ExploitSpotting: Locating Vulnerabilities Out Of Vendor Patches
Automatically

Black Hat USA 2010, Las Vegas

Jeongwook Oh
oh.jeongwook@gmail.com, mat@monkey.org, http:/twitter.com/ohjeongwook

Sr Security Researcher, WebSense Inc.

Security Patch Analysis

There are already many kinds of binary patch analysis systems out there. There are commercial ones
and free ones. But the current implementations only concentrate on finding the differences between
binaries. What security researchers really need from the patch analysis is security patch. Sometimes it's
very hard to locate security patches because they are buried inside normal feature updates. The time for
locating the security patches will increase drastically as more feature updates are mixed in the released
patches. This is especially true with all the Adobe and Oracle product patches. They tend to mix
security patches and feature updates.

In that case, we need another way to boost the speed of the analysis. The automatic way to locate the
security patches is that. This can be done by analyzing the patched parts and see if it has some specific
patterns that the usual security patches have. For example, an integer overflow will have some
comparison against the boundary integer values. And buffer overflow can involve the vulnerable
"strepy" or "memcepy" replaced with safer functions. Even use-after-free type bug has their own patch
patterns. We will present all the common patterns that we saw and also present way to locate them
using pattern matching. But there can be more thing to be done in addition to this simple approach. You
can introduce static taint analysis to binary diffing world. You can trace back all the suspicious
variables(expressed as register value or memory location) found in the patch by using binary diffing.
And you can see if they are controllable or taint-able from the user controllable input like network
packets or user supplied file input.

IPS Signatures

Personally, I worked in IPS industry last 5 years. And I felt that this patch analysis is very important.
The IPS and vulnerability scanners need signatures to catch attacker's exploitation attempts. To make
signatures you need to understand the vulnerability itself. Many times this involves reverse engineering
the patches. You determine what has been changed in the patch and you can know what different input
to the vulnerable target can result in different behavior. For example, let's assume that a program has a
buffer overflow condition with some data supplied by the user. Let's assume if you provide data with
more than 500 bytes then it'll crash. If you're a signature writer for vulnerability scanner, how can you
infer the exact number to use for your signature? If you're a IPS rule writer, how do you determine the
minimum size of string to detect as suspicious? That involves patch analysis. If you want to perform
signature writing correctly, it should always involve patch analysis.

There were some efforts from the vendors, though. Microsoft was the company that were mostly
attacked by vulnerability researchers last 10 years. They release patches every 2™ Tuesday of each
month. We call it patch Tuesday. So to supply some useful information to the security vendors, they
announced a program called MAPP. I expected this program will eliminate the needs for patch analysis


mailto:oh.jeongwook@gmail.com
http://www.microsoft.com/security/msrc/collaboration/mapp.aspx
http://twitter.com/ohjeongwook
mailto:mat@monkey.org

of Microsoft binaries. But I was wrong. There were still many cases that the MAPP didn't cover. It
gives you POC and few lines of detection guidelines. And that's it. You might need very specific
technical details of the patches. MAPP is not enough in this case. Also, Microsoft is still sneak
additional patches along with announced patches and doesn't let the MAPP subscriber or the public to
know about that. Basically, MAPP can help you a lot, but if you're a serious about writing good
signatures, you're still on your own. You still need patch analysis in this case. That's where this binary
diffing thing kicks in.

Finding Security Patches

The purpose of binary diffing in patch analysis is locating security patches as quickly as possible.
Sometimes the differential analysis results are not clear because of a lot of noises. The noises are
caused by feature updates, code cleanup, massive refactoring, compiler option changes.

Not all patches are security patches. Sometimes, there are too much of noises, it's like finding needles
in the sand. We need ways for effectively locating patches with strong security implication.

I suggest two more improvements over traditional binary diffing to achieve effective security patch
analysis. One is signature based matching and the other is tracing data flow. Signature based matching
is implemented with DarunGrim3 release and tracing data flow functionality will be available with
separate package called IDATracker.

Let's look at them one by one.

Signature based matching

So basically this is about signaturing the usual suspects. We already know some patterns by experience.
We know something like “strcpy” or “sprintf” can make problems. By applying these patterns to the
inserted or deleted basic blocks and finding them inside the blocks you can locate the code parts
patching buffer overflow vulnerability. Currently we are only using basic string matching patterns, we
have extensive list of vulnerable functions that is usually used by Windows-based software. Also, we
have list of secure functions that is supposed to fix old vulnerable functions. One of them is string safe
APIs provided and recommend by Microsoft. Also the pattern can be internal symbol name that is used
to fix some issues. We can see this pattern from CVE-2010-0249-Vulnerability in Internet Explorer
Could Allow Remote Code Execution case.

This is very simple idea but also very powerful. If you look into other fields of security, you can find
many places that is using signature concept. Basically anti-virus or anti-spyware is all about patterns
and signatures. Web filters are also all about signatures and patterns. You need to collect the samples
and need to extract best and optimal signatures to use and put them into the signature database. And
you can distribute the updated signatures. This can applied to binary diffing, we will collect patch
samples, analyze them and extract best signatures for that vulnerability class. And we make them as a
analyzing module or database. The DarunGrim3 module will come with basic set of signatures that we
found during our research, but the signatures can be easily extended by 3™ party researchers. Also they
can feedback us and we can reflect them to the distributed signatures.

