6, ebx, reg8_t) in
            let b2 = load(mem6, ebx+1, reg8_t) in 
            let b1' = cast(unsigned, b1, reg16_t) in 
            let b2' = cast(unsigned, b2, reg16_t) in 
               (b2' << 8) | b1';

Figure 4: Vine normalized version of the store and load from Figure 3(a).

Normalized Memory
The endianness of a machine is usually specified by the byte-ordering of the hardware. 
A little endian architecture puts the low-order byte first, and a big-endian architecture 
puts the high-order byte first. x86 is an example of a little endian architecture, and 
PowerPC is an example of a big endian architecture.

We must take endianness into account when analyzing memory accesses. Consider the 
assembly in Figure 3(a). The mov operation on line 2 writes 4 bytes to memory in little 
endian order (since x86 is little endian). After executing line 2, the address given by eax 
contains byte 0xdd, eax+1 contains byte 0xcc, and so on, as shown in Figure 3(b). 
Lines 2 and 3 set ebx = eax+2. Line 4 and 5 write the 16-bit value 0x1122 to ebx. An 
analysis of these few lines of code needs to consider that the write on line 4 overwrites 
the last byte written on line 1, as shown in Figure 3(c). Considering such cases requires 
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additional logic in each analysis. For example, the value loaded on line 7 will contain 
one byte from each of the two stores.

We say a memory is normalized for a b-byte addressable memory if all loads and stores 
are exactly b-bytes and b-byte aligned. For example, in x86 memory is byte 
addressable, so a normalized memory for x86 has all loads and stores at the byte level. 
The normalized form for the write on Line 1 of Figure 3(a) in Vine is shown in Figure 4. 
Note the subsequent load on line 7 are with respect to the current memory mem6.
Normalized memory makes writing program analyses involving memory easier. 
Analyses are easier because normalized memory syntactically exposes memory 
updates that are otherwise implicitly defined by the endianness. The Vine back-end 
provides utilities for normalizing all memory operations. 

The Vine Front-End
The Vine front-end is responsible for translating binary code to the Vine IL. In addition, 
the front-end interfaces with libraries such as the GNU Binary File Descriptor (libbfd) 
library for parsing the low-level details of binary files.

Translating binary code to the IL consists of three steps: 

• Step 1. First the binary file is disassembled. Vine currently interfaces with two 
disassemblers: IDA Pro [Dat], a commercial disassembler, and our own linear-sweep 
disassembler built on top of GNU libopcodes. Interfacing with other disassemblers is 
straightforward.

• Step 2. The disassembly is passed to VEX, a third-party library which turns assembly 
instructions into the VEX intermediate language. The VEX IL is part of the Valgrind 
dynamic instrumentation tool [NS07]. The VEX IL is also similar to a RISC-based 
language. As a result, the lifted IL has only a few instruction types, similar to Vine. 
However, the VEX IL itself is inconvenient for performing program analysis because its 
information about side effects of instructions such as what EFLAGS are set by x86 
instructions is implicit. This step is mainly performed in order to simplify the 
development of Vine: we let the existing tool take care of the task of reducing 
assembly instructions to a basic IL, then in step 3 expose all side-effects so that the 
analysis is faithful.

• Step 3. We translate the VEX IL to Vine. The resulting Vine IL is intended to be faithful 
to the semantics of the disassembled assembly instructions. 

Translated assembly instructions have all side-effects explicitly exposed as Vine 
statements. As a result, a single typical assembly instruction will be translated as a 
sequence of Vine statements. For example, the add eax,0x2 x86 instruction is 
translated as the following Vine IL:

tmp1 = EAX;
EAX = EAX + 2;
//eflags calculation
CF = (EAX<tmp1);
tmp2 = cast(low, EAX, reg8_t);
PF = (!cast(low,
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              ((((tmp2>>7)^(tmp2>>6))^((tmp2>>5)^(tmp2>>4)))^
              (((tmp2>>3)^(tmp2>>2))^((tmp2>>1)^tmp2)))), reg1_t);
AF = (16==(16&(EAX^(tmp1^2))));
ZF = (EAX==0);
SF = (1&(EAX>>31));
OF = (1&(((tmp1^(2^0xFFFFFFFF))&(tmp1^EAX))>>31));

The translation exposes all the side-effects of the add instruction, including all 6 eflags 
that are updated by the operation. As another example, an instruction with the rep prefix 
is translated as a sequence of statements that form a loop.

In addition to binary files, Vine can also translate an instruction trace to the IL. 
Conditional branches in a trace are lifted as assert statements to check that the 
executed branch is followed. This is done to prevent branching outside the trace to an 
unknown instruction. Vine and TEMU are co-designed so that TEMU generates traces 
in a trace format that Vine can read. 

The Vine Back-End
In the Vine back-end, new program analyses are written over the Vine IL. Vine provides 
a library of common analyses and utilities which serve as building blocks for more 
advanced analyses. Below we provide an overview of some of the utilities and analyses 
provided in the Vine back-end.

Evaluator.  Vine has an evaluator which implements the operational semantics of the 
Vine IL. The evaluator allows us to execute programs without recompiling the IL back 
down to assembly. For example, we can test a raised Vine IL for an instruction trace 
produced by an input by evaluating the IL on that input and verifying we end in the same 
state.

Graphs.  Vine provides routines for building and manipulating control flow graphs 
(CFG), including a pretty-printer for the graphviz DOT graph language [gra]. Vine also 
provides utilities for building data dependence and program dependence 
graphs [Muc97].

One issue when constructing a CFG of an assembly program is determining the 
successors of jumps to computed values, called indirect jumps. Resolving indirect 
jumps usually requires program analyses that require a CFG, e.g., Value Set Analysis 
(VSA) [Bal07]. Thus, there is a potential circular dependency. Note that an indirect jump 
may potentially go anywhere, including the heap or code that has not been previously 
disassembled.

Our solution is to designate a special node as a successor of unresolved indirect jump 
targets in the CFG. We provide this so an analysis that depends on a correct CFG can 
recognize that we do not know the subsequent state. For example, a data-flow analysis 
could widen all facts to the lattice bottom. Most normal analyses will first run an indirect 
jump resolution analysis in order to build a more precise CFG that resolves indirect 
jumps to a list of possible jump targets. Vine provides one such analysis based on 
VSA [Bal07].

14



Single Static Assignment.  Vine supports conversion to and from single static 
assignment (SSA) form [Muc97]. SSA form makes writing analysis easier because 
every variable is defined statically only once. We convert both memory and scalars to 
SSA form. We convert memories because then one can syntactically distinguish 
between memories before and after a write operation instead of requiring the analysis 
itself to maintain similar bookkeeping. For example, in the memory normalization 
example in Figure 3.2.1, an analysis can syntactically distinguish between the memory 
state before the write on line 1, the write on line 5, and the read on line 7.

Chopping.  Given a source and sink node, a program chop [JR94] is a graph showing 
the statements that cause definitions of the source to affect uses of the sink. For 
example, chopping can be used to restrict subsequent analysis to only a portion of code 
relevant to a given source and sink instead of the whole program.

Data-flow and Optimizations.  Vine provides a generic data-flow engine that works on 
user-defined lattices. Vine also implements several data-flow analysis. Vine currently 
implements Simpsonʼs global value numbering [Sim96], constant propagation and 
folding [Muc97], dead-code elimination [Muc97], live-variable analysis [Muc97], integer 
range analysis, and Value set analysis (VSA) [Bal07]. VSA is a data-flow analysis that 
over-approximates the values for each variable at each program point. Value-set 
analysis can be used to help resolve indirect jumps. It can also be used as an alias 
analysis. Two memory accesses are potentially aliased if the intersection of their 
address value sets is non-empty.

Optimizations are useful for simplifying or speeding up subsequent analysis. For 
example, we have found that the time for the decision procedure STP to return a 
satisfying answer for a query can be cut in half by using program optimization to simplify 
the query first [BHL+08].

Program Verification Analyses.  Vine currently supports formal program verification in 
two ways. First, Vine can convert the IL into Dijkstraʼs Guarded Command Language 
(GCL), and calculate the weakest precondition with respect to GCL programs [Dij76]. 
The weakest precondition for a program with respect to a predicate q is the most 
general condition such that any input satisfying the condition is guaranteed to terminate 
(normally) in a state satisfying q. Currently we only support acyclic programs, i.e., we do 
not support GCL while.

Vine also interfaces with decision procedures. Vine can write out expressions (including 
formulas such as weakest preconditions) in CVC Lite [cvc] or SMT-LIB syntax, which 
are supported by many decision procedures. In addition, Vine interfaces directly with the 
STP [GD07] decision procedure through calls from Vine to the STP library.

Implementation of Vine
The Vine infrastructure is implemented in C++ and OCaml. The front-end lifting is 
implemented primarily in C++, and consists of about 17,200 lines of code. The back-end 
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is implemented in OCaml, and consists of about 40,000 lines of code. We interface the 
C++ front-end with the OCaml back-end using OCaml via IDL-generated stubs.
The front-end interfaces with Valgrindʼs VEX [Net04] to help lift instructions, GNU BFD 
for parsing executable objects, and GNU libopcodes for pretty-printing the disassembly. 
The implemented Vine IL has several constructors in addition to the instructions in 
Figure 1: 

• The Vine IL has a constructor for comments. We use the comment constructor to 
pretty-print each disassembled instruction before the IL, as well as a place-holder for 
user-defined comments. 

• The Vine IL supports variable scoping via blocks. Vine provides routines to de-scope 
Vine programs via α-varying as needed. 

• The Vine IL has constructs for qualifying statements and types with user-defined 
attributes. This is added to help facilitate certain kinds of analysis such as taint-based 
analysis. 

TEMU: the Dynamic Analysis Component
In this section, we give an overview of TEMU, the dynamic analysis component of 
BitBlaze Binary Analysis Platform, describing its components for extracting OS-level 
semantics, performing whole-system dynamic taint analysis, its plugins and 
implementation.

TEMU Overview
TEMU is a whole-system dynamic binary analysis platform that we developed as an 
extension of a whole-system emulator, QEMU [QEM]. We run an entire system, 
including the operating system and applications in this emulator, and observe in a fine-
grained manner how the binary code of interest is executed. The whole-system 
approach in TEMU is motivated by several considerations: 

• Many analyses require fine-grained instrumentation (i.e., at instruction level) on binary 
code. By dynamically translating the emulated code, the whole-system emulator 
enables fine-grained instrumentation.

• A whole-system emulator presents us a whole-system view. The whole-system view 
enables us to analyze the operating system kernel and interactions between multiple 
processes. In contrast, many other binary analysis tools (e.g., Valgrind, DynamoRIO, 
Pin) only provide a local view (i.e., a view of a single user-mode process). This is 
particularly important for analyzing malicious code, because many attacks involve 
multiple processes and kernel attacks such as rootkits have become increasingly 
popular.

• A whole-system emulator provides an excellent isolation between the analysis 
components and the code under analysis, to prevent the code under analysis from 
interfering with analysis results. This is particularly important if the analyzed code 
might be malicious. 

The design of TEMU is motivated by several challenges and considerations: 

16



• The whole-system emulator only provides us only the hardware-level view of the 
emulated system, whereas we need a software-level view to get meaningful analysis 
results. Therefore, we need a mechanism that can extract the OS-level semantics 
from the emulated system. For example, we need to know what process is currently 
running and what module an instruction comes from.

• In addition, many analyses require reasoning about how specific data depends on its 
data sources and how it propagates throughout the system. We enable this using 
whole-system dynamic taint analysis.

• We need to provide a well-designed programming interface (i.e., API) for users to 
implement their own plugins on TEMU to perform their customized analysis. Such an 
interface can hide unnecessary details from users and allow reuse of common 
functionality.

Figure 5: TEMU Overview

With these considerations in mind, we have designed the architecture of TEMU, as 
shown in Figure 5. We build the semantics extractor to extract OS-level semantics 
information from the emulated system. We build the taint analysis engine to perform 
dynamic taint analysis. We define and implement an interface (the TEMU API) for users 
to easily implement their own analysis modules (TEMU plugins). These modules can be 
loaded and unloaded at runtime to perform designated analyses. We implemented 
TEMU in Linux, and at the time of writing, TEMU can be used to analyze binary code in 
Windows 2000, Windows XP, and Linux systems. Below we describe these three 
components respectively.

Semantics Extractor
The semantics extractor is responsible for extracting OS-level semantics information of 
the emulated system, including process, module, thread, and symbol information.

Process and Module Information.  For the current execution instruction, we need to 
know which process, thread and module this instruction comes from. In some cases, 
instructions may be dynamically generated and executed on the heap. Maintaining a 
mapping between addresses in memory and modules requires information from the 
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guest operating system. We use two different approaches to extract process and 
module information for Windows and Linux.

For Windows, we have developed a kernel module called module notifier. We load this 
module into the guest operating system to collect the updated memory map information. 
The module notifier registers two callback routines. The first callback routine is invoked 
whenever a process is created or deleted. The second callback routine is called 
whenever a new module is loaded and gathers the address range in the virtual memory 
that the new module occupies. In addition, the module notifier obtains the value of the 
CR3 register for each process. As the CR3 register contains the physical address of the 
page table of the current process, it is different (and unique) for each process. All the 
information described above is passed on to TEMU through a designated I/O port.
For Linux, we can directly read process and module information from outside, because 
we know the relevant kernel data structures, and the addresses of relevant symbols are 
also exported in the System.map file. In order to maintain the process and module 
information during execution, we hook several kernel functions, such as do_fork and 
do_exec.

Thread Information.  For Windows, we also obtain the current thread information to 
support analysis of multi-threaded applications and the OS kernel. It is fairly 
straightforward, because the data structure of the current thread is mapped into a well-
known virtual address in Windows.

Symbol Information.  For PE (Windows) binaries, we also parse their PE headers and 
extract the exported symbol names and offsets. After we determine the locations of all 
modules, we can determine the absolute address of each symbol by adding the base 
address of the module and its offset. This feature is very useful, because all windows 
APIs and kernel APIs are exported by their hosting modules. The symbol information 
conveys important semantics information, because from a function name, we are able to 
determine what purpose this function is used for, what input arguments it takes, and 
what output arguments and return value it generates. Moreover, the symbol information 
makes it more convenient to hook a function—instead of giving the actual address of a 
function, we can specify its module name and function name. Then TEMU will 
automatically map the actual address of the function for the user.

Taint Analysis Engine
Our dynamic taint analysis is similar in spirit to a number of previous systems [CPG+04, 
NS05, CC04, SLZD04, CCC+05]. However, since our goal is to support a broad 
spectrum of different applications, our design and implementation is the most complete. 
For example, previous approaches either operate on a single process only [CCC+05, 
NS05, SLZD04], or they cannot deal with memory swapping and disks [CPG+04, 
CC04].

Shadow Memory.  We use a shadow memory to store the taint status of each byte of 
the physical memory, CPU registers, the hard disk and the network interface buffer. 
Each tainted byte is associated with a small data structure storing the original source of 
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the taint and some other book keeping information that a TEMU plugin wants to 
maintain. The shadow memory is organized in a page-table-like structure to ensure 
efficient memory usage. By using shadow memory for the hard disks, the system can 
continue to track the tainted data that has been swapped out, and also track the tainted 
data that has been saved to a file and is then read back in.

Taint Sources.  A TEMU plugin is responsible for introducing taint sources into the 
system. TEMU supports taint input from hardware, such as the keyboard, network 
interface, and hard disk. TEMU also supports tainting a high-level abstract data object 
(e.g. the output of a function call, or a data structure in a specific application or the OS 
kernel).

Taint Propagation.  After a data source is tainted, the taint analysis engine monitors 
each CPU instruction and DMA operation that manipulates this data in order to 
determine how the taint propagates. The taint analysis engine propagates taint through 
data movement instructions, DMA operations, arithmetic operations, and table lookups. 
Considering that some instructions (e.g., xor eax, eax) always produce the same 
results, independent of the values of their operands, the taint analysis engine does not 
propagate taint in these instructions.

Note that TEMU plugins may employ very different taint policies, according to their 
application requirements. For example, for some applications, we do not need to 
propagate taint through table lookups. For some applications, we want to propagate 
taint through an immediate operand, if the code region occupied by it is tainted. 
Therefore, during taint propagation, the taint analysis engine lets TEMU plugins 
determine how they want to propagate taint into the destination.

This design provides valuable flexibility to TEMU plugins. They can specify different taint 
sources, maintain an arbitrary record for each tainted byte, keep track of multiple taint 
sources, and employ various taint policies.

TEMU API & Plugins
In order for users to make use of the functionalities provided by TEMU, we define a set 
of functions and callbacks. By using this interface, users can implement their own 
plugins and load them into TEMU at runtime to perform analysis. Currently, TEMU 
provides the following functionalities: 

• Query and set the value of a memory cell or a CPU register.
• Query and set the taint information of memory or registers.
• Register a hook to a function at its entry and exit, and remove a hook. TEMU plugins 

can use this interface to monitor both user and kernel functions.
• Query OS-level semantics information, such as the current process, module, and 

thread.
• Save and load the emulated system state. This interface helps to switch between 

different machine states for more efficient analysis. For example, this interface can be 
used for multiple path exploration, because we can save a state for a specific branch 
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point and explore one path, and then load this state to explore the other path without 
restarting program execution from the beginning. 

TEMU defines callbacks for various events, including (1) the entry and exit of a basic 
block; (2) the entry and exit of an instruction; (3) when taint is propagating; (4) when a 
memory location is read or written; (5) when a register is read or written; (6) hardware 
events such as network and disk inputs and outputs.
Quite a few TEMU plugins have been implemented using these functions and callbacks. 
These plugins include: 

• Panorama [YSM+07]: a plugin that performs OS-aware whole-system taint analysis to 
detect and analyze malicious codeʼs information processing behavior. 

• HookFinder [YLS08]: a plugin that performs fine-grained impact analysis (a variant of 
taint analysis) to detect and analyze malwareʼs hooking behavior. 

• Renovo [KPY07]: a plugin that extracts unpacked code from packed executables.
• Polyglot [CYLS07a]: a plugin that make use of dynamic taint analysis to extract 

protocol message format.
• Tracecap: a plugin that records detailed logs about the program execution for offline 

analysis. The execution logs produced by Tracecap include an execution trace with 
intruction-level information, the state of a process at a some point in the execution, 
and information about the heap allocations requested by a process.

• MineSweeper [BHL+07]: a plugin that identifies and uncovers trigger-based behaviors 
in malware by performing online symbolic execution.

• BitScope: a more generic plugin that make use of symbolic execution to perform in-
depth analysis of malware.

• HookScout: a plugin that infers kernel data structures. 

Implementation of TEMU
The TEMU infrastructure is implemented in C and C++. In general, performance-critical 
code is implemented in C due to efficiency of C, whereas analysis-oriented code is 
written in C++ to leverage the abstract data types in the STL and stronger type checking 
in C++. For example, the taint analysis engine inserts code snippets into QEMU micro 
operations to check and propagate taint information. Since taint analysis is performance 
critical, we implemented it in C. On the other hand, we implemented the semantics 
extractor in C++ using string, list, map and other abstract data types in STL, to maintain 
a mapping between OS-level view and hardware view. The TEMU API is defined in C. 
This gives flexibility to users to implement their plugin in either C, C++, or both. The 
TEMU core consists of about 37,000 lines of code, excluding the code originally from 
QEMU (about 306,000 lines of code). The TEMU plugins we have built so far consist of 
about 134,000 lines of code, though a simple plugin can be implemented in only about 
600 lines. 

BitFuzz and FuzzBALL: Symbolic Exploration Components
Symbolic execution generalizes a single execution of a program by representing inputs 
as variables and performing operations on values dependent on them symbolically. This 
technique enables automated tools to reason about properties of all the program 
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executions that follow the same control flow path, and has been successfully applied to 
a wide range of applications in software engineering and security. In particular, we often 
use symbolic execution to explore different possible program executions, which we refer 
to as symbolic exploration for short.

One of the most important security applications of symbolic exploration is in fuzz testing, 
finding inputs that cause unusual behavior, potentially including security bugs. Many 
techniques are available for fuzz testing: the term was originally for supplying pure 
random bits as program input, and it is also common in practice to generate random 
legal inputs from a grammar, and/or make small random changes (mutations) to a legal 
input. These methods can be effective via a combination of brute force (automatically 
trying large numbers of inputs to look for an easily-detectable failure like a crash) and 
manual guidance (choosing a grammar or a suitable starting input); crashes found using 
these techniques are the main subject of this paper.

Symbolic execution can be used to make automatic fuzz testing smarter by making a 
more informed choice of inputs. Specifically, symbolic execution uses a program itself to 
determine which variations of an input would be interesting to explore: the basic intuition 
is that an input variation would be interesting to explore if it would cause the program to 
execute a new control-flow path. Symbolic execution can effectively discover inputs that 
trigger new control-flow paths by examining the branch conditions on an existing path, 
and using a decision procedure to find an input that would reverse a branch condition 
from true to false or vice-versa. The conditions on a path are large enough that it would 
usually be impractical to examine them by hand, but because they are only a small 
subset of the behavior of the entire program, they are still susceptible to efficient 
automated reasoning.

