
 

Elrod and Keltner : Limited User Post Exploitation | Page 1 

 

 

Adventures in Limited User  

Post-Exploitation 

 

 

 

 

 

 

 

 

tim elrod  

and  

nathan keltner 
 

 
 

 

 

 

BBllaacckk  HHaatt  UUSSAA  22001100 

 



 

Elrod and Keltner : Limited User Post Exploitation | Page 2 

# Abstract 

In the past year, reports have been released claiming that running 

as a limited or unprivileged user will mitigate up to 90% of 

Microsoft vulnerabilities. This claim is rooted in the belief that the 

potential damage that can occur via a client-side vulnerability is 

dramatically limited while under restricted accounts. With these 

articles floating in the authors‟ minds, they set off to determine just 

how much damage could still be achieved while running under 

limited user accounts.  

This paper briefly discusses common post-exploitation activities of 

attackers and offers techniques for achieving similar goals under 

MS Windows limited user accounts, without breaking the security 

model through privilege escalation. 

 

 



 

Elrod and Keltner : Limited User Post Exploitation | Page 3 

# Common Post-Exploitation Techniques 

Attackers are commonly interested in four primary goals: data 

access; using the host as a platform for attacking further systems; 

persistence; and covertness. 

Some of the more common techniques include maintaining 

persistence by installing remote administration tools, rootkits, or 

trojan binaries; achieving covertness through log cleanup and 

rootkit-esque behavior; and attacking further systems through 

accessing stored password hashes, logging keystrokes, sniffing 

network traffic, and pivoting to systems accessible from the 

compromised system. Outside of log cleanup and rootkit-style 

persistence, a significant amount of the above stated behavior can 

be replicated under Limited User accounts. 

  

# Limited User Privileges  

Without administrative access, attackers still have access to a wide 

variety of user level data, configuration, and system level 

information that will allow further control over the system. Any 

program can be driven on behalf of the user, allowing the set up of 

conditions that could allow further exploitation of the target 

system. Below contains a partial, non-exhaustive list of OS 

locations that a Limited User can access. 

 File Shares and local document storage 

 The HKey Current User registry hive 

 The current user‟s configuration directories 

 Much of the Windows 32 API 

 Ability to modify memory space for all user-level 

applications 

 Cache locations used by various applications, including 

Internet Explorer 

Through these levels of access, much of the desired attack activity 

can still be accomplished. Specifically, through the ability to 

access current user registry keys, modify on-disk cache, and 

modify applications loaded into memory, the user‟s operating 

environment can be completely compromised, surviving reboots. 

 



 

Elrod and Keltner : Limited User Post Exploitation | Page 4 

 

# Exploiting user level privileges 

 

1. Direct data access  

It should be obvious that any data the user can access, an attacker 

can also access, and no additional explanation is needed. It is 

trivial to pull down listings of all local and network drives and 

files, search through these files on the compromised computer, and 

exfiltrate any target data observed. 

 

2. Indirect data access, or circumventing the browser trust model 

In the current world of outsourced resources, standardization, and 

web based applications, a significant chunk of valuable corporate 

transactions and data are now occurring inside the browser. As the 

browser runs in user space, the majority of its configuration 

parameters are modifiable by a limited user, and many of the files 

supporting modern browsers are also located in unprotected 

locations, the browser is the most common direct target for 

application interference and subversion. One particularly stealthy 

and persistent technique for accomplishing this attack is discussed 

in detail, below, in the section titled “Persistent browser cache 

poisoning using railgun.” 

  

3. Indirect data access cont., or a poor man‟s limited user sniffer 

Outside of data readily accessible to users via local or remote 

storage, users commonly have additional access to data that is not 

easily observable by an attacker, and may only be present on the 

system while it is in transit or being viewed by the end user. For 

example, the authors have seen applications in use on Limited User 

systems actively accessing cleartext Social Security Numbers and 

banking data through unencrypted links to financial systems. When 

Administrative access is available, a sniffer can be installed that 

will capture the relevant traffic, achieving the attackers goal. When 

Administrative access is not available, however, sniffers such as 

Wireshark or the metasploit meterpreter payload‟s sniffer module 

cannot be employed. 

All data accessible to the user is available in one form or another in 

memory, however, and all application interactions with the 



 

Elrod and Keltner : Limited User Post Exploitation | Page 5 

network occur through accessible user-level code and Windows 

APIs. While applications cannot usually be modified on-disk, as 

these locations are not writable by limited users, they are loaded 

into modifiable memory where they are actually executed. By 

monitoring the list of running processes, in-memory attacker code 

can repeatedly modify application logic whenever it is seen to be 

running, creating the same effect as modifying the binary on disk.  

Applications can be profiled for calls to common network-related 

Windows APIs and through the types of on-the-fly application 

modifications described above, the identified calls can be hooked, 

capturing all data sent or received from the modified application. 