We are going to talk about usual patterns in Patterns Of Vulnerabilities and Patches.



Tracing Data Flow

This is the fundamental way to determine whether some security patch has security implication or not.
This is what reverse engineers are actually doing when they are analyzing binary files or patches.
Tracing the data flow is the basic skill set for the reverse engineers. But how about you need to do that
for massive amount of files? That will be very time consuming and expensive work. We built some
basic IDA module that can trace the flow of data automatically. It still needs some human intervention
like pointing which variable to analyze. But this can be improved later.

DarunGrim3

DarunGrim3 was intended to fix the issues with traditional binary diffing tools.

It is totally open-source as DarunGrim2. And it provides Python scripting interface to the “Diffing
Engine”. The Python layer is a thin layer for the core engine which is written in C++. So there is not
that much of performance degradation.

Also, DarunGrim 3 provides basic set of pattern matching which can help to write signatures for
vulnerabilities. We calculate “Security Implication Score” using this Python interface. The pattern
matching should be easy to extend as the researcher get to figure out new patterns from new instances.

Managing files are boring job. It involves downloading patches, Storing old binaries, loading the files
manually by searching the files from your manually constructed file storage. Bin Collector from
DarunGrim3 can help you in this case.

You can download the tool and documentations from http://darungrim.org.

Picture 1 shows you the basic components of DarunGrim?2. It heavily depends on IDA for generating
disassembly listing from the binaries and store them as sqlite database file. The “Diffing Engine” is the
core part of the components and the functions of the engine can be accessed through “Windows GUI”
component.

Windows
GUI

Database
(sqlite)

Picture 1: Basic components of DarunGrim?2

In contrast to simple and basic DarunGrim2 components, DarunGrim3 is extending it extensively. Look
at Picture 2. It includes all the components of DarunGrim2, but still extending it wrapping the engines


http://darungrim.org/

and database using Python. All the new additional components are mainly written in Python. They are
not performance intensive components but involves more of the database and web interactions, and [
think Python is a good choice in this case.

Web Console

Diffing
Engine
Python

Interface
. Database
Engine Interface

Database
(sqlite)

Picture 2: Basic components of DarunGrim3

Python Interface

One of the main Python module DarunGrim3 provides is “DarunGrimEngine” module, it exposes the
“Diffing Engine” functionality from the core engine. You can use this module to initiate diffing
process.

The following Python code snippet shows how you can use the engine. Import DarunGrimEngine
module and just call a function “DiffFile” from the module. The function will handle all the process of
opening the unpatched, patched files and initiating the disassemblying using IDA if there is no idb file
generated for the files. Also it will load them to DarunGrim database and run it through “Diffing
Engine”. Everything is automated through this one function. And this works like charm. You just need
to provide the paths for the target files and output files to generate. You can read the files using
DarunGrim Windows GUI or Web Interface after the analysis is done.

import DarunGrimEngine

DarunGrimEngine.DiffFile(
unpatched_filename,

patched filename,

output_filename, log_filename, ida_path




The next important module is “DarunGrimDatabase Wrapper”. This module provides the abstract class
for DarunGrim database. The database itself is a relational database. And this module provides
abstraction layer for the database in Python class by utilizing sqlalchemy Python module.

The following code snippet shows an example of querying diffing analysis results from the database

and printing it to the console. Basically the abstract class has full access to the database and provides
every fields that are in the database tables. Everything that can be done through GUI can be achieved
using script.

import DarunGrimDatabase Wrapper

database = DarunGrimDatabaseWrapper.Database( filename )
for function_match_info in database.GetFunctionMatchInfo():
if function_match_info.non_match_count for the source > 0 or function _match_info.non _match _count for the target> 0:
print function_match_info.source function name + hex(function_match_info.source address) +"\t',
print function_match_info.target function name + hex(function_match_info.target address) + "\t',

print str(function_match_info.block type) + "\t',

print str(function_match_info.type) + "\t',

print str( function_match_info.match_rate ) + "%" + "\t

print database.GetFunctionDisasmLinesMap( function_match_info.source file id,
function _match_info.source address )

rint database.GetMatchMapForFunction( function match info.source file id, function match info.source address )

Security Implication Score

So how do we determine if a function has more probability of having security patches than other
functions? We use index called “Security Implication Score” to calculate and show this probability.
DarunGrim3 calculates the number based on signatures. And also each patterns has weight value that
will be used to calculate this number.

This index number shows you what functions have more security related patches inside it. It currently
employs “signature based matching” we talked about in chapter Signature based matching. The web
interface shows you this number and you can sort by this score and start analyzing the most explicit one
first to expedite whole analysis process.

Bin Collector

“Bin Collector” is an engine that collects and organizes the binary files. Currently it only supports PE
files. It's possible to manually load or store files to the binary library. It maintains indexes and version
information on the binary files from the vendors. You can manage the files from Web interface called
“Web Console”. For some of Microsoft's binaries, it supports automatic patch download and extraction.