The most recent versions of the BitBlaze platform include two systems for automatic 
state-space exploration based on symbolic execution, called BitFuzz and FuzzBALL. 
(An older system, named Rudder, is described in previous papers [SBY+08].) Though 
they perform similar basic tasks, the two tools have complementary strengths and are 
suited for different classes of applications; we will describe them in turn.

BitFuzz: Trace-based Dynamic Symbolic Execution
BitFuzz builds on the two basic BitBlaze components, TEMU and Vine. TEMU is used to 
execute the program under test in its expected operating system environment (such as 
an unmodified version of Windows XP). The relevant inputs to the program are marked 
using a dynamic tainting analysis: they can come from the virtual keyboard, from a disk 
file, from a network message, or any specially designated API routine. A TEMU plugin 
observes the instructions that operate on the inputs, and saves them to a trace file that 
records the inputs and their arguments. Next, this trace file is parsed using the Vine 
toolkit and converted into an intermediate representation that captures the precise 
semantics of the original instructions using a small set of more general operations (so 
that the remaining processing can be independent of the complexities of a particular 
instruction set architecture). Finally, this representation of the trace is analyzed to 
extract the conditions leading to a particular branch as a logical formula, which can be 
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automatically solved using a decision procedure for satisfiability in a theory of arrays 
and bit vectors (precisely representing fixed-sized machine integers).

Beyond integrating these existing tools, the first new functionality that the BitFuzz 
platform provides might be called “closing the loop:” providing a further layer of 
automation to take candidate inputs produced by Vine and the decision procedure and 
present them as new inputs to the program under test. Rather than being limited to a 
simple back-and-forth alternation, BitFuzz maintains pools of candidate inputs and 
traces that have been collected but not yet processed. One input generates one trace, 
but one trace can generate many new candidate inputs, since it might be possible to 
reverse the direction of many branches. Thus any single starting input can lead to a 
large search tree of possible related program executions, and BitFuzz can explore from 
several starting points in parallel. The key technical challenge is how to prioritize the 
processing of traces and inputs to most effectively discover interesting program 
behaviors quickly. As an example of one heuristic used, BitFuzz maintains a record of 
which parts of a program have already been explored, and prefers trying to reverse 
branches that would lead to previously unexplored regions.

The other key functionality that BitFuzz provides is the ability to perform fuzzing in a 
distributed architecture by running instances of TEMU and Vine on many machines in a 
network and coordinating their operation. Again because the search space of possible 
program executions is so large, distributed operation is valuable in helping fuzzing to 
scale to larger applications. Distributing fuzzing is also a natural match because the 
structure of the fuzzing problem is easily parallelizable at the level of individual 
executions, and the analysis of individual executions is sufficiently independent that 
they can be performed with little intercommunication. However, it is important to choose 
an architecture so that the centralized coordination around the trace and input pools 
does not become a bottleneck.

BitFuzz is targeted at security-sensitive Windows applications, both malware and 
commercial-off-the-self (COTS) programs, and for scalability to large applications. A key 
advantage of its trace-based approach is that the program can run on a faithful emulator 
and interact with an unmodified operating system: no modifications to the execution 
semantics are required, ensuring that the programʼs behavior is accurate. Further, 
separating trace collection from the symbolic execution and solving process provides a 
separation of concerns, and allows the two processes to easily proceed in parallel on 
distributed machines.

FuzzBALL: Online Symbolic Execution
Like BitFuzz, FuzzBALL also performs symbolic execution, but it takes a different 
approach. Rather than basing the symbolic analysis on an execution trace, FuzzBALL 
performs symbolic execution as an integral part of the execution of the program being 
analyzed. In essence FuzzBALL implements a symbolic interpreter that operates on a 
symbolic value in place of a concrete one. Registers and memory locations can all 
contain symbolic values, and the interpreter can perform operations on symbolic values 
without knowing a concrete value for them. Thus rather than basing its exploration of 
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the programʼs execution space on a seed concrete input, FuzzBALL can choose an 
arbitrary execution path (subject to feasibility). This is particularly valuable for executing 
code without access to concrete state: for instance, FuzzBALL can explore the 
execution of a single function in isolation, treating all of its memory accesses as 
symbolic.

FuzzBALL is based on Vine, but does not use TEMU, since its symbolic interpreter 
completely replaces the concrete execution of a program. In comparison to BitFuzz, it is 
particularly suited for exploration of API and incomplete program fragments, as well as 
standalone programs such as operating system kernels. It also includes a simulation of 
the Linux system call interface for running Linux/x86 executables. 

Trace-based Vulnerability Analysis
In this section, we discuss the tools that we will use most heavily in the case studies of 
this paper, those for analyzing execution traces of vulnerable applications. We use a 
TEMU plugin, called Tracecap, to collect execution traces that include tainting 
information; then the tools of this section can be used to read and analyze those traces. 
In particular, we will cover tools for reading traces, for backward slicing of traces, for 
aligning pairs of traces, for integrating taint information with crash dumps, for tracing the 
allocations a program performs, and for measuring the quantitative influence and value 
sets for tainted values. An overview of how these components work together is shown in 
Figure 6.

Figure 6: Trace-Related Tools Overview

Trace Reading: trace_reader
The traces collected by TEMUʼs Tracecap plugin contain detailed information about 
each executed instruction in a program, starting when the relevant input is first read and 
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going up to the point of a crash. The traces are stored in a specialized binary format, but 
the tool trace_reader will parse the trace and print the instruction in a text format. 
Figure 7 shows an example instruction that demonstrates almost all of the possible 
fields.

(00993850)7814507a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x0267ae7c
[0xed012800][4](CR) T1 {12 ()()(1111, 5) (1111, 5) } R@ecx[0x000007f3][4](RCW)
       T0    M@0x0267f0e0[0x0cc00b2f][4](CW) T1 {15 (1111, 5) (1111, 5) (1111, 5)
(1111, 5) } ESP: NUM_OP: 5 TID: 1756 TP: TPSrc EFLAGS: 0x00000202 CC_OP: 0x00000010
DF: 0x00000001 RAW: 0xf3a5 MEMREGS:     R@edi[0x0267f0e0][4](R)    T0     R@esi
[0x0267ae7c][4](R) T0

(00993850) Index of instruction in trace
7814507a Instruction address
rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] Instruction disassembly
M@0x0267ae7c[0xed012800][4](CR) Four-byte memory operand
T1 {12 ()()(1111, 5) (1111, 5) } …high two bytes are tainted
R@ecx[0x000007f3][4](RCW) Four-byte register operand
T0 …untainted
M@0x0267f0e0[0x0cc00b2f][4](CW) Four-byte memory operand
T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 5) } …all four bytes tainted
ESP: ESP not used
NUM_OP: 5 Total number of operands
TID: 1756 Thread ID
TP: TPSrc Instruction read tainted value
EFLAGS: 0x00000202 Condition code flags
CC_OP: 0x00000010 Last flags: from 32-bit subtract
DF: 0x00000001 String direction: increment
RAW: 0xf3a5 Instruction bytes: F3 A5
R@edi[0x0267f0e0][4](R) T0 Untainted address operand EDI
R@esi[0x0267ae7c][4](R) T0 Untainted address operand ESI

Figure 7: An example of trace_readerʼs output, with a description of the fields.

Of particular note in the output are operands and taint information. We call every value 
read or written by an instruction an operand. In the output of trace_reader, the operands 
are indicated with fields that look like M@0x0267ae7c[0xed012800][4](CR). Here “M” 
indicates a memory operand, the value after the @ is the address, the first set of square 
brackets enclose the value of the memory location, [4] indicates that the value is 4 bytes 
long, and (CR) indicates that the operand is conditionally read (in this case, if ECX is 
not zero).

For each byte in memory or a register, taint information records whether that byte is 
based on a tainted input value. For vulnerability analysis, we taint those inputs that 
could be under the control of an attacker, so tainted internal values of the program are 
also potentially under the attackerʼs control. For each tainted byte, Tracecap records a 
record, represented here as a pair of integers such as (1111, 5), indicating the source of 
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the tainted data. The first integer (here 1111), called the taint origin, represents a 
general source of information such as a tainted file or network stream. The second 
integer (here 5), called the taint offset, indicates a particular byte within the taint source. 
(In general, a value might depend on a number of different taint sources, but for 
efficiency we only record one.)

Dynamic Slicing: x86_slicer
In general, a slice from a value in a program is the set of statements that might 
influence that value. In understanding a vulnerability, slicing plays a complementary role 
to tainting: while tainting follows data flow forward from an attacker-controlled input to 
see what it affects, we can use slicing the follow data flow backwards from a crash to 
understand its causes. Often, some of the most relevant parts of an execution will be in 
the intersection of the set of tainted instructions and a backward slice from a crash.

Specifically, we use a BitBlaze tool named x86_slicer that performs backwards dynamic 
slicing on an execution trace (instructions play the role of statements in a source-level 
slice). Dynamic slicing refers to the fact that this slice includes only instructions 
executions that eventually affected the target value on the particular program execution 
we observed in the trace: instructions that might influence a value on other executions 
are not included. Since we operate on the binary level, the output of the slicing tool is a 
subset of the instructions from the original trace (stored in the same trace file format).

Another choice faced in choosing a slicing algorithm is what kinds of dependencies 
between instructions to include. In order to reduce the size of the slices produced, 
x86_slicer follows only data dependencies: instructions that read a value written by 
another instruction. Another possibility, not used by x86_slicer, is to follow control 
dependencies: an execution of an instruction is control dependent on an execution of a 
branch if it executed only because the branch was taken. Including control 
dependencies generally leads to slices that are much larger, containing some additional 
relevant instructions but also many additional irrelevant ones. Because this tradeoff is 
often unfavorable, x86_slicer does not currently include control dependencies in its 
slices.

Trace Alignment: tracealign
An alignment between two sequences is a matching between elements of one 
sequence and elements of another sequence that respects the ordering of each 
sequence.  An alignment is helpful for understanding which parts of two related 
sequences are the same and which parts are different.  For instance, the Unix diff 
command computes an alignment between the lines of two files.  An alignment between 
two execution traces is similarly useful for understanding two related executions of a 
program; the BitBlaze tracealign tool computes such alignments.

Computing an alignment between two execution traces is a computationally easier task 
than aligning general text files as diff does or genetic sequences because execution 
traces already have a hierarchical structure.  Specifically, tracealign uses the technique 
of execution indexing [XSZ08].  Execution indexing associates each point in program 

25



execution (an instruction execution, for a binary) with a value in a totally ordered set, 
such that for any possible execution, the index values of the instructions are strictly 
increasing.  An execution index has a form similar to a call stack and is lexicographically 
ordered, where locations within a single function are ordered compatibly with control-
flow dominance.

In order to compute an alignment, tracealign performs two major passes: first, it 
constructs a (subset) of a control flow graph for each executed function, covering all the 
instructions belonging to the function that appear in the execution traces. Then, it uses 
these control-flow graphs to assign an index to each instruction in either trace, and 
processes the two traces in index order to find pairs that match (similar to merging two 
sorted lists).

A useful additional concept related to an alignment is a divergence point. Given an 
alignment, a divergence point is an instruction execution that is aligned in the two 
traces, but for which the following instruction in the respective traces are not aligned. 
Because of how the alignment works, it follows that a divergence point is a branch 
whose targets in the two traces were different. Divergence points are important in 
comparing traces because they are often related to the cause of the difference between 
two traces.

Alignment can be performed independently of tainting, but there are also at least two 
ways that alignment and tainting can be used together.  First, tainting can be used as an 
additional filter to find interesting divergence points: a divergence caused by tainted 
data is more likely to be relevant that an untainted divergence.  Second, alignment can 
be used to improve the results of tainting by removing excess tainting in a process we 
call differential tainting.  Suppose that we align two runs in which the inputs are the 
same except for some tainted bytes.  Then values later in execution should also only be 
tainted if they are different between the two runs: if a value is the same in both runs, but 
tainted, it is probably does not need to be tainted.  We can use the alignment to clear 
the taint of variables that have the same values in both traces, and so make the tainting 
more precise.

Taint-enhanced Dumps: tracedump
Execution traces as viewed directly by trace_reader contain the complete information 
about the taint status of each tainted byte, because they contain an entry for every 
instruction that processed tainted data. However, because the information about each 
instruction appears only at its point of execution, they are not the most convenient form 
for checking the taint status of memory. For that purpose, Tracecap can produce taint-
enhanced dumps, which contain the contents and taint information of a processʼ 
memory, at a given point in the execution. For example, Tracecap can output a crash 
dump when a program terminates unexpectedly. We provide a separate tool tracedump 
that takes as input a crash dump and the corresponding execution trace and prints 
information about the state of a program at the crash point. The printed information 
contains a stack backtrace, the contents of the general-purpose registers, and for each 
register that holds a pointer value, the contents of the memory bytes at and near that 
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location. For each byte in the dump, tracedump shows its taint origin and offset, if it is 
tainted.

Heap Allocation Tracing: alloc_reader
Since many vulnerabilities are related to improper handling of dynamically allocated 
memory, another useful piece of information in vulnerability understanding is a trace of 
the heap allocations and deallocations performed by a program. For this purpose, 
BitBlaze includes a hook plugin that can be used with TEMU to record the dynamic 
allocations a program performs, and a tool named alloc_reader to parse and query 
allocation traces. The allocation trace is correlated with the main execution trace, so 
that for any point in the execution trace, alloc_reader can report which allocation 
contains a given address. Or, if no allocation contains an address, it can report the 
closest allocations (useful in diagnosing overflows). alloc_reader can also produce a 
single report giving all the allocations that ever contained a particular address, and it 
can detect some other common allocation errors such as double frees.

Measuring Influence and Value Sets: valset_ir
Tainting gives useful information about which values in an execution might be under the 
control of an attacker, but one limitation of tainting is that it is just a binary attribute: a 
particular byte is either tainted or it is not. Often we would like to have more detailed 
information about what influence an attacker-controlled input exerts over a value. For 
this purpose, BitBlaze also supports measuring quantitative influence and the value set 
of a variable [NMS09]. For a variable such as a register or memory location at a 
particular point in execution, the value set of that variable is the set of all the different 
values that variable could take on, if the program were supplied different tainted 
(attacker-controlled) inputs. For instance for a 32-bit variable, the two extremes are that 
the value set might be a singleton, indicating that the attacker has no control over a 
variable, or it could be the full interval [0,232−1], indicating that the attacker has 
complete control.

It is also convenient to summarize the size of the value set with a single number that is 
the base-two logarithm of its number of elements, what we call the quantitative influence 
(measured in bits). For the same 32-bit variable example, the influence can range from 
0 bits to 32 bits. A variable with 0 bits of influence corresponds to one that is not tainted, 
but for a tainted value, the range of possible influence values between 1 and 32 bits 
gives a more fine-grained measure of the attackerʼs control. If the influence is high, the 
attacker has a high degree of control that often means an exploit is possible. A low 
influence does not in general guarantee that no exploit is possible, but some kinds of 
un-exploitable control lead to low influence; in other cases low influence corresponds to 
a vulnerability that requires a more complex exploit.

The BitBlaze tool for measuring value sets and influence is called Valset (the executable 
is valset_ir), and it is based on Vine. Given an IL file generated from an execution trace, 
Valset converts the trace into a formula representing the relation between the input 
variables and a target output variable selected by the user. It then uses a series of 
queries to a decision procedure to estimate the size and contents of the value set. For 
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small value sets, Valset can compute their size and contents exactly; for larger value 
sets, it can approximate their size to a user-selected degree of precision. 

Other Security Applications
In this section, we give an overview of the different security applications that we have 
enabled using the BitBlaze Binary Analysis Platform, ranging from automatic 
vulnerability detection, diagnosis, and defense, to automatic malware analysis and 
defense, to automatic model extraction and reverse engineering. For each security 
application, we give a new formulation of the problem based on the root cause in the 
relevant program. We then demonstrate that this problem formulation leads us to new 
approaches to address the security application based on the root cause. The results 
demonstrate the utility and effectiveness of the BitBlaze Binary Analysis Platform and its 
vision—it was relatively easy to build different applications on top of the BitBlaze Binary 
Analysis Platform and we could obtain effective results that previous approaches could 
not.

Vulnerability Detection, Diagnosis, and Defense

Sting: An Automatic Defense System against Zero-Day Attacks.  Worms such as 
CodeRed and SQL Slammer exploit software vulnerabilities to self-propagate. They can 
compromise millions of hosts within hours or even minutes and have caused billions of 
dollars in estimated damage. How can we design and develop effective defense 
mechanisms against such fast, large scale worm attacks?
We have designed and developed Sting [TNL+07, NBS06a], a new end-to-end 
automatic defense system that aims to be effective against even zero-day exploits and 
protect vulnerable hosts and networks against fast worm attacks. Sting uses dynamic 
taint analysis to detect exploits to previously unknown vulnerabilities [NS05] and can 
automatically generate filters for dynamic instrumentation to protect vulnerable 
hosts [NBS06b].

Automatic Generation of Vulnerability Signatures.  Input-based filters (a.k.a. 
signatures) provide important defenses against exploits before the vulnerable hosts can 
be patched. Thus, to automatically generate effective input-based filters in a timely 
fashion is an important task. We have designed and developed novel techniques to 
automatically generate input filters based on information about the vulnerability instead 
of the exploits, and thus generating filters that have zero false positives and can be 
effective against different exploit variants [BNS+06, BWJS07].

Automatic Patch-based Exploit Generation.  Security patches do not only fix security 
vulnerabilities, they also contain sensitive information about the vulnerability that could 
enable an attacker to exploit the original vulnerable program and lead to severe 
consequences. We have demonstrated that this observation is correct—we have 
developed new techniques showing that given the patched version and the original 
vulnerable program, we can automatically generate exploits in our experiments with real 
world patches (often in minutes) [BPSZ08]. This opens the research direction of how to 
design and develop a secure patch dissemination scheme where attacker cannot use 
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information in the patch to attack vulnerable hosts before they have a chance to 
download and apply the patch.

Loop-extended Symbolic Execution: Buffer Overflow Diagnosis and Discovery.  
Loop-extended symbolic execution (or LESE) is a new technique that generalizes 
previous dynamic symbolic execution techniques to have a richer treatment of the 
behavior of loops [SPMS09]. LESE is a key enabler for powerful automated discovery of 
security vulnerabilities, especially buffer-overflows, which is highly inefficient with pure 
single-path dynamic symbolic execution. It also enables deeper diagnosis of known 
vulnerabilities, which allows automated signature generation tools to reason about 
variable-length input or repeated elements in the input.

Malware Analysis and Defense

Panorama: Capturing System-wide Information Flow for Malware Detection and 
Analysis.  A myriad of malware such as keyloggers, Browser-helper Objects (BHO) 
based spyware, rootkits, and backdoors accesses and leaks usersʼ sensitive information 
and breaches usersʼ privacy. Can we have a unified approach to identify such privacy-
breaching malware despite their widely-varied appearance? We have designed and 
developed Panorama [YSM+07] as a unified approach to detect privacy-breaching 
malware using whole-system dynamic taint analysis.

Renovo: Hidden Code Extraction from Packed Executables.  Code packing is one 
technique commonly used to hinder malware code analysis through reverse 
engineering. Even though this problem has been previously researched, the existing 
solutions are either unable to handle novel packers, or vulnerable to various evasion 
techniques. We have designed and developed Renovo [KPY07], as a fully dynamic 
approach for hidden code extraction, capturing an intrinsic characteristic of hidden code 
execution.

HookFinder and HookScout: Identfying and Understanding Malware Hooking 
Behavior.  One important malware attacking vector is its hooking mechanism. Malicious 
programs implant hooks for many different purposes. Spyware may implant hooks to be 
notified of the arrival of new sensitive data. Rootkits may implant hooks to intercept and 
tamper with critical system information to conceal their presence in the system. A stealth 
backdoor may also place hooks on the network stack to establish a stealthy 
communication channel with remote attackers. We have designed and developed 
HookFinder [YLS08] and its successor system HookScout [YPHS10] to automatically 
detect and analyze malwareʼs hooking behaviors, by performing fine-grained impact 
analysis. Since this technique captures the intrinsic nature of hooking behaviors, it is 
well suited for identifying new hooking mechanisms.

BitScope: Automatically Dissecting Malware.  The ability to automatically dissect a 
malicious binary and extract information from it is an important cornerstone for system 
forensic analysis and system defense. Malicious binaries, also called malware, include 
denial of service attack tools, spamming systems, worms, and botnets. New malware 
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samples are uncovered daily through widely deployed honeypots/honeyfarms, forensic 
analysis of compromised systems, and through underground channels. As a result of 
the break-neck speed of malware development and recovery, automated analysis of 
malicious programs has become necessary in order to create effective defenses.
We have designed and developed BitScope, an architecture for systematically 
uncovering potentially hidden functionality of malicious software [BHK+07]. BitScope 
takes as input a malicious binary, and outputs information about its execution paths. 
This information can then be used by supplemental analysis designed to answer 
specific questions, such as what behavior the malware exhibits, what inputs activate 
interesting behavior, and the dependencies between its inputs and outputs.