As such, a pseudo-sniffer for specific applications can be 

produced, which will operate under a limited user, and that has the 

added benefit of being able to sidestep encryption in most 

implementations. 

 

4. Password and password hash access 

While gaining access to the passwords and password hashes of all 

cached and recent users is not possible from a limited user, it is 

possible to gain access to the password hash of the exploited user 

indirectly. While the OS disallows direct access to the user‟s login 

hashes, they are present in system level memory, and will be used 

by the OS to authenticate to remote resources when instructed to 

by user-level code. 

One example for exploitation in an Internet facing attack, where an 

internal client has been compromised and only Limited User 

access has been obtained, is to fool Internet Explorer into 

authenticating to a server under attacker control. IE, by default, 

will utilize Integrated Windows Authentication over HTTP/S to 

any sites determined to fall under the Intranet security zone. 

Adding sites to the Intranet zone is as simple as modifying key 

registry entries under HKCU. This hash can be replayed in a live 

attack against additional resources, such as externally available 

sites or services that utilize NTLM and Active Directory 

integration. In addition, when an XP client has been compromised, 

default behavior allows for retrieval of hashes susceptible to trivial 

hash cracking of the first 7 characters of the password, utilizing 

rainbow tables.  

 

5. Keylogging 



 

Elrod and Keltner : Limited User Post Exploitation | Page 6 

In various discussions with security professionals around the 

country, confusion also appears in the understanding of the access 

rights required to perform keylogging functionality. User level 

keylogging is trivial with, for example, the metasploit meterpreter 

payload‟s keylogger extension. While keys pressed by additional 

users outside of the current user‟s session are unavailable, all 

keystrokes from the compromised session are readily accessible. 

 

6. Persistence 

With only user level privileges, maintaining access and persistence 

has been done for many years by malware. While not a new 

technique to anyone paying attention, security professionals, 

particularly those playing defense, seem to not be aware of its 

usage in non-Administrative environments. Specifically, from the 

use of the startup folder in the start menu to the run* keys in 

HKCU\software\microsoft\windows\CurrentVersion\ registry keys, 

ensuring application code loads on boot is trivial. Once code is 

running, it can begin to circumvent any other code currently 

running in user space through any of the aforementioned means. 

 

# Admin access may be a hindrance 

In high security environments observed by the authors, accounts 

with Administrative level access are often closely monitored and 

access to sensitive data is commonly restricted to only Limited 

Users with a legitimate business need for access. In these 

scenarios, accessing target data under an Administrative account 

often requires modifying file, directory, or database permissions to 

allow access to the account in use. Both the access modification 

and the act of an Administrative user viewing data normally only 

viewed by known, Limited Users, are flags for security team 

follow ups and have led to discovery of compromise. 

Often in an effort to maintain a level of stealth, the attacker will try 

to compromise user level accounts that can access sensitive 

information in a way that will not raise the suspicions of 

administrators or security professionals. For this reason, 

administrative access is not always needed or desired for accessing 

the types of highly sensitive information targeted by criminals and 

penetration testers alike. 

 



 

Elrod and Keltner : Limited User Post Exploitation | Page 7 

# Persistent browser cache poisoning using 

railgun 

Browsers rely on local caches of web content to minimize the 

amount of data required to traverse the network and speed up 

content access to end users. Site operators have the option of 

sending down cache headers in HTTP responses, instructing the 

browser to cache the relevant file for a site-configured period of 

time. When instructed by the site, the browser writes this code to 

cache directories on the local disk and updates a database 

containing metadata about the cached code, such as received 

headers, date and time received, how long to cache the file, etc. 

Once cached, the browser will pull code from this location on 

future visits, rather than pulling code over the network from the 

accessed site, until such time that the cache expires. 

During talks entitled “Wireless security isn‟t dead, attacking 

clients with MSF” and “Wifi Security -or- Descending Into 

Depression and Drink” at BlackHat DC 2010 and ShmooCon 

2010, respectively, Mike Kershaw (aka Dragorn) described an 

attack against this functionality via unencrypted wireless links. 

With header and content control, arbitrary cache entries with 

attacker determined expiration entries can be created.  

Through code execution loaded from the cache, attackers have full 

control over any logic and data passing through the targeted site 

within the browser. For example, javascript can be inserted to 

modify all HTTPS form posts to submit data to both an attacker 

controlled server, as well as the legitimate site. If done correctly, it 

would be unobservable to the victim. 

Additionally, no external code need be resident on the system after 

this attack has taken place, and even if the compromise/attack were 

detected, the maliciously cached entries will persist until the 

browser cache is manually cleared or the OS is reinstalled. In most 

organizations observed by the authors, systems are „cleaned‟ of 

malware rather than wiped, which would result in continued 

compromise in user data from this attack. 

A similar attack utilizing Win32 function calls to force caching of 

malicious code directly, with arbitrarily long cache expirations, is 

proposed below. 