It collects the binaries for you and it looks for matching binary to diff automatically. But the


http://www.sqlalchemy.org/

automation functionality is pretty limited right now, only supporting Microsoft's binaries and only
supporting core Windows components for automatic extraction. For example, Office binaries are not
supported by this automatic feature, also Windows Vista and Windows 7 binaries are not supported. But
still this is a first attempt to automate the binary management for patch analysis and will be covering
more types of binaries in the future.

This “Bin Collector” component also exposes a few Python interfaces. It's scriptable if you want
automate file collection process in a way you want. The whole code is written in Python. If some parts
are not working as you expected, you can easily customize or extend the functionality.

So how can it download the patches automatically? Here's how.
1. It visits each vendors patch pages

Use mechanize python package to scrap MS patch pages

Use BeautifulSoup to parse the html pages

It extracts and archives binary files

Use sqglalchemy to index the files

A T

Use PE version information to determine store location like following.

<Company Name>\<File Name>\<Version Name>

7. Copy the files to the destination folder

Web Interface

DarunGrim3 provides web interface called ”Web Console”. Web Console is an user friendly and easy
to use interface compared to original DarunGrim2 GUI. By just clicking through the web pages, you
can get the diffing results. This is possible combined with Bin Collector engine.

Usage

There are multiple ways to run DarunGrim diffing engine. One is through interactive interface and the
other is using scripts like Windows batch file or Python script file.

Using DarunGrim2.exe Ul

Just put the path for each binaries to the start-analysis dialog box and DarunGrim2.exe will do the rest
of the job. We have a good example of this procedure at Using Darungrim2.exe( Windows GUI ).

DarunGrim2.exe + Two IDA sessions

This is the original way to using DarunGrim?2 UI, but not recommended anymore. It's too complicated
and confusing. But if you still like this approach, it's still supported.

1. First launch DarunGrim2.exe


http://www.sqlalchemy.org/
http://www.crummy.com/software/BeautifulSoup/
http://wwwsearch.sourceforge.net/mechanize/

Launch two IDA sessions
First run DarunGrim2 plugin from the original binary

Secondly run DarunGrim2 plugin from the patched binary

A

DarunGrim2.exe will analyze the data that is collected through shared memory

Using DarunGrim Web Console: a DarunGrim 3 Way

Web Console provides user friendly user interface. It includes "Bin Collector", “Security Implication
Score” support

Using DarunGrim2C.exe command line tool

This was supported in DarunGrim2, but many of the public didn't know about this. This is a handy,
batch-able, quick way to bulk binary diffing.

Using DarunGrim Python Interface: a DarunGrim3 Way

This method is utilizing DarunGrim3 Python wrapper. You can use DarunGrimEngine module to
initiate the analysis and can use DarunGrimDatabaseWrapper module to retrieve the analysis results.
The detail is here at Python Interface section.

Using Darungrim2.exe( Windows GUI )

You might want to get some basic idea what binary diffing process looks like. Here I'll show you whole
process for a typical binary diffing using DarunGrim2 GUI.

The patch(MS10-018) is for “CVE-2010-0806" vulnerability. You can look up the detailed information
about the vulnerability from the CVE page.

Use-after-free vulnerability in the Peer Objects component (aka iepeers.dll) in Microsoft Internet Explorer 6, 6 SP1, and 7 allows remote
attackers to execute arbitrary code via vectors involving access to an invalid pointer after the deletion of an object, as exploited in the wild
in March 2010, aka "Uninitialized Memory Corruption Vulnerability.

Download the patch by visiting patch page(MS10-018) and following the OS and IE version link. For
XP IE 7, I used following link from the main patch page to download the patch file from here. The
download page typically looks like Picture 3.


http://www.microsoft.com/downloads/details.aspx?FamilyID=167ed896-d383-4dc0-9183-cd4cb73e17e7&displaylang=en
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0806%20

Cumulative Security Update for Internet Explorer 7 for
Windows XP (KB980182)

Brief Description

This update addresses the vulnerability discussed in Microsoft Security Bulletin MS10-018. To find out if
other =ecurity updates are available for vou, see the Overview section of this page.

On This Page

4 Duick Details & Overview

4 Svstem Reguirements 4 Instructions

4 Additional Information 4 Related Resources

Quick Details

File Name: IE7-WindowsXP-KB980182-x86-ENU.exe
Wersion: 980182

Security Bulletins: M510-018

Knowledge Base (KB) Articles: KB930132

Date Published: 3242010

Picture 3: Microsoft patch download page

The downloaded filename is “IE7-WindowsXP-KB980182-x86-ENU.exe” in this case. You can
execute following command line from command prompt to extract the files to out folder.

IE7-WindowsXP-KB980182-x86-ENU.exe /x:out

The extracted files looks like Picture 4. We already know that the vulnerable file name is “iepeers.dll”.
You can see the file's version string is “7.0.6000.17023”. You need to note the version string because
this is important in the next step.