Emulating Emulation-Resistant Malware.  The authors of malware attempt to frustrate 
reverse engineering and analysis by creating programs that crash or otherwise behave 
differently when executed on an emulated platform than when executed on real 
hardware. To defeat such techniques, we have proposed an automated technique to 
dynamically modify the execution of a whole-system emulator to fool a malware 
sampleʼs anti-emulation checks [KYH+09]. The technique uses a scalable trace 
matching algorithm to locate the point where emulated execution diverges, and then 
compares the states of the reference system and the emulator to create a dynamic state 
modification that repairs the difference.

Binary Code Reuse.  Binary code reuse is the process of automatically identifying the 
interface and extracting the instructions and data dependencies of a code fragment from 
an executable program, so that it is self-contained and can be reused by external code. 
Binary code reuse is useful for a number of security applications, including reusing the 
proprietary cryptographic or unpacking functions from a malware sample and for 
rewriting a network dialog. Using BitBlaze we have implemented a tool that uses a 
combination of dynamic and static analysis to automatically identify the prototype and 
extract the instructions of an assembly function into a form that can be reused by other 
C code [CJMS10].

Finding Malware Bugs with Decomposition and Re-Stitching.  Attackers often take 
advantage of vulnerabilities in benign software, but there has been little research on the 
converse question of whether defenders can turn the tables by finding vulnerabilities in 
malware. We have provided an affirmative answer to that question by introducing a new 
technique, stitched dynamic symbolic execution, that makes it possible to use powerful 
exploration techniques based on symbolic execution in the presence of functionalities 
that are common in malware and otherwise hard to analyze, such as decryption and 
checksums [CPM+10]. The technique is based on decomposing the constraints induced 
by a program, solving only a subset, and then re-stitching the constraint solution into a 
complete input, and is implemented as part of BitFuzz. Applying our technique to 4 
prevalent families of bots and other malware, we have found 6 bugs that could be 
exploited by a network attacker to terminate or subvert a broad range of malware client 
versions.
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Automatic Model Extraction and Analysis
Polyglot and Dispatcher: Automatic Extraction of Protocol Message Format.  
Protocol reverse-engineering techniques extract the specification of unknown or 
undocumented network protocols and file formats. Protocol reverse engineering is 
important for many network security applications. Currently, protocol reverse 
engineering is mostly manual. For example, it took the open source Samba project over 
the course of 10 years to reverse engineer SMB, the protocol Microsoft Windows uses 
for sharing files and printers [Tri03].

We have proposed a new approach for automatic protocol reverse-engineering, which 
leverages the availability of a program that implements the protocol [CYLS07b]. Our 
approach uses dynamic program binary analysis techniques and is based on the 
intuition that monitoring how the program parses and constructs protocol messages 
reveals a wealth of information about the message structure and its semantics. 
Dispatcher [CPKS09] is a successor system that builds on Polyglot by implementing 
buffer deconstruction, a novel technique to extract the format of messages being sent 
by the application implementing the protocol, when Polyglot only extracted the format of 
messages received by the application. It can also infer the semantics of fields and 
reverse-engineer encrypted protocols by identifying the memory buffers that hold the 
unencrypted data.

Automatic Deviation Detection.  Many network protocols and services have several 
different implementations. Due to coding errors and protocol specification ambiguities, 
these implementations often contain deviations, i.e., differences in how they check and 
process some of their inputs. Automatically finding deviations enables the automatic 
detection of potential implementation errors and the automatic generation of fingerprints 
that can be used to distinguish among implementations of the same network service. 
Automatic deviation detection (without requiring access to source code) is a challenging 
task— deviations usually happen in corner cases, and discovering deviations is often 
like finding needles in a haystack. We have developed deviation detection techniques 
for taking two binary implementations of the same protocol and automatically finding 
inputs which when sent to both implementations drive them to different output 
states [BCL+07]. By comparing two implementations we donʼt need access to a 
manually written model of the specification. 

Replayer: Sound Replay of Application Dialogue.  The ability to accurately replay 
application protocol dialogs is useful in many security-oriented applications, such as 
replaying an exploit for forensic analysis or demonstrating an exploit to a third party. A 
central challenge in application dialog replay is that the dialog intended for the original 
host will likely not be accepted by another without modification. For example, the dialog 
may include or rely on state specific to the original host such as its host name or a 
known cookie. In such cases, a straight-forward byte-by-byte replay to a different host 
with a different state (e.g., different host name) than the original dialog participant will 
likely fail. These state-dependent protocol fields must be updated to reflect the different 
state of the different host for replay to succeed. We have proposed the first approach for 

31



soundly replaying application dialog where replay succeeds whenever the analysis 
yields an answer [NBFS06].

String-enhanced White-Box Exploration for Web Browsers.  Content-sniffing attacks 
can occur when a web browser incorrectly infers the type of a served object, upgrading 
it to a type that can contain active content and so allowing cross-site scripting (XSS). As 
part of work discovering and fixing such vulnerabilities [BCS09], we have used BitBlaze 
to extract models of the content-sniffing functions in proprietary web browsers such as 
Internet Explorer 7 [CMBS09]. Our approach is based on string-enhanced white-box 
exploration, which improves the effectiveness of current white-box exploration 
techniques on programs that use strings, by reasoning directly about string operations, 
rather than about the individual byte-level operations that comprise them. 

Availability
Some of the core parts of the BitBlaze platform, include Vine and TEMU (though not all 
of the particular applications that have been built using the platform), is available via our 
web site http://BitBlaze.cs.berkeley.edu/ or by request. Also, a virtual-machine image 
containing a binary release of the trace analysis tools described in Section 6 is available 
at http://BitBlaze.cs.berkeley.edu/release/blackhat-2010.html.

Case study: Adobe Reader
Now that you have a feel for the range of problems that BitBlaze can help solve, we turn 
back to our original problem, crash dump analysis.  To demonstrate this, we used the 
BitBlaze tools on a variety of crashes found for Adobe Reader 9.2.0 for Windows.  
These were crashes found by mutation-based fuzzing, that is to say, we had no prior 
knowledge about the cause of the crash before analysis.  

These crash inducing files originated from a 3 week fuzzing run conducted in November 
of 2009 and presented at CanSecWest [monkeys].  For Adobe Reader, there were 2582 
crashes at 100 unique instruction pointers.  Depending on the tool used, there were 
anywhere from 30-40 unique crashes in this bunch.  BitBlaze could possibly be used to 
help determine the uniqueness of crashes, since it would have access to the full trace of 
execution.  At the time of crash, full information about the program and memory 
contents could be accessed to help determine if two crashes really represented the 
same underlying vulnerability.  We did not perform this analysis.  The major problem 
with trying to do this this is that taking a trace for a large program like Reader can take 
several hours.  It is not ideal to run such a tool on 2500 crashes, although it certainly is 
feasible for the 33 “unique” crashes categorized by !exploitable.  

For these 33 files, !exploitable categorized their exploitability in the following way:

• 4 Exploitable
• 8 Probably exploitable
• 17 Unknown
• 4 Probably not exploitable
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As you can see, !exploitable could not make a determination on around half the 
crashes.  BitBlaze can help determine the fate of many of these Unknown crashes.  
BitBlaze has two pieces of information available that !exploitable does not.  Namely, it 
has full taint information and it can slice data values to their origin.  !exploitable can only  
examine the basic block in which the crash occurs.  Therefore, !exploitable must be 
conservative in its analysis.  For example, if something looks like a Null-pointer 
dereference, but !exploitable can not determine for sure where the Null value came 
from, it is forced to conclude it is an Unknown type crash.  However, BitBlaze can 
determine whether the Null is always Null, or the result of something like a wild read, 
uninitialized value, or more importantly, some value from our input.  Therefore, on these 
types of crashes, BitBlaze can move many of these crashes from the Unknown to the 
Not Exploitable bin.  In the Adobe Reader example, it can very quickly remove 6 of the 
17 files from consideration, see Section 4.3 for an example of the analysis of these 
types of crashes.

Also, BitBlaze can supply crash reports with taint information.  Such reports provide 
opportunities for improved heuristics in determining exploitability as well as providing 
human analysts more information to base prioritization decisions.  To use these crash 
reports with taint information, you must first make sure to taint the entire file.  Then with 
the final state file, you can generate crash reports with taint.  A couple of examples are 
given below.

First is a crash of Adobe Reader that appears to be a non-exploitable Null pointer 
dereference.  !exploitable characterized it as Unknown.  

Dump at EIP=20a2fd72,  mov    (%eax),%eax
Process: AcroRd32.exe  PID: 1908  TID: 1192  CTR: 132684549

Backtrace: 
 (132684549)  unknown               0x20a2fd72  sub_20A2FD6E(?) +4
 (132684547)  unknown               0x20889825  sub_2088980F(?) +22
 (132684534)  unknown               0x2088b1d5  sub_2088B1BC(?) +25
 (132684519)  unknown               0x2088c3cf  sub_2088C3C8(?) +7
 (132684515)  unknown               0x208f4535  sub_208F4525(?) +16
 (132684506)  unknown               0x208f5a5d  sub_208F5A42(?) +27
 (132684478)  unknown               0x208f7087  sub_208F6FD4(?) +179
 (132668130)  unknown               0x208ca772  sub_208CA547(?) +555
 (96842557)  unknown               0x208774bb  sub_208773B3(?) +264
 (96833560)  AcroRd32.dll          0x009f3480  sub_9F3414(?) +108
 (96729701)  AcroRd32.dll          0x009c8e58  sub_9C8D15(?) +323
 (88528862)  AcroRd32.dll          0x009c8d0b  sub_9C8CF3(?) +24
 (88528851)  AcroRd32.dll          0x009c8c6e  sub_9C8C11(?) +93
 (88528789)  AcroRd32.dll          0x009c8bc3  sub_9C8AED(?) +214
 (88528728)  AcroRd32.dll          0x009c89ec  sub_9C8988(?) +100
 (88528656)  AcroRd32.dll          0x009c8630  sub_9C8542(?) +238
 (88521044)  unknown               0x221102d8  sub_22110272(?) +102
 (88520882)  unknown               0x22110449  sub_22110433(?) +22
 (88520876)  AcroRd32.dll          0x009c82c2  sub_9C8258(?) +106
 (88502113)  AcroRd32.dll          0x009c76b4  sub_9C754F(?) +357
 (88406838)  AcroRd32.dll          0x009c74ac  sub_9C72E0(?) +460
 (88391284)  AcroRd32.dll          0x009c72d8  sub_9C72CA(?) +14
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EAX: 00000000                                                               
     -> N/A
EBX: 00000001                                                               
     -> N/A
ECX: 0268e354                                                               
     -> 
 -12 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -08 02085ed4   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 -04 00000001   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +00 7439574f   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +04 02057238   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +08 00000003   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +12 32526963   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +16 76455349   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     

EDX: 01e3c0c0   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
     -> 
 -12 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -08 00e9008d   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -04 00e90031   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +00 001620c8   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +04 ffffffff   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +08 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +12 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +16 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     

ESI: 0269a8b0   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
     -> 
 -12 020571c8   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 -08 02057238   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 -04 0269a850   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +00 02057190   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +04 0202c4e8   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +08 00000001   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +12 0269a1dc   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +16 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     

EDI: 0012e500   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
     -> 
 -12 ffffffff   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -08 0012e53c   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -04 208f708c   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +00 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +04 f5246116   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +08 000000d1   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +12 c0000000   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +16 c0000000   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  

EBP: 0012e4bc   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
     -> 
 -12 0012e4e8   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -08 010ea9e8   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -04 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +00 0012e4f8   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +04 208f5a62   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +08 0012e4dc   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +12 0012e500   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +16 f52460d2   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     

ESP: 0012e170   (NO TAINT)     (NO TAINT)                                   
     -> 
 -12 014c7608   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -08 02054b10   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 -04 026c4f6c   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
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 +00 0012e178   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +04 0012e194   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +08 c0000005   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +12 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +16 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     

eax is Null and not tainted.  Some of the other registers are tainted or point to values 
that are addresses which contain or are near tainted values, but the actual register 
value being dereferenced is not tainted.  You still canʼt know for sure, but with some 
(more) certainty you can conclude it is not exploitable.  For comparison, !exploitable 
only says:

(c8.d28): Access violation - code c0000005 (!!! second chance !!!)
eax=00000000 ebx=00000001 ecx=02a30bcc edx=020acf78 esi=02a3d8c4 edi=0012e500
eip=20a2fd72 esp=0012e460 ebp=0012e4bc iopl=0         nv up ei pl zr na pe nc
cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000 efl=00000246
AcroForm!DllUnregisterServer+0x219bef:
20a2fd72 8b00            mov     eax,dword ptr [eax]
ds:0023:00000000=????????
0:000> !exploitable
Exploitability Classification: UNKNOWN
Recommended Bug Title: Data from Faulting Address may be used as a
return value starting at AcroForm!DllUnregisterServer+0x0000000000219bef
(Hash=0x687b6b23.0x366d6739)

The data from the faulting address may later be used as a return value
from this function.

More detail allows some more certainty about the origin of eax.  Determining the root 
cause can also be performed, see later sections.

The following is another crash of Adobe Reader that is characterized by !exploitable as 
“Unknown”.

Dump at EIP=08036f88,  mov    0x8(%edx),%ah
Process: AcroRd32.exe  PID: 316  TID: 324  CTR: 358264925

EAX: 00000000                                                               
     -> N/A
EBX: 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
     -> N/A
ECX: 00000827   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
     -> N/A
EDX: 0aaf90ef   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
     -> N/A
ESI: 0aaf90fb                                                               
     -> N/A
EDI: 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
     -> N/A
EBP: 0012d158   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
     -> 
 -12 0012d798   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -08 08181bc8   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 -04 00000002   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +00 0012d158   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +04 0005760b   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +08 02823aa4   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +12 0012d824   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
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 +16 02823bd4   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  

ESP: 0012ce04                                                               
     -> 
 -12 397875ab   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 -08 ac8b0000   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 -04 20140000   ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  ( 1111,43991)  
 +00 0012ce0c   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +04 0012ce28   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +08 c0000005   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +12 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     
 +16 00000000   (NO TAINT)     (NO TAINT)     (NO TAINT)     (NO TAINT)     

In this crash, it is a read from an invalid address.  The address itself is not tainted.  It 
could still be based on an uninitialized value or some random wild read, but it does not 
come from data from the input file.

This last type of crash is one that BitBlaze is not very good at providing help analyzing, 
namely, BitBlaze does not typically provide much help for crashes involving invalid 
reads that are not near null.  The problem is that invalid reads are not exploitable by 
themselves.  However, they may lead to invalid writes or other problems that affect code 
flow later in execution.  Or, just as likely, they may not lead to an invalid write or other 
control flow affecting behavior.  Since the BitBlaze tools we use are fundamentally 
execution tracing tools, Bitblaze can not infer what will happen after the crash since 
those instructions were not executed.  It can provide information about taint at the time 
of the crash.  For example, it can tell the user if the address of the read was attacker 
controlled, as was seen from the previous crash dump.  However, it is easy to imagine 
cases where an attacker controlled read does not represent a security problem for the 
program and cases where a read not controlled by the attacker is exploitable due to 
something that happens later.  In either case, to be sure, more analysis needs to be 
conducted.

Root cause analysis examples
The last section is the heart of this paper and illustrated some uses of BitBlaze for 
determining the cause of a crash.  Crash analysis is a laborious process that can 
normally take anywhere from a few hours to a week per crash.  BitBlaze cannot do this 
automatically but does supply a variety of tools which hopefully reduce the time needed 
to conclude what caused a particular crash.  BitBlaze provides tools for both data and 
execution analysis.  These examples assume a good file which does not crash an 
application and a bad file which causes a crash.  The bad file and the good file differ by 
only a few bytes, in most cases a single byte.  We use BitBlaze to take traces of the 
execution of the bad file (x.trace) and the good file (y.trace).  We taint the few bytes 
where they differ to observe how these bytes propagate through the program, since 
presumably they are what cause the problems.  We then make a final trace (z.trace) 
using differential tainting techniques.  Here, we again taint the few differing bytes but 
remove taint from any bytes that are the same between the good and bad file run.  This 
serves as a way to remove unnecessary over-tainting situations.  For most cases 
practical examples, we need to only look at the z (bad) and y (good) traces.  
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Each of these traces can be examined and any tainted bytes will be caused by the 
differences between the good and bad file.  Note that other bytes from the input file will 
appear untainted, even though the attacker controls them.  It is also possible to taint all 
bytes, as we did in the last section regarding when doing crash dumps.  

The two traces, for the good and the bad file, can be aligned and examined to see 
where they execute differently.  The cause of these unaligned regions can be examined 
by looking at the traces and it can be determined by looking at tainted values if it was 
caused by the differing bytes.  Furthermore, registers and memory locations can be 
sliced to see where they originated.  While debuggers generally provide facilities to 
trace bytes moving forward, i.e. hardware breakpoints, it is often a tedious process to 
back track where the data came from.  The only drawback is while some slices are 
finished in seconds, some can take up to a couple of hours to complete.

One of the other advantages of working with a trace rather than a live program is 
“repeatability”.  Sometimes rerunning the same program with the same input will result 
in different memory addresses being used, different timing, and other complications that 
can make analysis more difficult.  With odd calling conventions, even getting a back 
trace at a crash isnʼt always easy.  When working with a trace, you get a view of the 
program that is always the same and stack backtraces are trivial to produce.  Looking at 
a trace essentially give you the ability to step backwards in the program as well as 
forward, although no changes can be made to the execution.

With these tools in hand, we present their usage against several real crashes originating 
from mutation-based fuzzing against real programs.  These examples are meant to not 
only illustrate the underlying vulnerability, but to also demonstrate how to use BitBlaze 
to find out information about the underlying vulnerability.  Some of these steps could 
probably be conducted simply using a debugger or disassembler, but we use BitBlaze 
as much as possible to illustrate itʼs use.  As for the vulnerabilities, there are times more 
analysis is probably needed, but this would lead too far away from the point of the paper 
which is to illustrate why BitBlaze is useful and how to use it.

An exploitable Adobe Reader crash
The following is an analysis using BitBlaze of a crash of Adobe Reader found by 
mutation based fuzzing.  This vulnerability was found in Adobe Reader 9.2.0 and is 
currently fixed.  We begin with the assumption that we have a trace of execution of a 
good file (y.trace) and a trace with differential tainting of a bad file (z.trace).  We also 
assume we have an alignment file, y_z.aligned.txt.  

With that, letʼs take a look at the crash.  The first thing we need to do is see what 
instruction counter corresponds to the crash (the last one) and then we can view that 
instruction with trace_reader.

$ trace_reader -trace z.trace -header | grep Number
Number of instructions: 1816519
$ trace_reader -intel -trace z.trace -count -first 1816519
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(01816519)603e598: call   edx R@edx[0xe1140d83][4](R) T0 M@0x02ecf68c
[0x02699024][4](W) T0

Crashes that crash at a control changing instruction are nice.  In the good file, the same 
instruction is called, but edx has a legit value.  We can see what instruction counter in 
the good trace corresponds to the crashing instruction counter in the bad trace using 
aligned.pl.

$ aligned.pl y_z.aligned.txt T1:01816518
<T0:2616698> ~ T1:01816518     
(T0:02615515-02616698 ~ T1:01815335-01816518)
$ trace_reader -intel -trace y.trace -count -first 2616698 -last 2616698
(02616698)603e598: call   edx R@edx[0x08046e5d][4](R) T0 M@0x02e5f68c
[0x0269900c][4](W) T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 5) }

Ok, letʼs slice on the bad value in edx to see why this value is invalid.  

$ x86_slicer -in-trace z.trace -ctr 1816519 -regloc edx > /dev/null
$ trace_reader -intel -trace EDX_0.trace 
603e58f: mov    edx,DWORD PTR [esi+0x48] M@0x06003ef7[0xe1140d83][4](R)
 T0 R@edx[0x0269904c][4](W) T0

Hmm... it came from memory address 0x06003ef7 from which the tool could not 
continue slicing.  This means the data at this address was either set before we started 
tracing or is uninitialized.  A careful reader will notice that this address is actually not 
from the heap or stack, but rather from the DLL weʼre investigating.  Letʼs see where this 
value comes from, i.e. where esi originated.  In order to do that, we have to see what 
instruction counter the instruction in the slice corresponds to.  We do this by grepʼing for 
it in the execution trace.

$ trace_reader -intel -trace z.trace -count | grep 603e58f: | tail -1
(01816515)603e58f: mov    edx,DWORD PTR [esi+0x48] M@0x06003ef7[0xe1140d83][4]
(R) T0 R@edx[0x0269904c][4](W) T0

Ok, we are now ready to slice esi.