Specifically, wininet.dll offers the API for applications to interact 

with windows internet functionality. This is also the DLL 

responsible for reading and writing to the Internet Explorer cache.  



 

Elrod and Keltner : Limited User Post Exploitation | Page 8 

To poison this cache, two functions in wininet are used. The first, 

CreateUrlCacheEntryA, will cause creation of a randomly named 

file in the cache directory for a given URL, and pass a file handle 

back allowing read and write access. After writing to this file any 

malicious content desired, this entry is committed to the IE cache 

by calling CommitUrlCacheEntryA. This function will commit the 

entry‟s metadata into the IE cache database. If a cache entry exists 

for the URL being committed, Windows will overwrite it with the 

malicious cache entry.  

Following are the function prototypes and descriptions for the two 

functions used in browser cache poisoning. 

 

BOOLAPI CreateUrlCacheEntry( 
 __in  LPCTSTR lpszUrlName, 
 __in  DWORD dwExpectedFileSize, 
 __in  LPCTSTR lpszFileExtension, 
 __out  LPTSTR lpszFileName, 
 __reserved DWORD dwReserved 
); 
 

The CreateUrlCacheEntry function is fairly simple, requiring the 

following arguments: a string for the URL being cached, the 

expected file size (passing null will cause this entry to be variable), 

the file extension for the cache file, and the size of the path 

returned back as lpszFileName (normally this is set to 

MAX_PATH+1). If successful, the function will return true and 

output a file path to the created cache file. 

 

BOOLAPI CommitUrlCacheEntryA( 

 __in  LPCSTR lpszUrlName, 

 __in  LPCSTR lpszLocalFileName, 

 __in  FILETIME ExpireTime, 

 __in  FILETIME LastModifiedTime, 

 __in  DWORD CacheEntryType, 

 __in  LPBYTE lpHeaderInfo, 

 __in  DWORD cchHeaderInfo, 

 __reserved LPCSTR lpszFileExtension, 

 __in  LPCSTR lpszOriginalUrl 

); 

 

The CommitUrlCacheEntryA function, similarly, requires the 

following arguments: the URL to cache, the local file name 

containing the cache data (this is the temp file returned from 

CreateUrlCacheEntryA), the expiry time and last modified times 

(passed in as null and later controlled through HTTP headers), and 

the cache entry type (a set of constants used to express what type 



 

Elrod and Keltner : Limited User Post Exploitation | Page 9 

of cache entry this is). By default, a normal cache entry will be 

scavenged in 10 minutes after being written to disk, but by passing 

the STICKY_CACHE_ENTRY constant it is possible to survive 

this scavenging process. After this, the HTTP headers for the entry 

are included, and by using the cache-control http header arbitrary 

expiration dates can be achieved, allowing entries to poisoned 

indefinitely.  

With Internet Explorer 8, there are two types of IE caches: the 

normal content.ie5 cache that hasn‟t changed since Windows 2000, 

and the new low privilege /low/content.ie5 directory. By default, 

Internet Explorer 8 will use the low privilege cache. To write to 

this newer cache directory, the caller of the function must have its 

Integrity Level set to low, through migration into an appropriate 

process or through the cli command “icacls program.exe 

/setintegritylevel low”. With the appropriate Integrity Level, the 

functions can now be used to write to the low/conent.ie5 cache.  

Alternatively, by putting the target URL in the trusted sites list, 

Internet Explorer 8 can be forced to use the normal content.ie5 

cache.  

Both of these techniques may be useful in different situations, and 

the implementation being released supports both of these methods 

for poisoning the Internet Explorer 8 cache.  

In summary, through these techniques it is possible to poison 

content loaded into the DOM for targeted, sensitive websites, 

capturing authentication information and data for sites like 

webmail, backend office applications, and SSL VPNs. 

Additionally, it does so without leaving any easily identifiable 

code resident on the victim‟s system, and will persist until the 

cache entry expires, the cache is manually wiped, or the user‟s 

system is rebuilt. 

In July, 2010, the Metasploit Project integrated a new meterpreter 

extension, railgun, into its development tree. This extension allows 

scriptable access to the target‟s Win32 API, including the loading 

of arbitrary DLLs into memory and the calling of arbitrary 

functions. This tool was extended to allow for the calling of the 

above wininet.dll functions. In conjunction with the presentation 

accompanying this paper, scripts utilizing railgun functionality to 

implement the cache attacks outlined herein are being released. 

  

  



 

Elrod and Keltner : Limited User Post Exploitation | Page 10 

# Conclusion 

Running as a limited user is a worthwhile security practice and 

should be utilized as a defensive technique available to those 

protecting corporate and national infrastructure. However, its 

context and efficacy must be properly understood, including 

impact on Incident Response planning and overall security 

architecture. 

For an updated version of this paper, including code snippets, typo 

fixes, flying rainbow sheep, and a full reference listing, please 

visit: 

http://www.ri0tnet.net/LimitedUserPostEx/ 