Mame
|| ieapfltr.dat

ieapfltr.dll
iedkes32.dlI

&)
&)
%) ieencode.dll
&)
—d

Date modified

6/29,/2009 1:33 AM
371172010 4:38 AM
37112010 4:38 AM
37112010 4:38 AM

Type

DAT File
Application exte
Application exte
Application exte

ieframe.dll 31172010 4:38 AM Application exte
ieframe.dil.mui 5/26/2009 6:47 AM  MUIFile
| %) iepeers.dll 3/11/2010 4:38 AM  Application exte
%) iernence.dll 3/11/2010 4:38 AM  Application exte
% iertutil.dll File description: Extended RunOnce processing with Ul ption exte
7 jeudinit Company: Microsoft Corporation tion
s File version: 7.0,6000.17023 .
& iexplore Date created: 3/30/2010 11:49 AM tien
|%| inetepl.cpl Size: 43.5 KB | panel it
1% jsproxy.dll 3/11,/2010 4:38 AM Application exte
%) msfeeds.dl| 3/11/2010 4:38 AM  Application exte
|%)| msfeedshs.dll 3/11/2010 4:38 AM  Application exte

Picture 4: Extracted files from the patch file

To diff the patched file, you need a file to compare with. You need to collect unpatched files from the
operating systems that the patch is supposed to be installed.

I used SortExecutables.exe from DarunGrim?2 package to consolidate the files. The files will be
organized in a fashion that they reside inside directories with version number strings.

Microsoft Corporation » iepeers.dll » -

Include in library = Share with = Mew folder
MName C
, 6.00.2900.3660 (xpsp_sp2_gdr.091216-1517)
5 , 6.00.2900.3660 (xpsp_spd_gfe091216-1705)
e . 7.00.6000.16981 (vista_gdr.091215-2244)

| . 7.00.600017023 (vista_gdr.100222-0012)
. 8.00.6001.18854 (longhorn_ie8_gdr.091026-1700]

Ld | b | d g

m

ks
Picture 5: Series of files with different versions

Launch DarunGrim?2.exe and select "File — New Diffing from IDA" from the menu. You need to
wait from few seconds to few minutes depending on the binary size and disassembly complexity.



. B
File Selections |

Select original and patched binaries below and press OF to start analysis.
Y'ou can alzo drag and drop files to edit box which iz more convenient,

Source [*idb or executable] 7 00,6000.16987 [vista_gdr. 091 215-2244 iepeers.idt Er.;.wse|

Target [“idb or executable) |?_uu_aunn.1mz3 [wista_gdr.100222-001 Zviepeers.idb Brawsel

Output [new DGF file to create) I: #WPMicrosoft Corporation’iepeers. dIMCYE -2010-0306 Bru:uwsel

Eancell

Picture 6: Loading unpatched and patched files from DarunGrim2 GUI

Now you have the list of functions like something shown in Picture 7.

1] Ll | 3 |4l Wi | ¥
List Of Matches
Functions | Blocks |
Original Unmat... | Patched IUnmat... Different | Matched | Mat... - |
O 0 17115CComObject@VCHomePage@@... ] 0 ] 0%
O 0 T‘Im.roke@7SID|spatch1mp|@UICl|entCap 0 0 0 0%
(] 0 (] (] 2
1] sr-_-tAl'lnhule@CPer;lstDataPeer@@UA 2 4
0 TeetAttribute@ CPersistUserData@ @UA... 1 4 17
T el L= ST I e o U T
O PathAddBacksIashW@4 0 _PathAddBackslashW@4 0 0 1 100%
| R — n | n n 1 4 AN oy

Picture 7: List of functions that has been matched

The next step is finding any eye catching functions. From Picture 7, the match rates(the last column
values) 86% and 88% are strong indications that they have some code changes which have security
implications. Match rate 0% means there is no matching functions, so you might ignore those
functions.