$ x86_slicer -in-trace z.trace -ctr 01816515 -regloc esi > /dev/null
$ trace_reader -intel -trace ESI_0.trace 
6003eaa: call   0x0000000006066d7e J@0x00000000[0x00062ed4][4](R) T0
 M@0x02ecf738[0x0652e260][4](W) T0
6066d88: pop    ecx M@0x02ecf738[0x06003eaf][4](R) T0 R@ecx[0x02ecf7e0]
[4](W) T0
6066d90: push   ecx R@ecx[0x06003eaf][4](R) T0 M@0x02ecf75c[0x02ecf7ec]
[4](W) T0
6064bab: mov    eax,DWORD PTR [edi+0x4] M@0x02ecf75c[0x06003eaf][4](R)
 T0 R@eax[0x02ecf7b4][4](W) T0
6064bae: mov    DWORD PTR [esi+0x4],eax R@eax[0x06003eaf][4](R) T0
 M@0x02ecf7b8[0x00000000][4](W) T0
603e583: mov    esi,DWORD PTR [esi+0x4] M@0x02ecf7b8[0x06003eaf][4](R)
 T0 R@esi[0x02ecf7b4][4](W) T0

So esi comes from a value on the stack that was pushed on to it during a call, i.e. it is a 
return address.  Therefore, esi came from an uninitialized stack variable.  In general, 
this is exploitable, and as an attacker, we would begin to figure out how to exploit it at 
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this point.  However, for the sake of demonstrating the tool, letʼs look a bit at what 
causes this situation to arise.  Why is the variable in question uninitialized?  To do this, 
let us examine the slice of esi for the good file to see where it was supposed to be 
initialized.

$ x86_slicer -in-trace y.trace -ctr 02616695 -regloc esi > /dev/null
$ trace_reader -intel -trace ESI_0.trace 
60028a5: mov    esi,DWORD PTR [edi] M@0x0652e234[0x02696428][4](R) T0 R@esi
[0x02e5f750][4](W) T0
60028ee: mov    eax,DWORD PTR [esi+0x18] M@0x02696440[0x00000001][4](R)
 T0 R@eax[0x01e64af8][4](W) T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 
5) }
60028e0: mov    al,BYTE PTR [esi+0x1c] M@0x02696444[0x00000001][1](R)
 T0 R@al[0x00000001][1](W) T0
60028e3: add    esi,0x20 I@0x00000000[0x00000020][1](R) T0 R@esi
[0x02696428][4](RW) T0
60028e6: neg    al R@al[0x00000001][1](RW) T0
60028e8: sbb    eax,eax R@eax[0x000000ff][4](R) T0 R@eax[0x000000ff]
[4](RW) T0
60028ea: and    esi,eax R@eax[0xffffffff][4](R) T0 R@esi[0x02696448]
[4](RW) T0
6002916: mov    eax,esi R@esi[0x02696448][4](R) T0 R@eax[0x00000000]
[4](W) T0
6003e7a: mov    DWORD PTR [esi+0x4],eax R@eax[0x02696448][4](R) T0
 M@0x02e5f754[0x0633f53e][4](W) T0
6064bab: mov    eax,DWORD PTR [edi+0x4] M@0x02e5f754[0x02696448][4](R)
 T0 R@eax[0x02e5f7b4][4](W) T0
6064bae: mov    DWORD PTR [esi+0x4],eax R@eax[0x02696448][4](R) T0
 M@0x02e5f7b8[0x02e5f84c][4](W) T0
603e583: mov    esi,DWORD PTR [esi+0x4] M@0x02e5f7b8[0x02696448][4](R)
 T0 R@esi[0x02e5f7b4][4](W) T0

This slice agrees with the slice for crash for the final 3 lines, but before that differs as 
you move up.  It looks like the value of esi comes from instructions in the range 
0x60028a5-0x60028ea and is finally set at 0x6003e7a.  Lets look at the alignment.

$ tail -20 y_z.aligned.txt 
ALIGNED    @ T0:#02611291-02611391 (00000101 insts) ~ T1:#01814264-01814364 (00000101 insts)
DISALIGNED @ T0:#02611392-02614234 (00002843 insts) ~ 
ALIGNED    @ T0:#02614235-02614777 (00000543 insts) ~ T1:#01814365-01814907 (00000543 insts)
DISALIGNED @ T0:#02614778-02614787 (00000010 insts) ~ T1:#01814908-01814908 (00000001 insts)
ALIGNED    @ T0:#02614788-02614844 (00000057 insts) ~ T1:#01814909-01814965 (00000057 insts)
DISALIGNED @ T0:#02614845-02615113 (00000269 insts) ~ T1:#01814966-01814975 (00000010 insts)
ALIGNED    @ T0:#02615114-02615147 (00000034 insts) ~ T1:#01814976-01815009 (00000034 insts)
DISALIGNED @ T0:#02615148-02615161 (00000014 insts) ~ T1:#01815010-01815011 (00000002 insts)
ALIGNED    @ T0:#02615162-02615169 (00000008 insts) ~ T1:#01815012-01815019 (00000008 insts)
DISALIGNED @                                        ~ T1:#01815020-01815022 (00000003 insts)
ALIGNED    @ T0:#02615170-02615183 (00000014 insts) ~ T1:#01815023-01815036 (00000014 insts)
DISALIGNED @                                        ~ T1:#01815037-01815064 (00000028 insts)
ALIGNED    @ T0:#02615184-02615186 (00000003 insts) ~ T1:#01815065-01815067 (00000003 insts)
DISALIGNED @ T0:#02615187-02615238 (00000052 insts) ~ 
ALIGNED    @ T0:#02615239-02615492 (00000254 insts) ~ T1:#01815068-01815321 (00000254 insts)
DISALIGNED @ T0:#02615493-02615506 (00000014 insts) ~ T1:#01815322-01815323 (00000002 insts)
ALIGNED    @ T0:#02615507-02615514 (00000008 insts) ~ T1:#01815324-01815331 (00000008 insts)
DISALIGNED @                                        ~ T1:#01815332-01815334 (00000003 insts)
ALIGNED    @ T0:#02615515-02616698 (00001184 insts) ~ T1:#01815335-01816518 (00001184 insts)
DISALIGNED @ T0:#02616699-03654426 (01037728 insts) ~ T1:#01816519-01816519 (00000001 insts)

It turns out the instructions that are supposed to be setting the stack variable occur in 
the region where the good file executes 269 instructions and the bad file executes only 
10.  This can be seen a couple of ways.  Either you could figure out which instruction 
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counters correspond to the instruction in the slice and look at the alignment, or you 
could just check each unaligned area and look for the instructions within it.  Weʼll do the 
latter and read the trace for that particular section where the traces are not aligned.

$ trace_reader -intel -trace y.trace -eip -first 02614845 -last 02615113 | grep 60028
0600287a
0600287c
06002881
06002886
06002888
0600288b
06002890
06002891
06002894
06002895
06002898
0600289b
060028a1
060028a5
060028a7
060028b4
060028b6
060028a9
060028ac
060028af
060028ee
060028f1
060028f7
060028f9
060028e0
060028e3
060028e6
060028e8
060028ea
060028ec

So the good file initializes the variable when the traces are unaligned, the bad file never 
does.  The reason why one initializes the variable and the other doesn't can be seen by 
looking at the comparison that takes place before the traces become unaligned.  

$ trace_reader -intel -trace z.trace -first 01814964 -last 01814964
600f57b: cmp    DWORD PTR [ebp-0x14],0x0 I@0x00000000[0x00000000][1](R)
 T0 M@0x02ecf760[0x00000000][4](R) T0
$ trace_reader -intel -trace y.trace -first 2614843 -last 2614843
600f57b: cmp    DWORD PTR [ebp-0x14],0x0 I@0x00000000[0x00000000][1](R)
 T0 M@0x02e5f760[0x026a6700][4](R) T1 {15 (1111, 5) (1111, 5) (1111, 5) 
(1111, 5) }

They differ because in the bad case, a NULL is found at a particular memory address 
while a valid pointer is found in the good case.  We have reduced the problem of why 
one trace has an uninitialized stack value and the other doesnʼt to why this memory 
address has a non-NULL value.  The same techniques weʼve already used can be used 
to trace this further back to try to answer this question.  To begin, letʼs slice that address 
in the bad case.

$ x86_slicer -in-trace z.trace -ctr 01814964 -bs 0x02ecf760 -bo 0 -bl 4
$ trace_reader -intel -trace 0x02ecf760.trace 
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600f55c: and    DWORD PTR [ebp-0x14],0x0 I@0x00000000[0x00000000][1](R)
 T0 M@0x02ecf760[0x060041e6][4](RW) T0

In the bad file, this address is set to 0 and never changes from that value.  In the good 
file, things are different.

$ x86_slicer -in-trace y.trace -ctr 2614843 -bs 0x02e5f760 -bo 0 -bl 4 > /dev/null
$ trace_reader -intel -trace 0x02e5f760.trace  | tail -1
8046fad: mov    DWORD PTR [ecx],eax R@eax[0x026a6700][4](R) T1 {15 (1111, 5) 
(1111, 5) (1111, 5) (1111, 5) } M@0x02e5f760[0x00000000][4](W) T0

We can see this corresponds to counter 02614785 using grep.  Looking for this 
instruction counter in the alignment, we see this instruction which set the contents at 
0x02e5f760 occurred in another unaligned area:

DISALIGNED @ T0:#02614778-02614787 (00000010 insts) ~ T1:#01814908-01814908 (00000001 insts)

Again, we can see why the two traces became unaligned.

$ trace_reader -intel -trace z.trace -first 01814906 -last 01814907
8046f88: cmp    ecx,DWORD PTR [eax+0xc] R@ecx[0x00000000][4](R) T0
 M@0x0269fb18[0x00000000][4](R) T0
8046f8b: jb     0x0000000008046f98 J@0x00000000[0x0000000d][4](R) T0
$ trace_reader -intel -trace y.trace -first 2614776  -last 2614776
8046f88: cmp    ecx,DWORD PTR [eax+0xc] R@ecx[0x00000000][4](R) T0
 M@0x026987b8[0x00000001][4](R) T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 
5) }

So, earlier in the trace, things started down the path toward an uninitalized variable 
when a particular memory location contained 0 in the bad case, but 1 in the good case.  
Slicing on this shows that in the bad case, it was always 0.  Iʼve removed push/pop pairs 
used for saving/restoring register values during function calls for clarity.

$ x86_slicer -in-trace z.trace -ctr 01814906 -bs 0x0269fb18 -bo 0 -bl 4 > /dev/null
$ trace_reader -intel -trace 0x0269fb18.trace 
8151684: xor    edi,edi R@edi[0x00000000][4](R) T0 R@edi[0x00000000]
[4](RW) T0
81516a8: mov    DWORD PTR [eax+0xc],edi R@edi[0x00000000][4](R) T0
 M@0x0269fb18[0x00000001][4](W) T0

In the good file case, it is incremented.

$ trace_reader -intel -trace 0x026987b8.trace 
8151684: xor    edi,edi R@edi[0x00000000][4](R) T0 R@edi[0x00000000]
[4](RW) T0
81516a8: mov    DWORD PTR [eax+0xc],edi R@edi[0x00000000][4](R) T0
 M@0x026987b8[0x00000000][4](W) T0
803adda: inc    DWORD PTR [ecx+0x4] M@0x026987b8[0x00000000][4](RW) T0

The instruction that does the incrementing corresponds to counter: 02613985.  This 
instruction occurs in the huge unaligned area,

DISALIGNED @ T0:#02611392-02614234 (00002843 insts) ~ 
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This process could be continued to see why our data eventually caused this problem.

Besides using the command line tools discussed thus far, the problem could have been 
approached using the IDA Pro visualization tool which is part of the BitBlaze platform.  
Figure 8 shows the trace from this crash loaded into the visualization tool.  You can see 
some of the shortcuts which can be used to navigate through the information from the 
trace.

Figure 8: BitBlaze trace visualization tool.  

One of the main benefits of the visualization tool is that the taint information can seen 
along with the disassembly, see Figure 9.  Also, information about when registers are 
read or written can be used to navigate through the disassembly.
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Figure 9:  The register window in the visualization tool now contains taint information

Finally, the visualization tool provides new windows which include a list of all tainted 
instructions as well as the ability to generate graphs which show the propagation of 
tainted data, see Figure 10.

Figure 10:  The taint graph

For more information on the visualization plugin, please consult the BitBlaze project 
page.
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A second exploitable Adobe Reader crash
This is another exploitable Adobe Reader crash originally found for Adobe Reader 9.2.0 
and recently fixed by Adobe.  This crash was found by mutation based fuzzing.  Letʼs 
see the crash.  In this case we look at the x.trace file instead of the z.trace file for a 
reason that will become clear later.

$ trace_reader -trace x.trace -header | grep Number
Number of instructions: 1173735
$ trace_reader -intel -trace x.trace -first 1173735 -count -v
(01173735)7001400: lock dec DWORD PTR [eax] M@0xf5fc081d[0x00000000][4](RW) T0 
ESP:  NUM_OP: 2 TID: 1756 TP: TPSrc EFLAGS: 0x00000083 CC_OP: 0x00000018 DF: 
0x00000001 RAW: 0xf0ff08 MEMREGS:  R@eax[0xf5fc081d][4](R) T1 {15 (1111, 5) 
(1111, 5) (1111, 5) (1111, 5) } 

It crashes trying to decrement an invalid address contained in eax.  eax is tainted, that 
is a good sign.  If we controlled eax, this would definitely be exploitable, see [SMS].

Letʼs look at the alignment to get an idea of what goes wrong in the bad case.

$ tail -2 x_y.aligned.txt 
ALIGNED    @ T0:#01152003-01173723 (00021721 insts) ~ T1:#01151778-01173498 (00021721 
insts)
DISALIGNED @ T0:#01173724-01173735 (00000012 insts) ~ T1:#01173499-01477799 (00304301 
insts)

The crash is in an unaligned area.  Letʼs look at the traces near the divergence to see 
why they diverged.  Here is the trace of the bad file near this spot:

$ trace_reader -intel -trace x.trace -count -first 01173718 -last 01173723
(01173718)8002046: test   eax,eax R@eax[0xf5fc0801][4](R) T1 {15 (1111, 5) 
(1111, 5) (1111, 5) (1111, 5) } R@eax[0xf5fc0801][4](R) T1 {15 (1111, 5) (1111, 5) 
(1111, 5) (1111, 5) }
(01173719)8002048: mov    DWORD PTR [esi],ecx R@ecx[0x01dd98f8][4](R) T0
 M@0x026a0d04[0xf5fc0801][4](W) T0
(01173720)800204a: mov    ecx,DWORD PTR [ebp-0x4] M@0x0012cab8[0x01dd991c][4]
(R) T0 R@ecx[0x01dd98f8][4](W) T0
(01173721)800204d: mov    DWORD PTR [ebp-0x8],eax R@eax[0xf5fc0801][4](R) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) } M@0x0012cab4[0x01dd98f8][4](W) T0
(01173722)8002050: mov    DWORD PTR [esi+0x4],ecx R@ecx[0x01dd991c][4](R)
 T0 M@0x026a0d08[0x00000000][4](W) T0
(01173723)8002053: je     0x000000000800205d J@0x00000000[0x0000000a][4](R) T0

It looks like the test instruction at counter 01173718 is the cause of the divergence.  
Letʼs check out what happens at that instruction in the good file.
$ aligned.pl x_y.aligned.txt 01173718
T0:01173718 ~ <T1:1173493>     
(T0:01152003-01173723 ~ T1:01151778-01173498)

$ trace_reader -intel -trace y.trace -count -first 1173493 -last 1173493
(01173493)8002046: test   eax,eax R@eax[0x00000000][4](R) T1 {15 (1111, 5) 
(1111, 5) (1111, 5) (1111, 5) } R@eax[0x00000000][4](R) T1 {15 (1111, 5) (1111, 5) 
(1111, 5) (1111, 5) }
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They diverge at 0x8002046 because in the bad file, eax is not 0, but rather 0xf5fc0801.  
Notice that this value of eax is almost the memory address that eventually tries to be 
decremented during the crash.  

Letʼs slice on the value of eax at the time of the crash and see where it comes from in 
order to know if we control it.

$ x86_slicer -in-trace x.trace -ctr 01173735 -include-memregs true -regloc eax > /dev/
null
$ trace_reader -intel -trace EAX_0.trace -v | tail -11
808857d: lea    ecx,[ecx+eax*8] A@0x026a0d04[0x00000000][4](R) T0 R@ecx
[0x026a0504][4](W) T0 ESP:  NUM_OP: 5 TID: 1756 TP: TPSrc EFLAGS: 0x00000213 CC_OP: 
0x00000010 DF: 0xFFFFFFFF RAW: 0x8d0cc1 MEMREGS:  R@ecx[0x026a0504][4](R)
 T0 R@eax[0x00000100][4](R) T1 {3 (1111, 5) (1111, 5) ()()} 
8002037: mov    esi,ecx R@ecx[0x026a0d04][4](R) T1 {15 (1111, 5) (1111, 5) 
(1111, 5) (1111, 5) } R@esi[0x0267d178][4](W) T0 ESP:  NUM_OP: 2 TID: 1756 TP: 
TPSrc EFLAGS: 0x00000213 CC_OP: 0x00000010 DF: 0xFFFFFFFF RAW: 0x8bf1 MEMREGS: 
800127a: push   esi R@esi[0x026a0d04][4](R) T1 {15 (1111, 5) (1111, 5) (1111, 
5) (1111, 5) } M@0x0012caa4[0x0700f603][4](W) T0 ESP:  R@esp[0x0012caa8]
[4](R) T0 NUM_OP: 3 TID: 1756 TP: TPSrc EFLAGS: 0x00000213 CC_OP: 0x00000010 DF: 
0xFFFFFFFF RAW: 0x56 MEMREGS:  R@esp[0x0012caa8][4](R) T0 
8001297: pop    esi M@0x0012caa4[0x026a0d04][4](R) T1 {15 (1111, 5) (1111, 5) 
(1111, 5) (1111, 5) } R@esi[0x0012cab4][4](W) T0 ESP:  R@esp[0x0012caa4]
[4](R) T0 NUM_OP: 3 TID: 1756 TP: TPSrc EFLAGS: 0x00000202 CC_OP: 0x0000001C DF: 
0xFFFFFFFF RAW: 0x5e MEMREGS:  R@esp[0x0012caa4][4](R) T0 
8002044: mov    eax,DWORD PTR [esi] M@0x026a0d04[0xf5fc0801][4](R) T0 R@eax
[0x0012cab4][4](W) T0 ESP:  NUM_OP: 3 TID: 1756 TP: TPMemReadIndex EFLAGS: 0x00000202 
CC_OP: 0x0000001C DF: 0xFFFFFFFF RAW: 0x8b06 MEMREGS:  R@esi[0x026a0d04][4]
(R) T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 5) } 
8002055: push   eax R@eax[0xf5fc0801][4](R) T1 {15 (1111, 5) (1111, 5) (1111, 
5) (1111, 5) } M@0x0012caac[0x0012cad8][4](W) T0 ESP:  R@esp[0x0012cab0]
[4](R) T0 NUM_OP: 3 TID: 1756 TP: TPSrc EFLAGS: 0x00000282 CC_OP: 0x00000018 DF: 
0xFFFFFFFF RAW: 0x50 MEMREGS:  R@esp[0x0012cab0][4](R) T0 
7005caf: mov    ecx,DWORD PTR [esp+0x4] M@0x0012caac[0xf5fc0801][4](R) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) } R@ecx[0x01dd991c][4](W) T0 ESP: 
 R@esp[0x0012caa8][4](R) T0 NUM_OP: 4 TID: 1756 TP: TPSrc EFLAGS: 0x00000282 
CC_OP: 0x00000018 DF: 0xFFFFFFFF RAW: 0x8b4c2404 MEMREGS:  R@esp[0x0012caa8][4]
(R) T0 
70013f3: mov    ebp,esp R@esp[0x0012caa4][4](R) T0 R@ebp[0x0012cabc]
[4](W) T0 ESP:  R@esp[0x0012caa4][4](R) T0 NUM_OP: 2 TID: 1756 TP: TPNone 
EFLAGS: 0x00000282 CC_OP: 0x00000018 DF: 0xFFFFFFFF RAW: 0x8bec MEMREGS: 
70013f7: lea    eax,[ecx+0x1c] A@0xf5fc081d[0x00000000][4](R) T0 R@eax
[0xf5fc0801][4](W) T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 5) } ESP:  NUM_OP: 4 
TID: 1756 TP: TPSrc EFLAGS: 0x00000282 CC_OP: 0x00000018 DF: 0xFFFFFFFF RAW: 0x8d411c 
MEMREGS:  R@ecx[0xf5fc0801][4](R) T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 
5) } 
70013fa: mov    DWORD PTR [ebp-0x8],eax R@eax[0xf5fc081d][4](R) T1 {15 (1111, 
5) (1111, 5) (1111, 5) (1111, 5) } M@0x0012ca9c[0xf5fc0801][4](W) T1 {15 (1111, 
5) (1111, 5) (1111, 5) (1111, 5) } ESP:  NUM_OP: 4 TID: 1756 TP: TPSrc EFLAGS: 
0x00000282 CC_OP: 0x00000018 DF: 0xFFFFFFFF RAW: 0x8945f8 MEMREGS:  R@ebp
[0x0012caa4][4](R) T0 
70013fd: mov    eax,DWORD PTR [ebp-0x8] M@0x0012ca9c[0xf5fc081d][4](R) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) } R@eax[0xf5fc081d][4](W) T1 {15 (1111, 
5) (1111, 5) (1111, 5) (1111, 5) } ESP:  NUM_OP: 4 TID: 1756 TP: TPSrc EFLAGS: 
0x00000282 CC_OP: 0x00000018 DF: 0xFFFFFFFF RAW: 0x8b45f8 MEMREGS:  R@ebp
[0x0012caa4][4](R) T0 

Tracing back the value of eax, we see that at instruction 0x8002044, it came from a 
memory read from the address contained in esi which originated from ecx.  The 
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instruction at 0x808857d computes this memory address where eax is read from by the 
formula ecx = ecx + 8*eax.  Observe that eax = 0x100 and is tainted.  