File View Graphs Help

PsetAtribute @CPersist DataPeer@@UAGIPAGUtagVARIANT@@@Z Tset Atribute @CPersist DataPeer@@UAGIPAGUag VARIANTE@EZ
42083650 it 42083850 fnd
oy edi, edi oy edi, edi
push ebp push ebp
mov ebp, esp mov ebp, esp
sub esp, 10k sub esp, 10k
push ebx push ebx
push esi = wor ebw, eby E
push edi L omp [ebp+arg 4], ebx
[xohr edi. edll1 " push eél_
omp [ebp+arg_4], edi ush edi
inz sl?\ort IgcjigfﬂéEB?H inz shorfloc}ZUBEB?S
42083879 42083873
mov eby, [ebp+arg O] mov edi, [ebparg 0
cmp [Eh}gﬂ Eh&, R cmp [ed|1+1 h,gﬁx]
jz loc_42083C38 iz short loc_ 42083886
- LY
420838EF 42083835 42083BEF 42083881
mav edi, 80070057 cmF [ebn+20h], edi mov esi, 80070057k cmp [edi+20h]. ebx
imp loc_42083C38 1z loc_42083C38 imp loc_42083C38 inz short loc_4208388D
42083B3E 42083880
mov eax, dword plr [ebp+pvaEDesl anonymaous_0] mov eax, dword ptr [ebp+pvarSre. ananpmaus_0]
G &K, - Gmp ax, B
maw dward phr [ebp+puarg anonpmaous_0], edi mav dward pir [ehp-*pvarﬂDest.anonymous 0], ebx
mow dword pir [Ehpﬂ:varg annnymnus_n+4], adi mov dword plr [Ehpﬂ:valg est, anunymuus_ﬁ+4], b
oy dword ptr [ebp+ varg.anorélmousjﬁ ., edi mov dword pr [ebp+pvargDest. anonpmous_0+8], ebw
iz short loc_ 42083001 iz short loc_42083C01
42083840 42083B9F
crp ax, 4008h S crp ax, 4008h S
< T » ] T »
List Of Matches
Functions Blocks ]
Qriginal ‘ Patched Match R.. | Type Fingerprint{Qriginal) | Fingerprint(Patched) | Parent{QOriginal) ‘ Parent(Patched) | -
[m] 42083BFC 5c01020402
O 42083B86 4801020102
[1420838F3 42083BF3 76% Tree 12020272040201025¢010...  1202027a04020102 42083BE7 42083BE7
[142083BE7 42083BE7 100% Tree 80502 80502 42083BDC 42083BDC L
[ 42083BEE 42083BEE 100% Tree &f0502 &f0502 42082BDC 420838DC -
[ 42083882 42083BE1 85% Tree 8f05028f01025c01020402...  8f05028f01028f05025c01... 42083BAC 42083BAB
[[]42083BD5 42083BD5 100% Tree 7a01020402701020401 7a01020402701020401 42083BAC 42083BAB
[]420838DC 42083BDC 100% Tree 1b010101017504010501 1b010101017504010501 42083BCF 42083BCF
[]42083BAC 42083BAB 100% Tree 1601010501 1b01010501 42083BA6 42083BAS
[]42083BCF 42083BCF 100% Tree 7e01020401 701020401 42083BA6 42083BAS
[142083C2E 42083C2E 100% Tree 5c010204028f0102120202  5c010204028f0102120202  42083C0D 42083C0D
[l42083C2C 42083C2C 100% Tree d801020102 d801020102 42083C0D 42083C0D
142083846 42083BAS5 100% Tree 1601010501 1601010501 42083BA0 42083B9F
[ 4208300 42083C0D 100% Tree 7a010204027301020202d...  7a010204027a01020202d... 42083C01 42083C01
[ 42083C04 42083C0A 100% Tree 5c01020402 5c01020402 42083C01 42083C01 2

Picture 8: Flow graph showing modified and inserted basic blocks

If you click the function match row, you will get a matching graphs.

Color code meanings are like following table Table 1.

Color Meaning Description

White blocks | Matched blocks This blocks are same in each pane.

Yellow blocks |Modified blocks This blocks are modified in each pane.

Red blocks Unmatched blocks | Unmatched block means that the block is inserted or removed.

Table 1: Meanings of color codes

So in this case, the red block is in patched part which means that block has been inserted in the patch.
You need to use reverse engineering skills to track down the root cause of the security issues.



Using Web Console

Let me introduce you through the “Web Console” diffing process. If you launch “WebServer.py” from
the package, you can use any browser you have to connect to the Web Console through http://127.0.0.1
hyperlink. Picture 9 shows the main page of the tool. Basically, it just lists “Microsoft patches List”
because we support only their binaries right now. The list will grow up soon.

*) Mozilla Firefox

File Edit ‘Wiew History Bookmarks Tools  Help

@ - el hitpei127.0.0.1) w7 7| 2 jo

@ Most visited |j Getting Started |5 | Latest Headlines |j Help Desk. |j My Telephone |j Web Slice Gallery

o http://127.0.0.1/ -

Daone

Picture 9: Main page of DarunGrim3 Web Console

If you click the “Microsoft Patches List” link, you can have the full list of Microsoft's patches that you
have collected. You just need to click the patches you are interested in.


http://127.0.0.1/

) Mozilla Firefox

File  Edit “iew History Bookmarks Tools  Help

@ - (2 | el httpiif127.0,0,1/MSPatchList w7 7| |2

@ Mast Yisiked |j Getting Starked |5 | Latest Headlines |j Help Desk, |j My Telephone |j Web Slice Gallery |j Webmail

wl | http://127.0.0.1/M5PatchList +
L$ LRemnte Code Execution (9?8542)

MS1EI EI33' iMicrosoft Securlty Bulletin MS10-033 - Criticalvulnerabilities in Media Decompression Could Allow Remote

MS1D DB? IMICFDSDﬂ Security Elulletm WS 10- IIIE? - Importanttulnerability in the OpenType Cormpact Font Format (CFF)

I-::::_-::::_—'-::::::_-::::::_-::::::::::::_-:::::::::::::::::::_-::::::::::::_-:::::::::::::::::::::::::::::::::::::::.—::::::.—

I-::::_-::::_—'-::::::_-::::::_-::::::::::::_-:::::::::::::::::::_-::::::::::::_-:::::::::::::::::::::::::::::::::::::::.—::::::.—

_______________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________

I-::::_-::::_—'-::::::_-::::::_-::::::::::::_-:::::::::::::::::::_-::::::::::::_-:::::::::::::::::::::::::::::::::::::::.—::::::.—

-..-_-_-_-_-_-_-_-_-_-_—-..-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-

-..-_-_-_-_-_-_-_-_-_-_—-..-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-

_______________________________________________________________________________________________________________________

Check for MS Patches Updates

Dane

Picture 10: Microsoft patch list page of Web Console

If you click the patch number you want to analyze, it'll show the list of OSes it supports as seen at

Picture 11. Usually Windows XP SP2 or SP3 patches are good choice, because majority of Windows

users are still using them.