Things are different in the good file:

$ aligned.pl x_y.aligned.txt 01173680
T0:01173680 ~ <T1:1173455>     
(T0:01152003-01173723 ~ T1:01151778-01173498)
$ trace_reader -intel -trace y.trace -v -count -first 1173455 -last 1173455
(01173455)808857d: lea    ecx,[ecx+eax*8] A@0x026a4cc0[0x00000000][4](R)
 T0 R@ecx[0x026a4aa0][4](W) T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 
5) } ESP:  NUM_OP: 5 TID: 1448 TP: TPSrc EFLAGS: 0x00000213 CC_OP: 0x00000010 DF: 
0x00000001 RAW: 0x8d0cc1 MEMREGS:  R@ecx[0x026a4aa0][4](R) T1 {15 (1111, 5) 
(1111, 5) (1111, 5) (1111, 5) } R@eax[0x00000044][4](R) T1 {3 (1111, 5) (1111, 5) 
()()} 

so in the non-crashing case, the offset into the buffer that is read is not as far into the 
buffer as in the crashing case.  Namely, it is 0x44 bytes into it rather than 0x100.  This 
buffer offset is tainted, but exactly how is it controlled?  Letʼs slice it to find out where it 
comes from.

$ x86_slicer -in-trace x.trace -ctr 01173680 -regloc eax > /dev/null
$ trace_reader -intel -trace EAX_0.trace | tail -28
7814507a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x0267ae7c[0xed012800]
[4](CR) T1 {12 ()()(1111, 5) (1111, 5) } R@ecx[0x000007f3][4](RCW) T0
 M@0x0267f0e0[0x0cc00b2f][4](CW) T1 {15 (1111, 5) (1111, 5) (1111, 5) (1111, 
5) }
8114da3: movsx  ecx,BYTE PTR [eax] M@0x0267f0e3[0x000000ed][1](R) T1 {1 (1111, 
5) ()()()} R@ecx[0x00000029][4](W) T0
8114dad: movzx  ax,cl R@cl[0x000000ed][1](R) T1 {1 (1111, 5) ()()()} R@ax
[0x0000f0e4][2](W) T0
8114db1: movzx  eax,ax R@ax[0x000000ed][2](R) T1 {1 (1111, 5) ()()()} R@eax
[0x026700ed][4](W) T1 {1 (1111, 5) ()()()}
8114db4: mov    DWORD PTR [ebp-0x10],eax R@eax[0x000000ed][4](R) T1 {1 (1111, 
5) ()()()} M@0x0012ce38[0x0000002a][4](W) T0
8114e1f: inc    DWORD PTR [ebp-0x10] M@0x0012ce38[0x000000ed][4](RW) T1 {1 
(1111, 5) ()()()}
8114e1f: inc    DWORD PTR [ebp-0x10] M@0x0012ce38[0x000000ee][4](RW) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) }
8114e1f: inc    DWORD PTR [ebp-0x10] M@0x0012ce38[0x000000ef][4](RW) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) }
...
8114e1f: inc    DWORD PTR [ebp-0x10] M@0x0012ce38[0x000000fd][4](RW) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) }
8114e1f: inc    DWORD PTR [ebp-0x10] M@0x0012ce38[0x000000fe][4](RW) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) }
8114e1f: inc    DWORD PTR [ebp-0x10] M@0x0012ce38[0x000000ff][4](RW) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) }
8114e0e: push   DWORD PTR [ebp-0x10] M@0x0012ce38[0x00000100][4](R) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) } M@0x0012ce24[0x000000ff][4](W) T1 {15 
(1111, 5) (1111, 5) (1111, 5) (1111, 5) }
8114c50: movzx  eax,WORD PTR [esp+0x8] M@0x0012ce24[0x00000100][2](R) T1 {3 
(1111, 5) (1111, 5) ()()} R@eax[0x0267a848][4](W) T0
8114c59: mov    DWORD PTR [edi+0x10],eax R@eax[0x00000100][4](R) T1 {3 (1111, 
5) (1111, 5) ()()} M@0x0267d17c[0xffffffff][4](W) T0
808856f: mov    eax,DWORD PTR [esi+0x4] M@0x0267d17c[0x00000100][4](R) T1 {3 
(1111, 5) (1111, 5) ()()} R@eax[0x0012cad8][4](W) T0
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The value 0x100 comes from the value 0xed after being incremented a bunch of times.  
This value 0xed comes from the dword 0xed012800 located at 0x0267ab9c.  This value 
is copied at this instruction:

$ trace_reader -intel -trace x.trace -count -v -first 993850 -last 993850
(00993850)7814507a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x0267ae7c
[0xed012800][4](CR) T1 {12 ()()(1111, 5) (1111, 5) } R@ecx[0x000007f3][4](RCW)
 T0 M@0x0267f0e0[0x0cc00b2f][4](CW) T1 {15 (1111, 5) (1111, 5) (1111, 5) 
(1111, 5) } ESP:  NUM_OP: 5 TID: 1756 TP: TPSrc EFLAGS: 0x00000202 CC_OP: 0x00000010 
DF: 0x00000001 RAW: 0xf3a5 MEMREGS:  R@edi[0x0267f0e0][4](R) T0  R@esi
[0x0267ae7c][4](R) T0 

So it is part of a rather large copy (at least 0x7fc).  It would make sense that this is a 
copy of the entire uncompressed stream.  In fact this is true, and can be verified by 
looking for long sequences of tainted buffers originating from a single tainted byte, 
which is what you would expect a decompressed buffer to look like from a tainted 
perspective.  By the way, this is why we chose to work with x.trace instead of z.trace.  In 
the differential tainting trace, these large sections of tainted bytes in the uncompressed 
stream would not be tainted since they would agree in the good and bad file cases.  

The address that the 0xed originated from (0x0267ae7c) is verified to be in one of these 
uncompressed streams, which we control as they come from the file.  We use a couple 
of python scripts to find large regions of adjacent tainted bytes in memory.

$ count2.py x.trace.disasm > /dev/null

$ buffer.py memaddr.txt 2048
[0x0265eca1] - [0x0265fca2] 4097 bytes: 4098
[0x0267a01c] - [0x0267ee4c] 20016 bytes: 5053
[0x0267ef64] - [0x026810a8] 8516 bytes: 2226
[0x02690564] - [0x02692c98] 10036 bytes: 2510

Ok, so we have control over an offset used to read an address from a buffer and we are 
able to decrement the value at that address.  But can we really read past the end of the 
buffer or are we reading uninitialized values inside a large buffer?  Looking at the lea 
instruction, we see the buffer in question begins at address 0x026a0504.  Letʼs see 
where this buffer was allocated.

$ alloc_reader -alloc x.trace.alloc -addr 0x026a0504
Found 1 buffers
[01151948,end] 0x026a04e0 (65064)

So, a very large buffer of size 65064 was allocated at instruction counter 01151948 and 
our buffer is in the middle of it (36 bytes in, the bad read occurs at 2084 bytes in).  This 
smells like a custom memory allocator to me.  

Letʼs see where this large allocation occurred in the program to try to understand the 
custom memory allocator.  We look at the call stack when the malloc was called (at 
instruction counter 01151948).  We trace the callstack up until it is in the DLLʼs weʼre 
interested in (CoolType.dll is loaded at address 0x08xxxxxx).
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$ trace_reader -intel -trace x.trace -count -first 01151948 -last 1152200 | grep -A1 
ret | grep -m1 -B1 ")80"
(01152180)700453a: ret     M@0x0012cadc[0x0800139e][4](R) T0
(01152181)800139e: test   eax,eax R@eax[0x026a0504][4](R) T0 R@eax
[0x026a0504][4](R) T0

Whatever function was called at 0x8001394 returned the address of our buffer.  It looks 
like this time we were lucky and our request for a buffer forced the custom allocator to 
make a call to malloc.  Looking closer at the function called at 0x8001394, we see that it 
takes one argument and returns a buffer to use.  It is a wrapper to something that 
behaves like malloc.  Letʼs see how big of a buffer we requested.

First, lets see when this malloc-wrapper was called for our buffer (0x026a0504) and 
how big the requested “allocation” was.  To do this, we just grep for that relevant 
instruction counter.

$ trace_reader -intel -trace x.trace -count -last 01152181 | grep 8001394: | tail -1
(01150773)8001394: push   DWORD PTR [esp+0x4] M@0x0012cae8[0x00000800][4](R)
 T0 M@0x0012cae0[0x0819dbb4][4](W) T0

So, the value of eax in the crash comes from a read past the end of a buffer from a 
custom allocator.  We now know this since we read the value 0x100*8 bytes into the 
buffer and it was only “allocated” to be of size 0x800.  By carefully arranging memory 
allocations, via a heap feng-shui technique[heap], we should be able to control the 
contents of this next buffer and thus be able to perform arbitrary memory writes.

A non-exploitable Adobe Reader crash characterized as unknown
This is a crash found by mutation based fuzzing Adobe Reader.  It is still in the latest 
version.  Letʼs check out the crash.

$ trace_reader -trace z.trace -header | grep Number
Number of instructions: 272998
$ trace_reader -intel -v -trace z.trace -first 272998
208063fb: mov    edx,DWORD PTR [ecx+0x4] M@0x00000014[0x00000000][4](R)
 T0 R@edx[0x00000000][4](W) T0 ESP:  NUM_OP: 4 TID: 1712 TP: TPNone 
EFLAGS: 0x00000083 CC_OP: 0x00000008 DF: 0x00000001 RAW: 0x8b5104 MEMREGS:  R@ecx
[0x00000010][4](R)T0 

It looks like it is probably a Null pointer exception and not exploitable.  But maybe that 
0x14 came from a wild read, or even worse/better, our input data.  For these reasons, !
exploitable wonʼt say it is not exploitable.  

The first observation is ecx is not tainted, so that is even further evidence indicating it is 
not exploitable.  Beyond that, lets slice ecx to see where the 0x14 originated.  Iʼm 
omitting the push/pop pairs for saving ecx during function calls for clarity:

$ x86_slicer -in-trace z.trace -ctr 272998 -regloc ecx > /dev/null
$ trace_reader -intel -trace ECX_0.trace 
208f46df: xor    esi,esi R@esi[0xc0000000][4](R) T0 R@esi[0xc0000000]
[4](RW) T0
208f4bbf: mov    eax,esi R@esi[0x00000000][4](R) T0 R@eax[0x00000b12]
[4](W) T0
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208f5c6b: mov    ebx,eax R@eax[0x00000000][4](R) T0 R@ebx[0x025cdf3c]
[4](W) T0
208f5c91: mov    eax,ebx R@ebx[0x00000000][4](R) T0 R@eax[0x00000000]
[4](W) T0
208f63f8: mov    esi,eax R@eax[0x00000000][4](R) T0 R@esi[0xc0000000]
[4](W) T0
208f648f: mov    ecx,esi R@esi[0x00000000][4](R) T0 R@ecx[0x00000000]
[4](W) T0
2088c9a2: mov    esi,ecx R@ecx[0x00000000][4](R) T0 R@esi[0x00000000]
[4](W) T0
2088c9a4: lea    ebx,[esi+0x10] A@0x00000010[0x00000000][4](R) T0 R@ebx
[0xc0000000][4](W) T0
2088c9a7: mov    ecx,ebx R@ebx[0x00000010][4](R) T0 R@ecx[0x00000000]
[4](W) T0

So there are no memory reads, it came straight from an xor through moves and an lea 
instruction.  This is definitely not exploitable, as it is a Null-ptr dereference.  As a 
security researcher, youʼd be done at this point.  But if you really wanted to find the 
underlying problem, you could also use BitBlaze for that.

First letʼs compare the crash location between the good file and the bad file.

$ trace_reader -intel -trace z.trace -first 272998 -last 272998
208063fb: mov    edx,DWORD PTR [ecx+0x4] M@0x00000014[0x00000000][4](R)
 T0 R@edx[0x00000000][4](W) T0
$ aligned.pl y_z.aligned.txt T1:272998
<T0:271645> ~ T1:272998     
(T0:00271451-00271645 ~ T1:00272804-00272998)
$ trace_reader -intel -trace y.trace -first 271645 -last 271645
208063fb: mov    edx,DWORD PTR [ecx+0x4] M@0x0202c5fc[0x025d91f8][4](R)
 T0 R@edx[0x00000000][4](W) T0

In the good file case, ecx has a legitimate value.  Letʼs take a look at the alignment.

$ tail -6 y_z.aligned.txt  
ALIGNED    @ T0:#00234897-00265964 (00031068 insts) ~ T1:#00241546-00272613 (00031068 insts)
DISALIGNED @ T0:#00265965-00271264 (00005300 insts) ~ T1:#00272614-00272619 (00000006 insts)
ALIGNED    @ T0:#00271265-00271448 (00000184 insts) ~ T1:#00272620-00272803 (00000184 insts)
DISALIGNED @ T0:#00271449-00271450 (00000002 insts) ~ 
ALIGNED    @ T0:#00271451-00271645 (00000195 insts) ~ T1:#00272804-00272998 (00000195 insts)
DISALIGNED @ T0:#00271646-00354492 (00082847 insts) ~ 

Toward the end of execution, it briefly diverges for 2 instructions and before that for 
quite a few instructions.  Nothing particularly interesting happens in the 2 instructions.

$ trace_reader -intel -trace y.trace -first 00271449 -last 00271450 -count
(00271449)208f5c88: cmp    WORD PTR [ebx+0x2c],0x0 I@0x00000000[0x00000000][1]
(R) T0 M@0x0202c614[0x00000000][2](R)T0
(00271450)208f5c8d: je     0x00000000208f5c91 J@0x00000000[0x00000004][4](R) T0

If you slice on the legit value of ecx in the good file, it agrees with the slice of ecx in the 
bad file, except toward the end of the slice where it fills in the value of esi with a pointer 
instead of it just being 0.

94433a: mov    eax,DWORD PTR [ecx+0x4] M@0x0039b57c[0x0202c5e8][4](R)
 T0 R@eax[0x00000014][4](W) T0
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944341: mov    esi,eax R@eax[0x0202c5e8][4](R) T0 R@esi[0x0039b2d0]
[4](W) T0
944407: mov    eax,esi R@esi[0x0202c5e8][4](R) T0 R@eax[0x00000000]
[4](W) T0
20803c44: mov    esi,eax R@eax[0x0202c5e8][4](R) T0 R@esi[0x00000000]
[4](W) T0
20803c59: mov    eax,esi R@esi[0x0202c5e8][4](R) T0 R@eax[0x0202c5e8]
[4](W) T0
20804cee: mov    esi,eax R@eax[0x0202c5e8][4](R) T0 R@esi[0x00000000]
[4](W) T0
20804d01: mov    eax,esi R@esi[0x0202c5e8][4](R) T0 R@eax[0x0202c5e8]
[4](W) T0
208f4a48: mov    ecx,eax R@eax[0x0202c5e8][4](R) T0 R@ecx[0x00000001]
[4](W) T0
208f35f7: mov    esi,ecx R@ecx[0x0202c5e8][4](R) T0 R@esi[0x00000000]
[4](W) T0
208f3610: mov    eax,esi R@esi[0x0202c5e8][4](R) T0 R@eax[0x0202c5e8]
[4](W) T0
208f4ad9: mov    esi,eax R@eax[0x0202c5e8][4](R) T0 R@esi[0x00000000]
[4](W) T0
208f4bbf: mov    eax,esi R@esi[0x0202c5e8][4](R) T0 R@eax[0x20d6db64]
[4](W) T0
208f5c6b: mov    ebx,eax R@eax[0x0202c5e8][4](R) T0 R@ebx[0x025cdf0c]
[4](W) T0
208f5c91: mov    eax,ebx R@ebx[0x0202c5e8][4](R) T0 R@eax[0x00000000]
[4](W) T0
208f63f8: mov    esi,eax R@eax[0x0202c5e8][4](R) T0 R@esi[0xc0000000]
[4](W) T0
208f648f: mov    ecx,esi R@esi[0x0202c5e8][4](R) T0 R@ecx[0x00000000]
[4](W) T0
2088c9a2: mov    esi,ecx R@ecx[0x0202c5e8][4](R) T0 R@esi[0x0202c5e8]
[4](W) T0
2088c9a4: lea    ebx,[esi+0x10] A@0x0202c5f8[0x00000000][4](R) T0 R@ebx
[0xc0000000][4](W) T0
2088c9a7: mov    ecx,ebx R@ebx[0x0202c5f8][4](R) T0 R@ecx[0x0202c5e8]
[4](W) T0

It looks like esi is filled in at instruction 0x208f35f7, which happens to be at instruction 
00266161.  We can verify that this value is set in the large unaligned area near the end 
of the trace.

DISALIGNED @ T0:#00265965-00271264 (00005300 insts) ~ T1:#00272614-00272619 (00000006 insts)

So, ecx is initially set to 0.  In the good file, execution proceeds down a branch which 
sets esi to a valid pointer.  In the bad file, this value of esi is never set which leads to the 
null pointer dereference.  Looking at the alignment, this divergence occurs at

$ trace_reader -intel -trace z.trace -first 00272612 -last 00272613
208f49b7: cmp    WORD PTR [ebp-0x14],ax R@ax[0x00000b11][2](R) T0
 M@0x0012e3f4[0x00000b10][2](R) T0
208f49bb: jne    0x00000000208f4a5a J@0x00000000[0x0000009f][4](R) T0
$ trace_reader -intel -trace y.trace -first 00265963 -last 00265963
208f49b7: cmp    WORD PTR [ebp-0x14],ax R@ax[0x00000b10][2](R) T0
 M@0x0012e3f4[0x00000b10][2](R) T0

So the difference in execution comes from the value of 0b11 instead of 0b10 in ax.  This 
is probably enough to fix the bug, but the value of ax could be sliced, and it could be 
continued in this fashion.
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An exploitable Adobe Reader bug rated as unknown
This is a bug rated as unknown by !exploitable in the current version of Adobe Reader.  
It results from a one byte change in a compressed stream.  It was found by mutation-
based fuzzing.  

This particular bug is really hard to reverse engineer with traditional methods because 
the function where it crashes gets called hundreds of times and if you set conditional 
breakpoints in the function that calls it, it doesnʼt crash anymore!  This behavior must be 
based on timing or a race condition.  Regardless, letʼs look at the crash.

$ trace_reader -trace z.trace -header | grep Number
Number of instructions: 243897288
$ trace_reader -intel -trace z.trace -first 243897288 -v
8074fc8: cmp    WORD PTR [ecx+0x4],si R@si[0x00007fff][2](R) T0
 M@0x06fb1c70[0x00000000][2](R) T0 ESP:  NUM_OP: 4 TID: 1660 TP: TPNone 
EFLAGS: 0x00000083 CC_OP: 0x00000008 DF: 0x00000001 RAW: 0x66397104 MEMREGS:  R@ecx
[0x06fb1c6c][4](R) T0 

Notice that the memory at 0x6fb1c70 is actually unmapped, not 0.  Looking at the 
assembly, four instructions later, there is a write (actually an add):

add [ecx], edi

So there is some hope of exploitation.  Let's take a closer look at what caused this 
problem.

Let's slice on ecx whose address is wrongly dereferenced.  

$ x86_slicer -in-trace z.trace -ctr 243897288 -regloc ecx > /dev/null
$ trace_reader -intel -trace ECX_0.trace | tail -2
8074fad: add    DWORD PTR [eax],ecx R@ecx[0x037d8e2c][4](R) T0 M@0x037d8e2c
[0x037d8e40][4](RW) T0
8074faf: mov    ecx,DWORD PTR [eax] M@0x037d8e2c[0x06fb1c6c][4](R) T0 R@ecx
[0x037d8e2c][4](W) T0

So ecx came from eax which came from the addition of two heap pointers.  That's 
probably not supposed to happen.  Exploitation could happen if you imagine using a 
heap spray to put some interesting data in a region whose address is approximately 
twice a normal heap address.  

Comparing the good vs. the bad file we see the byte that differs.

$ diff sheared.pdf.txt 210_a39c1ae51a2a5ea1f9ecccd70a0e9c8b.pdf.txt 
2952c2952
< 0000b870  6a 68 05 df 3f cf f2 da  6c 57 59 71 ed 9a 21 99  |jh..?...lWYq..!.|
---
> 0000b870  6a 68 05 df 3f c1 f2 da  6c 57 59 71 ed 9a 21 99  |jh..?...lWYq..!.|

The difference is a c1 vs a cf, so they only differ in one "nibble".  Looking at the file, you 
can see that this is in some FlateDecode'd stream.  
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The crash occurs in CoolType.dll, which isn't surprising if you stare at the pdf, you'll see 
the flipped byte is in a font.