) Mozilla Firefox

File Edit Wiew History Bookmarks Tools  Help

@ - ‘gt | @l httpiff127.0,0.1/Patchinforid=352 v - [ »

@ Mast Wisited |:] Getting Skarted |5 | Latest Headlines |j Help Desk |:] My Telephone |_-L] Wweb Slice Gallery |_1'] Webmail |:] ‘Websense - home

o http://127.0.0.1 /PatchInfo?id=359 - -

"Patches\WlndowsXP KB955E44-x06-EMNU axe

_____________________________________________________________

‘PatchestWyindows Serer2003. WindowsKP-KBI55644- ;
}{64 EMU. exe

.uF'atc:hes\WmdowsSeweQDDS WindowsXP-KB950644- ;
}{Ed EMU . axe

____________________________________________________________________________________________________________________________________

"Patches\WlndowsSeweQDDS YWindowsKP-KB958644-
,.}{54 EnU . axe ;

'Patchesiyindows Server2003 YWyindowsKP-KB358644-
i xBd-ENL exe

IPatches\WindDwsSeweQDDB KBI58644-ia64-ENU. exe

IWlndnws Wista B4 Edition and YWindows Yista xbd Edition Service 1 : ;
Pack 1 ' - o :

Picture 11: Microsoft patch os list page of Web Console

If you choose the OS to analyze by clicking the link, it will show list of files the actual patch file
contains. For example, Picture 12 shows list of netapi32.dll for XP SP2 and SP3. Also each service
pack has both GDR or QFE releases noted by identifier in the version string.

You might wonder what GDR or QFE means. Here's what I got from googling the Internet for the
meaning.

GDR(General Distribution): a binary marked as GDR contains only security related changes that have
been made to the binary

QFE(Quick Fix Engineering)/LDR(Limited Distribution Release): a binary marked as QFE/LDR
contains both security related changes that have been made to the binaries well as any functionality
changes that have been made to it.

So basically GDR is more general and something most users will get. GDR release is a better candidate
for analysis.



6 - ‘a0 | el httpff127.0.0.1/DownloadInfo?patch_id=359%id=2062

|2 | Most Yisited |_1'] Getting Started |5 | Lakest Headlines |_1'] Help Desk, |_1'] My Telephone |_1'] Weh Sli

o/ http://127.0.0.1/...h_id=359&id=2062 | -

List =hS05-067
netapiE2 ol 5.1, 2600 3462 (xpsp_sp2_gr.081015-1244)
netapi32 ol 51,2600 3462 (xpsp_sp?_gfe DB1015-1657).
netapiE2 ol 6.1, 2600 5654 (xpsp_sp3_gor 081015-1312)
netapi®2.dll 5.1, 2600 5694 (xpsp_sp3_gfe DB1015-1409).

Picture 12: List of files to analyze

If you choose the filename you want to analyze, the screen like Picture 13 appears which showing
unpatched filename automatically. The original file should have been indexed by the “Bin Collector”
system for this automatic match to work. So before using Web Console system, constructing the binary
library is crucial.

List =M508-067 =Windows xP Serice Pack 3

________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________

'Filenarme

Unpatched
Filename

‘Patched
'Filenarme

Start Diffing

Picture 13: Diff page: The unpatched file is automagically guessed based on the file name and
version string.

When you click “Start Diffing” button from this page, the actual diffing process starts. So it can take
few minutes to long minutes for this process to finish. Sometimes the Web UI times out, but still the
engine will be working in the background, you just need to check the Web Console's output log to
check if the process has been finished.



EOX

¥) Mozilla Firefox

File Edit Yew History Bookmarks Tools  Help
@ - (ot | el http:fi27.0.0.1/StartDiffrpatch_id=3598download_id=206z8file_id=110318s0 77 - | "4 - e
@ Most Visited |j Getting Started |5 | Latest Headlines |j Help Desk, |j Iy Telephone |j ‘Web Slice Gallery |_1'] ‘webmnail |:] Websense - home

& http://127.0.0.1/...&target_id=11031 | -+ -

List »M308-067 »Windows ¥P Service Pack 3 =netapid2 dil
Unpatched %+ Patched % Security Implication Score -
sub SEBEAZEE sub SBEEEAZYY =
CanonicalizePathMame@@20 CanonicalizePathMarme@@20 1
loc_SESEE490 loc_SESEE445 0
Done

Picture 14: The diff results: function list

If the whole process is finished you can see a screen like Picture 14. It shows the function names that
has been modified by the patch and also shows the “Security Implication Score”. With this score, you
can guess which function has more security implication in the patch. By clicking the column header,

you can sort them out.