$ trace_reader -trace z.trace -header | grep 0x080
  Module: CoolType.dll @ 0x08000000 Size: 2486272

So, lets see when tainted data first enters the CoolType dll.

$ trace_reader -trace z.trace -taintedonly -count | grep ")80" | head
(01519331)808b015: push   ecx R@ecx[0x01e7546c][4](R) T0 M@0x0012e950
[0xe49b0000][4](W) T1 {8 ()()()(1111, 4) }
(01738319)8048170: push   DWORD PTR [ebp-0x4] M@0x0012d99c[0x08083305][4](R)
 T0 M@0x0012d97c[0xe49b0000][4](W) T1 {8 ()()()(1111, 4) }
(01754161)8015367: movzx  eax,BYTE PTR [esi+0xb] M@0x0012d4ef[0x000000e4][1]
(R) T1 {1 (1111, 4) ()()()} R@eax[0x0000009b][4](W) T0
...

The first two are tainted data becoming untainted.  The third is the first time it is really 
being used.  Notice, the tainted byte is an e4.  This isn't the original tainted cf, but that's 
not surprising since cf was in a compressed stream.  

using alignment, we see in the good case at the same instruction,

$ ./aligned.pl y_z.aligned.txt T1:01754161
<T0:1753039> ~ T1:01754161     
(T0:01750116-01753248 ~ T1:01751238-01754370)
(01753039)8015367: movzx  eax,BYTE PTR [esi+0xb] M@0x0012d4ef[0x000000d4][1]
(R) T1 {1 (1111, 4) ()()()} R@eax[0x0000009b][4](W) T1 {1 (1111, 4) ()()()}

So instead of e4, its d4 in the good file.

It'd be nice to know where the e4/d4 came from.  We'll have to look at the instructions 
before it entered CoolType.

$ trace_reader -intel -trace z.trace -first 01753161 -last 01754161 -taintedonly -v -
count

(01753389)7814507a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x02e21a78
[0xe49b0000][4](CR) T1 {8 ()()()(1111, 4) } R@ecx[0x00000057][4](RCW) T0
 M@0x0293860c[0xe49b0000][4](CW) T1 {8 ()()()(1111, 4) } ESP:  NUM_OP: 5 TID: 
1660 TP: TPSrc EFLAGS: 0x00000202 CC_OP: 0x00000010 DF: 0x00000001 RAW: 0xf3a5 
MEMREGS:  R@edi[0x0293860c][4](R) T0  R@esi[0x02e21a78][4](R) T0 
(01754027)7814507a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x0293860c
[0xe49b0000][4](CR) T1 {8 ()()()(1111, 4) } R@ecx[0x0000000e][4](RCW) T0
 M@0x0012d4ec[0xffc95f62][4](CW) T0 ESP:  NUM_OP: 5 TID: 1660 TP: TPSrc EFLAGS: 
0x00000202 CC_OP: 0x00000010 DF: 0x00000001 RAW: 0xf3a5 MEMREGS:  R@edi[0x0012d4ec]
[4](R) T0  R@esi[0x0293860c][4](R) T0 
(01754161)8015367: movzx  eax,BYTE PTR [esi+0xb] M@0x0012d4ef[0x000000e4][1]
(R) T1 {1 (1111, 4) ()()()} R@eax[0x0000009b][4](W) T0 ESP:  NUM_OP: 4 TID: 
1660 TP: TPSrc EFLAGS: 0x00000203 CC_OP: 0x00000008 DF: 0x00000001 RAW: 0x0fb6460b 
MEMREGS:  R@esi[0x0012d4e4][4](R) T0 

So it looks like it was copied from the stack from 0x0293860c at instruction counter 
01754027.  Looking at that spot in memory the e4 isn't there anymore.  Well, it was 
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copied to 0x0293860c from 0x02e21a78 in instruction counter 01753389.  Lets look at 
that spot in memory:

$ state_reader -in-state z.trace.state -in-state-range 0x02e21a60:0x02e21a8f  -out-raw 
z.state.dump.raw
$ hexdump -C z.state.dump.raw 
00000000  6c 6f 63 61 01 99 84 e2  00 00 79 e8 00 00 1a 2c  |loca......y....,|
00000010  6d 61 78 70 0d 84 01 93  00 00 9b e4 00 00 00 20  |maxp........... |
00000020  6e 61 6d 65 8c 9d 3d 42  00 00 95 f8 00 00 05 dc  |name..=B........|

So there is the e4.  Googling on the three strings "loca", "maxp", and "name”, the first hit 
is True Type Font.  This looks like a decompressed TTF.  Looking to see what bytes are 
tainted, we see that only the e4 is.  

$ state_reader -in-state z.trace.state -in-state-range 0x02e21a60:0x02e21a8f -out-text 
z.state.dump.txt 

$ grep -v "Taint: none" z.state.dump.txt 
0x02e21a7b (0xe4) Taint: (4444, 1111, 4)

So the single nibble change in the compressed stream turned into a single nibble 
change in the decompressed font.  The change is in the maxp header.  We could try to 
start following the e4 as its taint propagates, but it gets pretty complicated.  In fact, there 
are over 8 million instructions in the trace dealing with tainted data in CoolType.dll 
alone.  Going backwards isn't much better.

So, we may as well use what we know at this point by looking at the TTF spec.  Its not 
hard to track down in a font file where things like the above occur.  Namely, its a list of 
table directory entries, see [TTF].  In particular, the e4 is in the table directory broken 
out as:

00000010  6d 61 78 70 0d 84 01 93  00 00 9b e4 00 00 00 20  |maxp........... |

Field Data

Identifier “maxp”

Checksum 0x0d840193

Offset from beginning of sfnt 0x9be4

Length of table 0x20

So it appears that the location of this maxp table has been changed in the bad file (and 
that they don't check the checksum).  Letʼs grab the whole decompressed font.

$ state_reader -in-state z.trace.state -in-state-range 0x2e219d4:0x2e2b5ff -out-raw 
bad.ttf
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Doing some pain staking parsing of this font file, we find where the maxp should be and 
where it is in the bad file:

$ hexdump -C bad.ttf | tail
00009ba0  00 74 00 20 00 26 00 20  00 54 00 4d 00 20 00 4f  |.t. .&. .T.M. .O|
00009bb0  00 66 00 66 00 2e 00 20  00 61 00 6e 00 64 00 20  |.f.f... .a.n.d. |
00009bc0  00 65 00 6c 00 73 00 65  00 77 00 68 00 65 00 72  |.e.l.s.e.w.h.e.r|
00009bd0  00 65 00 2e 00 01 00 00  06 8a 00 f2 00 3c 00 6f  |.e...........<.o|
00009be0  00 06 00 02 00 10 00 2f  00 55 00 00 06 4e ff ff  |......./.U...N..|
00009bf0  00 03 00 02 00 01 00 00  00 02 e6 67 f1 c1 1d f9  |...........g....|
00009c00  5f 0f 3c f5 08 19 08 00  00 00 00 00 a2 e3 3c 1d  |_.<...........<.|
00009c10  00 00 00 00 b9 d5 b5 13  fa fa fc fd 10 00 08 15  |................|
00009c20  00 00 00 09 00 01 00 01  00 00 00 00              |............|

For the good file (i.e. where a d4 is in the offset), the maxp table starts at 0x9bd4.  For 
the bad file, the maxp table starts at 0x9be4.  Looking at this table you get

Field Good table Bad table

Version 0x00010000 0x0010002f

numGlyphs 0x6a8a 0x0055

maxPoints 0x00f2 0x0000

maxContours 0x003c 0x06fe

maxComponentPoints 0x006f 0xffff

maxComponentContours 0x0006 0x0003

maxZones 0x0002 0x0002

maxTwilightPoints 0x0010 0x0001

maxStorage 0x002f 0x0000

maxFunctionDefs 0x0055 0x0002

maxInstructionDefs 0x0000 0xe667

maxStackElements 0x06fe 0xf1c1

maxSizeOfInstructions 0xffff 0x1df9

maxComponentElements 0x0003 0x5f0f

maxComponentDepth 0x0002 0x3cf5

Its not hard to imagine it is the 0xffff in the MaxComponentPoints field that is causing 
the problem.  You can verify this by changing it to some value smaller than 0xfff0 and 
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seeing that it doesn't cause a crash.  Alternatively, changing any of the other fields 
doesnʼt cause a crash.  One other interesting thing is if you fuzz the actual maxp table 
itself in an otherwise clean file, you won't find this crash with single byte mutations, it 
can only be found by fuzzing words, not bytes.  

So, let's create a PDF file with this font and instead of tainting the e4, which is the offset 
to where the table is found, we taint the MaxPoints field (The 0xffff).  

Running it generates more traces.  Looking to see where tainted data enters 
Cooltype.dll, we do the same as before:

$ trace_reader -intel -trace x.trace -taintedonly -count | grep ")80" | head -20
(79500371)80112f3: mov    dh,BYTE PTR [eax+0xa] M@0x0267ae86[0x000000ff][1]
(R) T1 {1 (1111, 6) ()()()} R@dh[0x00000000][1](W) T0
(79500372)80112f6: mov    dl,BYTE PTR [eax+0xb] M@0x0267ae87[0x000000ff][1]
(R) T1 {1 (1111, 7) ()()()} R@dl[0x00000000][1](W) T0
(79500373)80112f9: mov    WORD PTR [ecx+0xa],dx R@dx[0x0000ffff][2](R) T1 {3 
(1111, 7) (1111, 6) ()()} M@0x01e7592e[0x00000000][2](W) T0
(79500374)80112fd: xor    edx,edx R@edx[0x0000ffff][4](R) T1 {3 (1111, 7) 
(1111, 6) ()()} R@edx[0x0000ffff][4](RW) T1 {3 (1111, 7) (1111, 6) ()()}
(79501343)80053e7: movzx  edx,WORD PTR [ebx+0xa] M@0x01e7592e[0x0000ffff][2]
(R) T1 {3 (1111, 7) (1111, 6) ()()} R@edx[0x000027fc][4](W) T0
(79501344)80053eb: cmp    ax,dx R@dx[0x0000ffff][2](R) T1 {3 (1111, 7) (1111, 6) 
()()} R@ax[0x000000f2][2](R) T0
(79501347)80053f3: movzx  eax,dx R@dx[0x0000ffff][2](R) T1 {3 (1111, 7) (1111, 6) 
()()} R@eax[0x000000f2][4](W) T0
(79501350)80053fa: lea    edx,[ebp+0xc] A@0x0012d618[0x00000000][4](R)
 T0 R@edx[0x0000ffff][4](W) T1 {3 (1111, 7) (1111, 6) ()()}
(79501355)8005403: add    eax,0x8 I@0x00000000[0x00000008][1](R) T0 R@eax
[0x0000ffff][4](RW) T1 {3 (1111, 7) (1111, 6) ()()}
(79501356)8005406: push   eax R@eax[0x00010007][4](R) T1 {15 (1111, 7) (1111, 7) 
(1111, 7) (1111, 7) } M@0x0012d5ec[0x01e759c0][4](W) T0
(79501360)8004745: mov    eax,DWORD PTR [ebp+0x14] M@0x0012d5f8[0x0012d618][4]
(R) T0 R@eax[0x00010007][4](W) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 
7) }
(79501365)8004751: movzx  esi,WORD PTR [ebp+0x8] M@0x0012d5ec[0x00000007][2]
(R) T1 {3 (1111, 7) (1111, 7) ()()} R@esi[0x01e75968][4](W) T0
...

So our 0xffff is loaded from memory and 8 is added to it.  This new value, 0x10007 is 
then pushed onto the stack (for a function call).  You can see more details if you look at 
the non tainted instructions around this point.

$ trace_reader -intel -trace x.trace -first 79501356 -last 79501359 -count
(79501356)8005406: push   eax R@eax[0x00010007][4](R) T1 {15 (1111, 7) (1111, 7) 
(1111, 7) (1111, 7) } M@0x0012d5ec[0x01e759c0][4](W) T0
(79501357)8005407: call   0x0000000008004742 J@0x00000000[0xfffff33b][4](R)
 T0 M@0x0012d5e8[0x000029b8][4](W)T0
(79501358)8004742: push   ebp R@ebp[0x0012d60c][4](R) T0 M@0x0012d5e4
[0x0012d614][4](W) T0
(79501359)8004743: mov    ebp,esp R@esp[0x0012d5e4][4](R) T0 R@ebp
[0x0012d60c][4](W) T0

Looking at instruction counter 79501365 above, we see this memory location holding 
0x10007 is read in as a word, so a (short) integer overflow has occurred since esi now 
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has the value 7 which is probably smaller than intended.  Let's peek ahead and see 
what problems this causes.

A bit further down the trace, we see the following:
(79501385)8004786: mov    edx,esi R@esi[0x00000007][4](R) T1 {3 (1111, 7) 
(1111, 7) ()()} R@edx[0x00000134][4](W) T1 {15 (1111, 7) (1111, 7) (1111, 7) 
(1111, 7) }
(79501386)8004788: shl    edx,0x2 I@0x00000000[0x00000002][1](R) T0 R@edx
[0x00000007][4](RW) T1 {3 (1111, 7) (1111, 7) ()()}

so that edx = 0x1c.  Then a bunch of instructions like:

(79501397)80047a3: add    DWORD PTR [eax],edx R@edx[0x0000001c][4](R) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) } M@0x0012d618[0x0000016c][4](RW) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) }
(79501398)80047a5: mov    edi,DWORD PTR [eax] M@0x0012d618[0x00000188][4](R) T1 {15 
(1111, 7) (1111, 7) (1111, 7) (1111, 7) } R@edi[0x0000016c][4](W) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) }
(79501399)80047a7: mov    DWORD PTR [ecx+0xc],edi R@edi[0x00000188][4](R) T1 {15 
(1111, 7) (1111, 7) (1111, 7) (1111, 7) } M@0x01e75988[0x00000000][4](W) T0

What's going on here is a some value is being incremented by 0x1c, and being stored 
into different spots in memory pointed to by ecx (in this case, 0xc bytes into this buffer).  
We can see what this buffer looks like in memory (it is all tainted).

$ state_reader -in-state x.trace.state -in-state-range 0x01e7597c:0x01e75993 -out-
raw /tmp/foo
$ hexdump -C /tmp/foo 
00000000  34 01 00 00 50 01 00 00  6c 01 00 00 88 01 00 00  |4...P...l.......|
00000010  a4 01 00 00 c0 01 00 00                           |........|

So there are some small values which are incremented by a number that is the result of 
an integer overflow.  Looking ahead in the trace to see where these values are used (for 
example, seeing the next occurrence of 0x134 anywhere) and you come to a series of 
instructions like:
(79505865)80048ae: mov    esi,DWORD PTR [ecx+0x14] M@0x01e7597c[0x00000134][4]
(R) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) } R@esi[0x0012d61c][4]
(W) T0
(79505866)80048b1: add    esi,edx R@edx[0x08235ab8][4](R) T0 R@esi
[0x00000134][4](RW) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) }
(79505867)80048b3: mov    DWORD PTR [eax],esi R@esi[0x08235bec][4](R) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) } M@0x08235a28[0x00000000][4](W) T0
(79505868)80048b5: mov    esi,DWORD PTR [ecx+0x18] M@0x01e75980[0x00000150][4]
(R) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) } R@esi[0x08235bec][4]
(W) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) }
(79505869)80048b8: add    esi,edx R@edx[0x08235ab8][4](R) T0 R@esi
[0x00000150][4](RW) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) }
(79505870)80048ba: mov    DWORD PTR [eax+0x4],esi R@esi[0x08235c08][4](R) T1 {15 
(1111, 7) (1111, 7) (1111, 7) (1111, 7) } M@0x08235a2c[0x00000000][4](W) T0

These are not very far into the reduced tainted-only-in-Cooltype trace, still only at about 
the 125th instruction.  These instructions are adding the small numbers from the buffer 
above to a fixed value in edx, 0x08235ab8, and saving these pointers in a buffer pointed 
to by eax beginning at 0x08235a28.
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Extracting what this eax buffer looks like reveals a series of 11 pointers pointing to 
the .data section of Cooltype.dll.  You could tell there were 11 by seeing the offsets used 
in the writes in the instructions.

$ state_reader -in-state x.trace.state -in-state-range 0x08235a28:0x08235a53 -out-
raw /tmp/foo
$ hexdump -C /tmp/foo 
00000000  ec 5b 23 08 08 5c 23 08  24 5c 23 08 40 5c 23 08  |.[#..\#.$\#.@\#.|
00000010  5c 5c 23 08 78 5c 23 08  b8 5a 23 08 c0 5a 23 08  |\\#.x\#..Z#..Z#.|
00000020  38 5b 23 08 94 5c 23 08  b0 5b 23 08              |8[#..\#..[#.|

By the way these pointers were constructed, they have the property that they point to 
buffers of size 0x1c, or more accurately, they differ by 0x1c.  This is probably smaller 
than intended due to the integer overflow.  For comparison in the good file which doesn't 
have the integer overflow, you get:

00000000  e0 5c 23 08 c8 60 23 08  b0 64 23 08 98 68 23 08  |.\#..`#..d#..h#.|
00000010  80 6c 23 08 68 70 23 08  b8 5a 23 08 b4 5b 23 08  |.l#.hp#..Z#..[#.|
00000020  2c 5c 23 08 50 74 23 08  a4 5c 23 08              |,\#.Pt#..\#.|

so that the buffer sizes here are 0x3e8.  It turns out that these pointers are indeed 
supposed to point to independent buffers, as can be seen by observing the way the 
good file treats them.  Not surprisingly, in the bad file case, the buffers are smaller than 
expected and the program tends to write over the top of neighboring buffers.  It is not 
hard to find these spots, as almost every buffer access is an overflow:

(79737405)800c4ef: mov    ebx,DWORD PTR [edx] M@0x08235bec[0x00003a79][4](R) T1 {15 
(1111, 7) (1111, 7) (1111, 7) (1111, 7) } R@ebx[0x0012d54c][4](W) T0
(79737406)800c4f1: sub    edi,0x4 I@0x00000000[0x00000004][1](R) T0 R@edi
[0x08235c0c][4](RW) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) }
(79737407)800c4f4: mov    DWORD PTR [ebp-0x14],ebx R@ebx[0x00003a79][4](R) T1 {15 
(1111, 7) (1111, 7) (1111, 7) (1111, 7) } M@0x0012d4cc[0x08235c08][4](W) T1 {15 
(1111, 7) (1111, 7) (1111, 7) (1111, 7) }
(79737408)800c4f7: mov    ebx,DWORD PTR [edi] M@0x08235c08[0x00000000][4](R) T1 {15 
(1111, 7) (1111, 7) (1111, 7) (1111, 7) } R@ebx[0x00003a79][4](W) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) }
(79737409)800c4f9: mov    DWORD PTR [edx],ebx R@ebx[0x00000000][4](R) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) } M@0x08235bec[0x00003a79][4](W) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) }
(79737410)800c4fb: mov    ebx,DWORD PTR [ebp-0x14] M@0x0012d4cc[0x00003a79][4]
(R) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) } R@ebx[0x00000000][4]
(W) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) }
(79737411)800c4fe: add    edx,0x4 I@0x00000000[0x00000004][1](R) T0 R@edx
[0x08235bec][4](RW) T1 {15 (1111, 7) (1111, 7) (1111, 7) (1111, 7) }
(79737412)800c501: dec    DWORD PTR [ebp-0x8] M@0x0012d4d8[0x00000003][4](RW) T1 {15 
(1111, 7) (1111, 7) (1111, 7) (1111, 7) }
(79737413)800c504: mov    DWORD PTR [edi],ebx R@ebx[0x00003a79][4](R) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) } M@0x08235c08[0x00000000][4](W) T1 {15 (1111, 
7) (1111, 7) (1111, 7) (1111, 7) }
(79737414)800c506: jns    0x000000000800c4ef J@0x00000000[0xffffffe9][4](R) T0

Here, the program is trying to shuffle values around inside the 0x08235bec buffer, but 
its already writing to 0x08235c08 which should be in the second buffer.  But what kind of 
data do you find in these buffers?  Spot checking them reveals that they always seem to 
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be words or pointers back into this "scratch buffer" in the .data section, but occasionally 
contain "random" looking data:

$ state_reader -in-state x.trace.state -in-state-range 0x8235bec:0x8235dec -out-raw /
tmp/foo
$ hexdump -C /tmp/foo 
00000000  64 62 00 00 16 40 00 00  16 40 00 00 4a 2d 00 00  |db...@...@..J-..|
00000010  c7 13 00 00 c7 13 00 00  34 21 00 00 00 00 00 00  |........4!......|
00000020  00 00 00 00 46 81 00 00  00 00 00 00 0a 8b 00 00  |....F...........|
00000030  00 00 00 00 00 00 00 00  00 00 00 00 c7 13 00 00  |................|
00000040  00 00 00 00 00 00 00 00  00 00 00 00 02 b6 00 00  |................|
00000050  63 cb ff ff 00 00 00 00  00 00 00 00 02 b6 00 00  |c...............|
00000060  b0 b3 00 00 0a 8b 00 00  00 00 00 00 00 00 00 00  |................|
00000070  00 00 00 00 c7 13 00 00  00 00 00 00 00 00 00 00  |................|
00000080  00 00 00 00 02 b6 00 00  63 cb ff ff 00 00 00 00  |........c.......|
00000090  00 00 00 00 02 b6 00 00  b0 b3 00 00 73 04 00 00  |............s...|
000000a0  00 00 00 00 00 00 00 00  00 00 00 00 a2 00 00 00  |................|
000000b0  00 00 00 00 00 00 00 00  00 00 00 00 d3 05 00 00  |................|
000000c0  51 fe ff ff 00 00 00 00  00 00 00 00 d3 05 00 00  |Q...............|
000000d0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
000000e0  ba dd 67 02 00 00 00 00  14 00 a2 00 00 00 26 03  |..g...........&.|
000000f0  c0 05 73 04 82 07 a2 00  13 00 00 00 02 00 00 00  |..s.............|
00000100  00 00 00 00 00 00 00 00  00 00 00 00 00 00 01 00  |................|

This explains why we saw the two pointers being added in the crash, it was probably 
supposed to be a pointer added to a small (word) offset, but instead got two pointers.  

As is, by doing a heap spray, we can get arbitrary values in our heap buffers modified 
(added really).  By ensuring this is a vtable or something, we can get control of 
execution.

An exploitable Open Office bug
This is a crash !exploitable says is exploitable in Open Office Simpress that was found 
by mutation based fuzzing.  The bad file and good file differ by a single byte.  We turn 
on full trace heap checking for this example.  The crash is a write inside memcpy:

$ trace_reader -trace z.trace -header | grep Number
Number of instructions: 2895297
$ trace_reader -intel -trace z.trace -first 2895297 -v
7855ac5a: mov    BYTE PTR [edi],al R@al[0x0000006d][1](R) T0 M@0x1244c000
[0x00000000][1](W) T0 ESP:  NUM_OP: 3 TID: 1224 TP: TPNone EFLAGS: 0x00000083 CC_OP: 
0x00000010 DF: 0x00000001 RAW: 0x8807 MEMREGS:  R@edi[0x1244c000][4](R) T0 

The first thing we need to do is figure out where the memcpy was called.  As before, we 
do this by seeing the last non-Windows DLL instructions executed before the crash.

$ trace_reader -intel -trace z.trace -first 2894097 -count | grep -v ")78" | tail -2
(02895270)5732c511: call   0x0000000057349d30 J@0x00000000[0x0001d81f][4](R)
 T0 M@0x014aea8c[0x5732c516][4](W) T0
(02895271)57349d30: jmp    DWORD PTR ds:0x573511d4 M@0x573511d4[0x7855aac0][4]
(R) T0

The call to memcpy occurred at 0x5732c511, which is inside tlmi.dll.  

$ trace_reader -trace z.trace -header | grep 0x5730
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  Module: tlmi.dll @ 0x57300000 Size: 528384

Currently, the only way we know that the call to 0x7855aac0 is a call to memcpy is by 
checking with IDA Pro.  So, lets see what the arguments were to memcpy.

$ trace_reader -intel -trace z.trace -count -first 02895266 -last 02895270
(02895266)5732c50a: push   edi R@edi[0x00000002][4](R) T0 M@0x014aea98
[0x00000002][4](W) T0
(02895267)5732c50b: add    eax,ecx R@ecx[0x00000070][4](R) T0 R@eax
[0x12419e18][4](RW) T0
(02895268)5732c50d: push   eax R@eax[0x12419e88][4](R) T0 M@0x014aea94
[0x12419e86][4](W) T0
(02895269)5732c50e: push   DWORD PTR [ebp+0x8] M@0x014aeaac[0x1244c000][4](R)
 T0 M@0x014aea90[0x1244bffe][4](W) T0
(02895270)5732c511: call   0x0000000057349d30 J@0x00000000[0x0001d81f][4](R)
 T0 M@0x014aea8c[0x5732c516][4](W) T0

So the final call to memcpy which crashes took the form:

memcpy(0x1244c000,0x12419e88,2);

If we examine the source buffer to this memcpy, we see that we control the source, i.e. it 
comes from the file.

$ state_reader -in-state z.trace.state -in-state-range 0x12419e78:0x12419e9f -out-
raw /tmp/foo
$ hexdump -C /tmp/foo 
00000000  5f 00 41 00 75 00 74 00  68 00 6f 00 72 00 45 00  |_.A.u.t.h.o.r.E.|
00000010  6d 00 61 00 69 00 6c 00  00 00 00 00 05 00 00 00  |m.a.i.l.........|
00000020  18 00 00 00 5f 00 41 00                           |...._.A.|

Letʼs look at the destination buffer.  

$ alloc_reader -alloc z.trace.alloc -addr 0x1244c000 -closest 1 2>/dev/null
Found 0 buffers. Closest are:
  [02890556,end] 0x1244bfb8 (67) Dist: 6

The closest buffer began at 0x1244bfb8 and ended at 0x1244bffb.  So this write was 
occurred just beyond a buffer.  Probably this is a 2 byte heap overflow.  Let's see where 
the buffer that we are overflowing was allocated.  We do this by tracing beyond when 
the buffer was returned (instruction counter 02890556) paying attention to returns until 
we end up back in OpenOffice DLLs.  

$ trace_reader -intel -trace z.trace -count -first 02890556 | grep -A1 ret | head -8
(02890556)7c9101bb: ret    0xc I@0x00000000[0x0000000c][2](R) T0 M@0x014aeaa0
[0x78583a58][4](R) T0
(02890557)78583a58: mov    edi,eax R@eax[0x1244bfb8][4](R) T0 R@edi
[0x5732df90][4](W) T0
--
(02890566)78583ab5: ret     M@0x014aeac0[0x78583b58][4](R) T0
(02890567)78583b58: pop    ecx M@0x014aeac4[0x00000043][4](R) T0 R@ecx
[0x7c9101bb][4](W) T0
--
(02890571)78583b5e: ret     M@0x014aead8[0x5f38b211][4](R) T0
(02890572)5f38b211: mov    edi,eax R@eax[0x1244bfb8][4](R) T0 R@edi
[0x5732df90][4](W) T0
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So the first time outside of Windows dll's that it returns after the allocation is 
0x5f38b211.  We can quickly find the instruction which made this call and the size of the 
requested allocation:

(02877747)5f38b20b: push   eax R@eax[0x00000043][4](R) T0 M@0x014aeadc
[0x5f38b205][4](W) T0
(02877748)5f38b20c: call   0x000000005f496ddc J@0x00000000[0x0010bbd0][4](R)
 T0 M@0x014aead8[0x5730ff79][4](W) T0

Looking again in IDA Pro we see this is actually a call to new(0x43).  So the destination 
buffer was allocated at 0x5f38b20c to have size 0x43.

As an aside, let's see where the tainted byte (0x71) is used in the program.

$ trace_reader -intel -taintedonly -trace z.trace -count | grep -v ")78" | tail -2
(02814669)5f38b1bb: cmp    DWORD PTR [ebp-0x18],ebx R@ebx[0x00000000][4](R)
 T0 M@0x014aeb7c[0x00000071][4](R) T1 {1 (1111, 1) ()()()}
(02877474)5f38b2fc: cmp    eax,DWORD PTR [ebp-0x18] R@eax[0x0000000b][4](R)
 T0 M@0x014aeb7c[0x00000071][4](R) T1 {1 (1111, 1) ()()()}

These two addresses are in the same function where the function new() is called above 
so we know we have found the function of interest for this bug.

Let us see where the size of the allocation, 0x43, came from.

$ x86_slicer -in-trace z.trace -ctr 02877747 -regloc eax > /dev/null
$ trace_reader -intel -trace EAX_0.trace | tail -6
7855ab1a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x123e9e34[0x00690076]
[4](CR) T0 R@ecx[0x00000072][4](RCW) T0M@0x12419e34[0xc0c0c0c0][4](CW) T0
7855ab1a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x123e9e38[0x00770065]
[4](CR) T0 R@ecx[0x00000071][4](RCW) T0M@0x12419e38[0xc0c0c0c0][4](CW) T0
7855ab1a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x123e9e3c[0x00790043]
[4](CR) T0 R@ecx[0x00000070][4](RCW) T0M@0x12419e3c[0xc0c0c0c0][4](CW) T0
7855ac18: mov    eax,DWORD PTR [esi+ecx*4-0x4] M@0x12419e3c[0x00790043][4]
(R) T0 R@eax[0x12419e40][4](W) T0
7855ac1c: mov    DWORD PTR [edi+ecx*4-0x4],eax R@eax[0x00790043][4](R)
 T0 M@0x014aeb8c[0x0000000a][4](W) T0
5f38b207: movzx  eax,WORD PTR [ebp-0x8] M@0x014aeb8c[0x00000043][2](R)
 T0 R@eax[0x00000028][4](W) T0

(Notice the 0x00000043 in 0x5f38b207 is really still 0x00790043 but that address is 
being presented as a word pointer since that is how it is used in that instruction.)  
Looking at this slice, we see that the value 0x43 came from a word from the file (you 
can see the file being copied in the rep movs instructions: 
006900760077006500790043).  So we control the word that is used for the allocation 
as well as the data being copied.  Now how much data is copied?  We saw that the 
actual call to memcpy only had length 2, so the question is how much data is really 
being copied?

Let's look at the instructions executed in the DLL from the time of the allocation until the 
crash.
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$ trace_reader -intel -trace z.trace -first 02890572 -count | grep ")5f" | tail
(02895097)5f38b25c: call   DWORD PTR ds:0x5f5032c0 M@0x5f5032c0[0x5732df24][4]
(R) T0 M@0x014aead8[0x5f38b262][4](W) T0
(02895213)5f38b262: inc    DWORD PTR [ebp-0xc] M@0x014aeb88[0x00000023][4](RW) T0
(02895214)5f38b265: movzx  eax,WORD PTR [ebp-0x8] M@0x014aeb8c[0x00008021][2]
(R) T0 R@eax[0x014aeaec][4](W) T0
(02895215)5f38b269: inc    ebx R@ebx[0x1244bffe][4](RW) T0
(02895216)5f38b26a: inc    ebx R@ebx[0x1244bfff][4](RW) T0
(02895217)5f38b26b: cmp    DWORD PTR [ebp-0xc],eax R@eax[0x00008021][4](R)
 T0 M@0x014aeb88[0x00000024][4](R) T0
(02895218)5f38b26e: jb     0x000000005f38b255 J@0x00000000[0xffffffe7][4](R) T0
(02895219)5f38b255: push   ebx R@ebx[0x1244c000][4](R) T0 M@0x014aeadc
[0x1244bffe][4](W) T0
(02895220)5f38b256: lea    ecx,[ebp-0xa8] A@0x014aeaec[0x00000000][4](R)
 T0 R@ecx[0xffff0000][4](W) T0
(02895221)5f38b25c: call   DWORD PTR ds:0x5f5032c0 M@0x5f5032c0[0x5732df24][4]
(R) T0 M@0x014aead8[0x5f38b262][4](W) T0

It looks like the execution ends up in a loop calling a function from tlmi.dll each time 
(where the bad memcpy call occurs).  A little bit of analysis shows that each time the 
function from tlmi.dll is called, 2 bytes are copied into our buffer of size 0x43.  To see 
this, observe each time through the loop, the call to memcpy occurs exactly once and 
the argument pushed for length of the copy is 2:

$ trace_reader -intel -trace z.trace -first 02890739 -count | grep -P "5f38b25c:|
5732c511:|5732c50a:"
(02890739)5f38b25c: call   DWORD PTR ds:0x5f5032c0 M@0x5f5032c0[0x5732df24][4]
(R) T0 M@0x014aead8[0x5f38b247][4](W) T0
(02890784)5732c50a: push   edi R@edi[0x00000002][4](R) T0 M@0x014aea98
[0x00000043][4](W) T0
(02890788)5732c511: call   0x0000000057349d30 J@0x00000000[0x0001d81f][4](R)
 T0 M@0x014aea8c[0x014aef84][4](W) T0
(02890864)5f38b25c: call   DWORD PTR ds:0x5f5032c0 M@0x5f5032c0[0x5732df24][4]
(R) T0 M@0x014aead8[0x5f38b262][4](W) T0
(02890909)5732c50a: push   edi R@edi[0x00000002][4](R) T0 M@0x014aea98
[0x00000002][4](W) T0
(02890913)5732c511: call   0x0000000057349d30 J@0x00000000[0x0001d81f][4](R)
 T0 M@0x014aea8c[0x5732c516][4](W) T0
(02890988)5f38b25c: call   DWORD PTR ds:0x5f5032c0 M@0x5f5032c0[0x5732df24][4]
(R) T0 M@0x014aead8[0x5f38b262][4](W) T0
(02891033)5732c50a: push   edi R@edi[0x00000002][4](R) T0 M@0x014aea98
[0x00000002][4](W) T0
(02891037)5732c511: call   0x0000000057349d30 J@0x00000000[0x0001d81f][4](R)
 T0 M@0x014aea8c[0x5732c516][4](W) T0
(02891113)5f38b25c: call   DWORD PTR ds:0x5f5032c0 M@0x5f5032c0[0x5732df24][4]
(R) T0 M@0x014aead8[0x5f38b262][4](W) T0
(02891158)5732c50a: push   edi R@edi[0x00000002][4](R) T0 M@0x014aea98
[0x00000002][4](W) T0
(02891162)5732c511: call   0x0000000057349d30 J@0x00000000[0x0001d81f][4](R)
 T0 M@0x014aea8c[0x5732c516][4](W) T0
(02891237)5f38b25c: call   DWORD PTR ds:0x5f5032c0 M@0x5f5032c0[0x5732df24][4]
(R) T0 M@0x014aead8[0x5f38b262][4](W) T0
(02891282)5732c50a: push   edi R@edi[0x00000002][4](R) T0 M@0x014aea98
[0x00000002][4](W) T0
(02891286)5732c511: call   0x0000000057349d30 J@0x00000000[0x0001d81f][4](R)
 T0 M@0x014aea8c[0x5732c516][4](W) T0
...
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The only question that remains is how many times this loop occurs.  Looking at cmp that 
determines this,

(02895217)5f38b26b: cmp    DWORD PTR [ebp-0xc],eax R@eax[0x00008021][4](R)
 T0 M@0x014aeb88[0x00000024][4](R) T0

we see the loop will happen 0x8021 times.  That means 0x10042 bytes will be copied 
into the buffer of size 0x43, way too much!  Where did this 0x8021 value come from?

$ x86_slicer -in-trace z.trace -ctr 02895217 -regloc eax > /dev/null
$ trace_reader -intel -trace EAX_0.trace | tail -5
7855ab1a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x123e9e3c[0x00790043]
[4](CR) T0 R@ecx[0x00000070][4](RCW) T0M@0x12419e3c[0xc0c0c0c0][4](CW) T0
7855ac18: mov    eax,DWORD PTR [esi+ecx*4-0x4] M@0x12419e3c[0x00790043][4]
(R) T0 R@eax[0x12419e40][4](W) T0
7855ac1c: mov    DWORD PTR [edi+ecx*4-0x4],eax R@eax[0x00790043][4](R)
 T0 M@0x014aeb8c[0x0000000a][4](W) T0
5f38b237: shr    DWORD PTR [ebp-0x8],1 I@0x00000000[0x00000001][1](R)
 T0 M@0x014aeb8c[0x00790043][4](RW) T0
5f38b265: movzx  eax,WORD PTR [ebp-0x8] M@0x014aeb8c[0x00008021][2](R)
 T0 R@eax[0x014aeaec][4](W) T0

Oh, it came from the dword we supplied divided by 2.  However, they treated the 
allocation as a word, but the number they are dividing by two they treat as a dword.  So, 
in this case, the copy is much larger than the buffer allocated and we control the data 
being copied.  This is a very nice heap overflow.

Another exploitable Open Office bug
This is an exploitable crash open Open Office Simpress found by mutation based 
fuzzing.  The good file and bad file differ in a single byte.  The crash occurs as follows:

$ trace_reader -trace z.trace -header | grep Number
Number of instructions: 209430179
$ trace_reader -intel -v -trace z.trace -first 209430179
7855ab1a: rep movs DWORD PTR es:[edi],DWORD PTR ds:[esi] M@0x072602c0[0x00001bcf]
[4](CR) T0 R@ecx[0x0001fee0][4](RCW) T1 {15 (1111, 3) (1111, 3) (1111, 3) 
(1111, 3) } M@0x07360000[0x00000000][4](CW) T0 ESP:  NUM_OP: 5 TID: 1380 TP: TPSrc 
EFLAGS: 0x00000083 CC_OP: 0x00000010 DF: 0x00000001 RAW: 0xf3a5 MEMREGS:  R@edi
[0x07360000][4](R) T1 {15 (1111, 3) (1111, 3) (1111, 3) (1111, 3) }  R@esi
[0x072602c0][4](R) T0 

This is in a call to memcpy.  As an example of how we can use valset analysis, we can 
automatically see if the attacker has control over the destination address of the copy.

$ x86_slicer -in-trace z.trace -ctr 209430179 -regloc edi > /dev/null
$ cp EDI_0.trace z-sliced.trace
$ dynslicer -concall -nomemconstraints -ir z-sliced.trace
$ valset_ir -ir-in z-sliced.ir.concall -tmp-name R_EDI_3 -get-val-bounds true -sample-
pts 2000 
...
Summary:
Lowest and highest possible values: 0x72e0020 to 0x7360018
Influence bounds after establishing value bounds: 3.321928 to 18.999981
Influence bounds after asking for counterexamples: 6.209453 to 18.999981
Probable influence: 16.012888 (252 hits of 2000 samples in population 524207)
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It seems the attacker has control over 2 bytes of the destination address.  As we 
proceed with analysis, weʼll see why this is the case.

The instructions that called this memcpy can be found by looking for the last instructions 
not inside Windows DLLʼs.

$ trace_reader -intel -trace z.trace -first 209420079 -last 209430179 -count | grep -v 
")78" | tail
(209429976)57308071: mov    eax,DWORD PTR [ebp+0xc] M@0x014ad988[0x0000ffc4]
[4](R) T1 {3 (1111, 3) (1111, 3) ()()} R@eax[0x072eff6c][4](W) T1 {3 (1111, 3) 
(1111, 3) ()()}
(209429977)57308074: shl    eax,0x3 I@0x00000000[0x00000003][1](R)
 T0 R@eax[0x0000ffc4][4](RW) T1 {3 (1111, 3) (1111, 3) ()()}
(209429978)57308077: push   eax R@eax[0x0007fe20][4](R) T1 {15 (1111, 3) 
(1111, 3) (1111, 3) (1111, 3) } M@0x014ad960[0x00000001][4](W) T0
(209429979)57308078: mov    eax,DWORD PTR [esi] M@0x08a34718[0x072e0020][4]
(R) T0 R@eax[0x0007fe20][4](W) T1 {15 (1111, 3) (1111, 3) (1111, 3) (1111, 
3) }
(209429980)5730807a: push   DWORD PTR [edi] M@0x08a348c8[0x07260020][4]
(R) T0 M@0x014ad95c[0x0000ff6c][4](W) T1 {3 (1111, 3) (1111, 3) ()()}
(209429981)5730807c: movzx  ebx,bx R@bx[0x0000ffa8][2](R) T1 {3 (1111, 3) 
(1111, 3) ()()} R@ebx[0x0000ffa8][4](W) T1 {3 (1111, 3) (1111, 3) ()()}
(209429982)5730807f: lea    eax,[eax+ebx*8] A@0x0735fd60[0x00000000][4]
(R) T0 R@eax[0x072e0020][4](W) T0
(209429983)57308082: push   eax R@eax[0x0735fd60][4](R) T1 {15 (1111, 3) 
(1111, 3) (1111, 3) (1111, 3) } M@0x014ad958[0x57308066][4](W) T0
(209429984)57308083: call   0x0000000057349d30 J@0x00000000[0x00041cad][4]
(R) T0 M@0x014ad954[0x014ad97c][4](W) T0
(209429985)57349d30: jmp    DWORD PTR ds:0x573511d4 M@0x573511d4[0x7855aac0]
[4](R) T0

From this it seems the call to memcpy looked something like

memcpy(0x0735fd60, 0x07260020, 0x0007fe20);

Letʼs see where these buffers came from.  The source buffer can be traced back to its 
allocation point using alloc_reader.

$ ulimit -s unlimited
$ alloc_reader -alloc z.trace.alloc -ctr 209430179 -addr 0x07260020 -closest 1
Found 1 buffers
[141406597,end] 0x07260020 (523808)

So the source was allocated at instruction counter 141406597 and had a size of 
0x7fe20 (523808), which happens to be the same size as the length in the memcpy.  

Now we examine the destination buffer.  

$ alloc_reader -alloc z.trace.alloc -ctr 209429984 -addr 0x0735fd60 -closest 1
Found 0 buffers. Closest are:
  [209160625,end] 0x072e0020 (523104) Dist: 481

So the closest buffer begins at 0x072e0020 and ends at 0x735fb80, a couple of 
hundred bytes before where the memcpy is going to write.  If you look at the instruction 
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before the destination is pushed on the stack (already displayed above), it says how the 
destination of the memcpy is computed.