If you click one of the functions in the table, you will get a screen looks like Picture 15. It's a block
representation of diffing results. And the color code is same as DarunGrim2's graph view. White blocks
are same blocks and red block are removed or inserted blocks. Also yellow blocks are modified blocks.



2) Mozilla Firefox

File Edit Yew History Bookmarks Tools  Help
6 - & % (&b | el hitpi127.0.0.1/ShowBasicBlockMatchinforpatch_id=3598download_id=z0s2ad 57 - | [ *f - cooale )'3'|
@ Most Visited |j Getting Started |5 | Latest Headlines |j Help Desk, |j Iy Telephone |j ‘Web Slice Gallery |:] ‘webmnail |j Websense - home
J ] http:,ff127.0.0.1x...dress=1535550055| + | |T
] 1 v
i 1)z loc_5SB87E7 DA i
‘BSGA28E] ‘[pB878TGB] }
Eu:mp ax, si Eicmp ax, dx
‘iz loc_SBBEDSED “inz short loc_SBE737C i g
"""""""""""""""""""""""""""""""""""" | [5B878770]
ds:_imp__v
i W
Done

Picture 15: Function level view of basic blocks

IDATracker

IDATracker is a tool working as a plugin for IDA that traces critical variables in the disassembly. It can
help to trace variables you are interested in. Currently it works only manually when you designate any
interesting variables. But future implementation might decide which variable to trace using some kind
of heuristics. For example, an argument is passed to “malloc” API using push instruction, the heuristics
engine can decide to trace that length variable and see if it's controllable from the user data. User data is
something like coming from the network through recv API call or RPC. Or it can be the data that is

coming from HTML pages or multimedia files. It's not easy to define the user data and critical variable,
though.



Patterns Of Vulnerabilities and Patches

This is to show examples for each vulnerability classes. And you can grab an idea how you can extract
useful patterns out of the patches. Both DarunGrim2 and DarunGrim3 examples are used, but they are
basically same in concept. And also “Security Implication Score” are shown for some examples.

Buffer Overflow

Buffer overflow is a classic vulnerability that has been exploited over two decades now. The first worm
used buffer overflow condition in Sendmail and it was more than 20 years ago. After that long time, the
problem still exists in major products from the major vendors.

Examples

MS06-070

This is the vulnerability that is actually found by me in 2006. The function that is vulnerable is
“_NetpManagelPCConnect@16” with security implication score 6.

List »MS06-070 =Microsoft Windows XP Senice Pack 2 — =netapi32. dil

Unpatched 4+ Patched 4+ Security Implication Score -
MetphanagelPCConnect@ 16 MetphanagelPCConnecti@ 16 B i
sub SBE8FLEB sub_5B869B96 2 I

Picture 16: Patched functions(showing security implication score)

Actually the vulnerability comes from the ”swprintf” function used in insecure manner as shown in
Picture 17. The third argument for the API call is coming from user controllable RPC argument. The
attackers just need to send long hostname and the overflow happens and that's it.

........................................................................................................................................

'5Bses192] ‘[sB88sSICO)

‘push esi ; Format iipush ebx ; Format

ipush offset aWslpc ; "Y%wsWPCS" iipush offset aWslpc ; "%wsWPCS"

ipush eax ; String Eipush esi ; String ]
J‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII f IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:
=iicall ds:__imp__swprintf call ds:__imp__swprintf
:|lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:

1add esp, 0Ch add esp, OCh :

.test [ebp+arg C], 2 " test [ebp+arg C], 2

ijz short loc_58885217 iijz short loc_5B885257

________________________________________________________________________________________________________________________________________

Picture 17: Vulnerable code located in MS06-070 patches

The thing you can notice here is that even though the “swprintf” call is vulnerable they didn't fix the
part, but instead, they added length check at the start of the function where is before this code is called.
You can see the patched code from Picture 18. It's using “wcslen” API to check the length of string
before it's used by unsafe call to “swprintf” API.


mailto:_NetpManageIPCConnect@16

iipush edi
cmp word ptr [esi], 5Ch 1
‘'mov edi, [ebp+5tr]
push edi i
ipush ebx ; Str
mov edi, [ebp+Str] L
nmav [ebp+var_2B8], eax
mov [ebp+var_2B4], eax }
ilea esi, [ebp+Uselame]

lea eax, [ebp+lUseMame]
mov [ebp+ParmError], ebx

iz short loc_5B885189

! pop ecx

i'jbe short loc_5B885199

..................................................................

| 5B885184]

aMetpmanageipcc; "MetpManagelPCConnect: server
5t

i call _NetplLogPrintHelper

i push 57h

pop eax

| imp loc_5B8853D4

____________________________________________________________________

Picture 18: Inserted weslen call and cmp instruction

So you can see that “wcslen” can be used for pattern in recognizing buffer overflow vulnerabilities.