$ trace_reader -intel -trace z.trace -first 209429982 -last 209429982 -count -v
(209429982)5730807f: lea    eax,[eax+ebx*8] A@0x0735fd60[0x00000000][4]
(R) T0 R@eax[0x072e0020][4](W) T0 ESP:  NUM_OP: 5 TID: 1380 TP: TPSrc EFLAGS: 
0x00000202 CC_OP: 0x00000024 DF: 0x00000001 RAW: 0x8d04d8 MEMREGS:  R@eax
[0x072e0020][4](R) T0 R@ebx[0x0000ffa8][4](R) T1 {3 (1111, 3) (1111, 3) ()()} 

So the destination buffer is computed as 0x072e0020 + 8*0xffa8 = 0x072e0020 + 
0x7fd40.  But we already saw that the heap buffer 0x072e0020 is only 0x7fb60 bytes 
long.  So the beginning of the copy is already beyond the allocated buffer.  This means 
either the offset into the buffer used (0xffa8) or the allocation size (0x7fb60) is bad, or 
possibly both.  

Let us look at these two values and see where they came from to clear up the problem.  
First, weʼll consider the allocation.  alloc_reader tells us the buffer is returned from the 
call to malloc at instruction counter 209160625.  To see the actual call to malloc 
occurring, we can look in the trace for the last instructions that are not in Windows 
DLLʼs before this instruction counter.

$ trace_reader -intel -trace z.trace -first 209160025 -last 209160625 -count | grep -v 
")7c" | grep -v ")78" | tail -6
(209160387)57307f43: movzx  edi,ax R@ax[0x0000ff6c][2](R) T1 {3 (1111, 3) 
(1111, 3) ()()} R@edi[0x0000ffa8][4](W) T1 {3 (1111, 3) (1111, 3) ()()}
(209160388)57307f46: mov    ebx,edi R@edi[0x0000ff6c][4](R) T1 {3 (1111, 
3) (1111, 3) ()()} R@ebx[0x0000ffa8][4](W) T1 {3 (1111, 3) (1111, 3) ()()}
(209160389)57307f48: shl    ebx,0x3 I@0x00000000[0x00000003][1](R)
 T0 R@ebx[0x0000ff6c][4](RW) T1 {3 (1111, 3) (1111, 3) ()()}
(209160390)57307f4b: push   ebx R@ebx[0x0007fb60][4](R) T1 {15 (1111, 3) 
(1111, 3) (1111, 3) (1111, 3) } M@0x014ad940[0x0000ffd0][4](W) T0
(209160391)57307f4c: call   0x0000000057349d2a J@0x00000000[0x00041dde][4]
(R) T0 M@0x014ad93c[0x089a6000][4](W) T0
(209160392)57349d2a: jmp    DWORD PTR ds:0x573511d8 M@0x573511d8[0x78583bb3]
[4](R) T0

The allocation size 0x7fb60 came from ax (0xff6c) after multiplication by 8.  Let us slice 
this register ax to see where it came from.

$ x86_slicer -in-trace z.trace -ctr 209160387 -regloc ax > /dev/null
$ trace_reader -intel -trace EAX_0.trace  | tail -6
5730803a: mov    ecx,DWORD PTR [ebp+0xc] M@0x014ad988[0x0000ffc4][4](R) T1 {3 
(1111, 3) (1111, 3) ()()} R@ecx[0x08a34718][4](W) T0
57308043: movzx  eax,WORD PTR [esi+0x8] M@0x08a34720[0x0000ffa8][2](R) T1 {3 
(1111, 3) (1111, 3) ()()} R@eax[0x0000ffc4][4](W) T1 {3 (1111, 3) (1111, 3) ()()}
57308047: lea    edx,[eax+ecx*1] A@0x0001ff6c[0x00000000][4](R) T0 R@edx
[0x00000000][4](W) T1 {3 (1111, 3) (1111, 3) ()()}
5730804e: movzx  edx,dx R@dx[0x0000ff6c][2](R) T1 {3 (1111, 3) (1111, 3) ()
()} R@edx[0x0001ff6c][4](W) T1 {15 (1111, 3) (1111, 3) (1111, 3) (1111, 3) }
5730805b: push   edx R@edx[0x0000ff6c][4](R) T1 {3 (1111, 3) (1111, 3) ()
()} M@0x014ad95c[0x014ad754][4](W) T0
57307f2b: mov    ax,WORD PTR [ebp+0x8] M@0x014ad95c[0x0000ff6c][2](R) T1 {3 
(1111, 3) (1111, 3) ()()} R@ax[0x0000ffa8][2](W) T1 {3 (1111, 3) (1111, 3) ()()}
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So the register ax, which gets multiplied by 8 to compute the allocation size, comes 
from the addition of two words (0xffc4 and 0xffa8) which sum up to 0x1ff6c.  Then this 
value is copied as a word into the register ax to become 0xff6c.  Here the short that will 
control the allocation size has overflown.  This is problematic.

Even though weʼve basically found the vulnerability, let us slice to see where that offset 
that is used for determining the write originates.

$ x86_slicer -in-trace z.trace -ctr 209429982 -regloc ebx > /dev/null
$ trace_reader -intel -trace EBX_0.trace | tail -5
57308043: movzx  eax,WORD PTR [esi+0x8] M@0x08a34720[0x0000ffa8][2](R) T1 {3 
(1111, 3) (1111, 3) ()()} R@eax[0x0000ffc4][4](W) T1 {3 (1111, 3) (1111, 3) ()()}
5730805e: movzx  ebx,ax R@ax[0x0000ffa8][2](R) T1 {3 (1111, 3) (1111, 3) ()
()} R@ebx[0x0000ffa8][4](W) T1 {3 (1111, 3) (1111, 3) ()()}
57307f3c: push   ebx R@ebx[0x0000ffa8][4](R) T1 {3 (1111, 3) (1111, 3) ()
()} M@0x014ad948[0x08a34718][4](W) T0
5730802a: pop    ebx M@0x014ad948[0x0000ffa8][4](R) T1 {3 (1111, 3) (1111, 3) 
()()} R@ebx[0x089b5fd8][4](W) T0
5730807c: movzx  ebx,bx R@bx[0x0000ffa8][2](R) T1 {3 (1111, 3) (1111, 3) ()
()} R@ebx[0x0000ffa8][4](W) T1 {3 (1111, 3) (1111, 3) ()()}

Oh, the offset is one of the values (0xffa8) that was added to get the value stored in the 
register ax.

So this vulnerability arises due to a short integer overflow in an allocation which is 
followed by a memcpy into this buffer at an offset that was used as one of the 
summands for the short overflow.  In other words, this is a heap overflow.

Conclusions
BitBlaze is a binary analysis toolset which allows for data and execution tracing, 
amongst other things.  It can be helpful for a variety of crash analysis tasks.  It can be 
used to determine which registers and memory addresses come from the attacker 
controlled input file at the time of the crash.  It can be used to quickly rule out 
exploitability in some cases by slicing on Null pointers to see where they originated.  
Most importantly, the toolset can be used to speed up analysis of crashes to determine 
the root cause of the vulnerability and whether it can be exploited.  These tools include 
taint tracing of the single byte difference between a good and bad file, as well as slicing 
data to see where it comes from.  Most of these tasks can be done manually or with a 
debugger, but using BitBlaze can simplify and speed up the process as well as 
providing repeatability since the program is not needed to be run multiple times.  Being 
able to speed up the time required to perform crash analysis increases the number of 
crashes that can be examined...and exploited!

65



References
[BitBlaze] http://BitBlaze.cs.berkeley.edu/
[monkeys] http://securityevaluators.com/files/slides/cmiller_CSW_2010.ppt
[SMS] http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-
FuzzingPhone-SLIDES.pdf
[heap] http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-
eu-07-sotirov-apr19.pdf
[filefuzz] http://labs.idefense.com/software/fuzzing.php
[!exploitable] http://msecdbg.codeplex.com/
[crashwrangler] https://connect.apple.com/cgi-bin/WebObjects/MemberSite.woa/wa/
getSoftware?bundleID=20390
[TTF] http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html#Dictionary
[Nagy] http://www.coseinc.com/en/index.php?rt=download&act=publication&file=A
%20New%20Fuzzing%20Framework.pptx

[ARM05] ARM. ARM Architecture Reference Manual, 2005. Doc No. DDI-0100I.
[Bal07] Gogul Balakrishnan. WYSINWYX: What You See Is Not What You eXecute. 
PhD thesis, Computer Science Department, University of Wisconsin at Madison, August 
2007.
[BCL+07] David Brumley, Juan Caballero, Zhenkai Liang, James Newsome, and Dawn 
Song. Towards automatic discovery of deviations in binary implementations with 
applications to error detection and fingerprint generation. In Proceedings of the USENIX 
Security Symposium, Boston, MA, August 2007.
[BCS09] Adam Barth, Juan Caballero, and Dawn Song. Secure content sniffing for web 
browsers or how to stop papers from reviewing themselves. In Proceedings of the 30th 
IEEE Symposium on Security & Privacy, Oakland, CA, May 2009.
[BHK+07] David Brumley, Cody Hartwig, Min Gyung Kang, Zhenkai Liang, James 
Newsome, Pongsin Poosankam, and Dawn Song. Bitscope: Automatically dissecting 
malicious binaries. Technical Report CS-07-133, School of Computer Science, Carnegie 
Mellon University, March 2007.
[BHL+07] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, 
and Heng Yin. Towards automatically identifying trigger-based behavior in malware 
using symbolic execution and binary analysis. Technical Report CMU-CS-07-105, 
Carnegie Mellon University School of Computer Science, January 2007.
[BHL+08] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Pongsin 
Poosankam, Dawn Song, and Heng Yin. Automatically identifying trigger-based 
behavior in malware. In Wenkee Lee, Cliff Wang, and David Dagon, editors, Botnet 
Detection, volume 36 of Countering the Largest Security Threat Series: Advances in 
Information Security. Springer-Verlag, 2008.
[BNS+06] David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. 
Towards automatic generation of vulnerability-based signatures. In Proceedings of the 
2006 IEEE Symposium on Security and Privacy, pages 2–16, 2006.
[BPSZ08] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 
Automatic patch-based exploit generation is possible: Techniques and implications. In 
Proceedings of the 2008 IEEE Symposium on Security and Privacy, 2008.

66

http://bitblaze.cs.berkeley.edu
http://bitblaze.cs.berkeley.edu
http://securityevaluators.com/files/slides/cmiller_CSW_2010.ppt
http://securityevaluators.com/files/slides/cmiller_CSW_2010.ppt
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-SLIDES.pdf
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://labs.idefense.com/software/fuzzing.php
http://labs.idefense.com/software/fuzzing.php
http://msecdbg.codeplex.com
http://msecdbg.codeplex.com
https://connect.apple.com/cgi-bin/WebObjects/MemberSite.woa/wa/getSoftware?bundleID=20390
https://connect.apple.com/cgi-bin/WebObjects/MemberSite.woa/wa/getSoftware?bundleID=20390
https://connect.apple.com/cgi-bin/WebObjects/MemberSite.woa/wa/getSoftware?bundleID=20390
https://connect.apple.com/cgi-bin/WebObjects/MemberSite.woa/wa/getSoftware?bundleID=20390
http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html
http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=A%20New%20Fuzzing%20Framework.pptx
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=A%20New%20Fuzzing%20Framework.pptx
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=A%20New%20Fuzzing%20Framework.pptx
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=A%20New%20Fuzzing%20Framework.pptx


[BWJS07] David Brumley, Hao Wang, Somesh Jha, and Dawn Song. Creating 
vulnerability signatures using weakest pre-conditions. In Proceedings of Computer 
Security Foundations Symposium, July 2007.
[CC04] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data attack 
prevention orthogonal to memory model. In Proceedings of the 37th International 
Symposium on Microarchitecture (MICROʼ04), December 2004.
[CCC+05] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, 
Lintao Zhang, and Paul Barham. Vigilante: End-to-end containment of internet worms. 
In In Proceedings of the Symposium on Systems and Operating Systems Principles 
(SOSPʼ05), 2005.
[CJMS10] Juan Caballero, Noah M. Johnson, Stephen McCamant, and Dawn Song. 
Binary code extraction and interface identification for security applications. In 
Proceedings of the 17th Annual Network and Distributed System Security Symposium, 
San Diego, CA, February 2010.
[CMBS09] Juan Caballero, Stephen McCamant, Adam Barth, and Dawn Song. 
Extracting models of security-sensitive operations using string-enhanced white-box 
exploration on binaries. Technical Report UCB/EECS-2009-36, EECS Department, 
University of California, Berkeley, March 2009.
[CPG+04] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel 
Rosenblum. Understanding data lifetime via whole system simulation. In Proceedings of 
the 13th USENIX Security Symposium (Securityʼ04), August 2004.
[CPKS09] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. 
Dispatcher: Enabling active botnet infiltration using automatic protocol reverse-
engineering. In Proceedings of the 16th ACM Conference on Computer and 
Communication Security, Chicago, IL, November 2009.
[CPM+10] Juan Caballero, Pongsin Poosankam, Stephen McCamant, Domagoj Babić, 
and Dawn Song. Input generation via decomposition and re-stitching: Finding bugs in 
malware. In Proceedings of the 17th ACM Conference on Computer and 
Communication Security, Chicago, IL, October 2010.
[cvc] CVC Lite documentation. http://www.cs.nyu.edu/acsys/cvcl/doc/. Page checked 
7/26/2008.
[CYLS07a] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot: 
Automatic extraction of protocol message format using dynamic binary analysis. In 
Proceedings of the 14th ACM Conferences on Computer and Communication Security 
(CCSʼ07), October 2007.
[CYLS07b] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot: 
Automatic extraction of protocol message format using dynamic binary analysis. In 
Proceedings of the ACM Conference on Computer and Communications Security, 
October 2007.
[Dat] DataRescue. IDA Pro. http://www.datarescue.com. Page checked 7/31/2008.
[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 
1976.
[GD07] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. 
In W. Damm and H. Hermanns, editors, Proceedings on the Conference on Computer 
Aided Verification, volume 4590 of Lecture Notes in Computer Science, pages 524–536, 
Berlin, Germany, July 2007. Springer-Verlag.

67

http://www.cs.nyu.edu/acsys/cvcl/doc/
http://www.cs.nyu.edu/acsys/cvcl/doc/
http://www.datarescue.com
http://www.datarescue.com


[gra] The DOT language. http://www.graphviz.org/doc/info/lang.html. Page checked 
7/26/2008.
[Int08] Intel Corporation. Intel 64 and IA-32 Architectures Software Developerʼs Manual, 
Volumes 1-5, April 2008.
[JR94] Daniel Jackson and Eugene J. Rollins. Chopping: A generalization of slicing. 
Technical Report CS-94-169, Carnegie Mellon University School of Computer Science, 
1994.
[KPY07] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. Renovo: A hidden code 
extractor for packed executables. In Proceedings of the 5th ACM Workshop on 
Recurring Malcode (WORMʼ07), October 2007.
[KYH+09] Min Gyung Kang, Heng Yin, Steve Hanna, Steve McCamant, and Dawn 
Song. Emulating emulation-resistant malware. In Proceedings of the 2nd Workshop on 
Virtual Machine Security, Chicago, IL, November 2009.
[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. 
Academic Press, 1997.
[NBFS06] James Newsome, David Brumley, Jason Franklin, and Dawn Song. Replayer: 
Automatic protocol replay by binary analysis. In Rebecca Write, Sabrina De Capitani 
di Vimercati, and Vitaly Shmatikov, editors, Proceedings of the ACM Conference on 
Computer and Communications Security, pages 311–321, 2006.
[NBS06a] James Newsome, David Brumley, and Dawn Song. Sting: An end-to-end self-
healing system for defending against zero-day worm attacks. Technical Report CMU-
CS-05-191, Carnegie Mellon University School of Computer Science, 2006.
[NBS06b] James Newsome, David Brumley, and Dawn Song. Vulnerability-specific 
execution filtering for exploit prevention on commodity software. In Proceedings of the 
13th Annual Network and Distributed Systems Security Symposium (NDSS), 2006.
[Net04] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation or Building 
Tools is Easy. PhD thesis, Trinity College, University of Cambridge, 2004.
[NMS09] James Newsome, Stephen McCamant, and Dawn Song. Measuring channel 
capacity to distinguish undue influence. In Proceedings of the Fourth ACM SIGPLAN 
Workshop on Programming Languages and Analysis for Security (PLAS), Dublin, 
Ireland, June 2009. http://BitBlaze.cs.berkeley.edu/papers/influence_plas09.pdf.
[NS05] James Newsome and Dawn Song. Dynamic taint analysis for automatic 
detection, analysis, and signature generation of exploits on commodity software. In 
Proceedings of the 12th Annual Network and Distributed System Security Symposium 
(NDSSʼ05), February 2005.
[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight 
dynamic binary instrumentation. In Proceedings of the ACM Conference on 
Programming Language Design and Implementation, pages 89–101, 2007. http://
www.valgrind.org/docs/valgrind2007.pdf.
[QEM] QEMU. http://wiki.qemu.org/Main_Page.
[SBY+08] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, 
Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek 
Saxena. BitBlaze: A new approach to computer security via binary analysis. In 
Proceedings of the 4th International Conference on Information Systems Security. 
Keynote invited paper., Hyderabad, India, December 2008. http://
bitblaze.cs.berkeley.edu/papers/bitblaze_iciss08.pdf.

68

http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://bitblaze.cs.berkeley.edu/papers/influence_plas09.pdf
http://bitblaze.cs.berkeley.edu/papers/influence_plas09.pdf
http://www.valgrind.org/docs/valgrind2007.pdf
http://www.valgrind.org/docs/valgrind2007.pdf
http://www.valgrind.org/docs/valgrind2007.pdf
http://www.valgrind.org/docs/valgrind2007.pdf
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://bitblaze.cs.berkeley.edu/papers/bitblaze_iciss08.pdf
http://bitblaze.cs.berkeley.edu/papers/bitblaze_iciss08.pdf
http://bitblaze.cs.berkeley.edu/papers/bitblaze_iciss08.pdf
http://bitblaze.cs.berkeley.edu/papers/bitblaze_iciss08.pdf


[Sim96] Loren Taylor Simpson. Value-Driven Redundancy Elimination. PhD thesis, Rice 
University Department of Computer Science, 1996.
[SLZD04] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure 
program execution via dynamic information flow tracking. In Proceedings of the 11th 
International Conference on Architectural Support for Programming Languages and 
Operating Systems (ASPLOSʼ04), October 2004.
[SPMS09] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. 
Loop-extended symbolic execution on binary programs. In Proceedings of the ACM/
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Chicago, 
IL, July 2009.
[TNL+07] Joseph Tucek, James Newsome, Shan Lu, Chengdu Huang, Spiros Xanthos, 
David Brumley, Yuanyuan Zhou, and Dawn Song. Sweeper: A lightweight end-to-end 
system for defending against fast worms. In Proceedings of the EuroSys Conference, 
2007.
[Tri03] Andrew Tridgell. How samba was written. http://www.samba.org/ftp/tridge/misc/
french_cafe.txt, August 2003. URL Checked on 8/21/2008.
[XSZ08] Bin Xin, William N. Summer, and Xiangyu Zhang. Efficent program execution 
indexing. In Proceedings of the ACM Conference on Programming Language Design 
and Implementation, pages 238–248, 2008. http://www.cs.purdue.edu/homes/wsumner/
research/papers/pldi08.pdf.
[YLS08] Heng Yin, Zhenkai Liang, and Dawn Song. HookFinder: Identifying and 
understanding malware hooking behaviors. In Proceedings of the 15th Annual Network 
and Distributed System Security Symposium (NDSSʼ08), February 2008.
[YPHS10] Heng Yin, Pongsin Poosankam, Steve Hanna, and Dawn Song. Hookscout: 
Proactive binary-centric hook detection. In Proceedings of the 7th Conference on 
Detection of Intrusions and Malware & Vulnerability Assessment, Bonn, Germany, July 
2010.
[YSM+07] Heng Yin, Dawn Song, Egele Manuel, Christopher Kruegel, and Engin Kirda. 
Panorama: Capturing system-wide information flow for malware detection and analysis. 
In Proceedings of the 14th ACM Conferences on Computer and Communication 
Security (CCSʼ07), October 2007.

69

http://www.samba.org/ftp/tridge/misc/french_cafe.txt
http://www.samba.org/ftp/tridge/misc/french_cafe.txt
http://www.samba.org/ftp/tridge/misc/french_cafe.txt
http://www.samba.org/ftp/tridge/misc/french_cafe.txt
http://www.cs.purdue.edu/homes/wsumner/research/papers/pldi08.pdf
http://www.cs.purdue.edu/homes/wsumner/research/papers/pldi08.pdf
http://www.cs.purdue.edu/homes/wsumner/research/papers/pldi08.pdf
http://www.cs.purdue.edu/homes/wsumner/research/papers/pldi08.pdf