MS08-067

The next sample is about the vulnerability patched by MS08-067. Conficker worm exploited this
vulnerability to propagate through internal network. Actually this patch is very easy target for binary
diffing because only 2 functions changed. One is a change in the calling convention. The other is the
function that has the vulnerability. Picture 19 shows 3 functions modified but the last one that starts
with “loc_” is not valid function. You can also see from this picture that “sub 5SB86A26B” and
“sub_5B86A272” pair has most high security implication score of 20 compared to 1 of the next one.
You can be very sure that this match has the security patches we want.

! List =MS08-067 »Windows XP Senvice Pack 2 =netapia2 dil

‘| ' Unpatched ¢ Patched ¢ Security Implication Score il
: sub_5B86A268 sub_5B864A2T2 20

I _CanonicalizePathMName@20 CanonicalizePathMName{@20 1

: loc_5B868490 loc_5B868445 0 I
|

Picture 19: Modified functions in MS08-067 patch(showing security implication score)




Picture 20 shows DarunGrim2 graphs view of the sub_ SB86AS51B vs sub_5SB86A272 pair. You might
notice that a lot of red blocks in both sides which means many codes are removed and inserted. So
looks like they rewrote whole code here.

'@ Thmat\Projects\ResearchTools\BinanA\StaticAnalysis\DarunGrim2\srch TestCases\MS08-067-Vulnerability in Server Service C... lilﬂli—J

File  Graphs Help

s

sub_GB86AL1B sub_GBBGARTA

==

m

List Of Matches

Functions BIUGkS] |
Original | Patched | Mat... |T)rpe | Fingerprint(Qriginal) | Fingerprint(Patched) | Parent(Qriginal) | Pa «
(M| 5B378B09 SBE78B25 100% Fingerprint  5c010204027301020102 5c010204027a01020102 0 L3
158860865 5SBE6ASE1 100% Tree 2c01022c0102 2c010220102 5B86DESC 5B

Picture 20: sub_5B86A51B vs sub_5B86A272: the function with most security implication score

So because the programmer decided to rewrite basically whole part of the function, you might think
that signaturing might not be effective in this case. Anyway, the original problem was mainly from the
logic error, not a problem from single API call like “swprintf” as in previous example from MS06-070.
But the truth is you can still use signaturing in this case. Let's see the following code blocks from the
patch.




List =MS08-067 =>Windows XP Senice Pack 2 »netapid?2 dil =Functions

Unpatched: sub_5B86A268 "

'
e m—————aL___a
m

. imov edi, edi .
iipush ebp
| i'mav ebp, esp : I
'[5B86A26B] i
| isub esp, 0Ch i
‘mov edi, edi { |
: 1 push ebx :
'push ebp :
: »push esi
'mov ebp, esp '
! 1MoV esi, eax
ipush ecx i I

imov ecx, [ebp+arg_0]

'mov ax, [ecx]

ipush ebx it

: :jmp loc_5B878750 ;
‘push esi

| L pop ecx |
rpush edi |
| npush 2Fh i

ixor ebx, ebx :

: i'pop edx

xor edi, edi :

' ilea eax, [esi+eax™2+2] I
icmp ax, 5Ch 1

: i'push 5Ch : |
push 2Fh }

maov [ebp+var_8], eax
imov [ebp+var_4], ebx i}

ITIt}V ax, [esi]

iixor ebx, ebx

ipop esi

iz loc_5B86D53D

Eimw [ebp+pszDest], ebx
Picture 21: Inserted weslen call and cmp instruction

The patch in Picture 21shows that “wcslen” is inserted to the patch. It's checking some input argument
before the main logic starts. So “wcslen” pattern is still useful in this case. But that's not all. Let's see
the example from Picture 23. The newly inserted block has a call to “StringCchCopyW”” API which is a
security improved version of strncpy. You can look up the API reference from StringCchCopyW.

Compared to the functions it replaces, StringCchCopy provides additional processing for proper buffer handling in your code. Poor
buffer handling is implicated in many security issues that involve buffer overruns. StringCchCopy always null-terminates a non-zero-
length destination buffer.

Behavior is undefined if the strings pointed to by pszSrc and pszDest overlap.
Picture 22: StringCchCopyW description from MSDN


http://msdn.microsoft.com/en-us/library/ms647527(VS.85).aspx

jmp loc_SB86A2AE

i 158878800]

: push eax ; pszSrc

: mov eax, [ebptvar_8]

|
- sub eax, ebx
:sar eax, 1 I
: push eax ; cchDest
.push ebx ; pszDest |
zcall _StringCchCopyW@12;
StringCchCopyW{x, %, x)
:czmp word ptr [ebptvar_C], 0

1

| iz loc_5B86IFBC

So looks like we can use these safe string manipulation routines as our signatures for buffer overflow.

Signatures

Pattern matching for string length checking routines is a good sign for stack or heap based overflow.

There are variations of string length check routines.

strlen, weslen, mbslen, mbstrlen

Pattern matching for safe string manipulation functions are good sign for buffer overflow patches.

Strsafe Functions are like following:

StringCbCat, StringCbCatEx, StringCbCatN, StringCbCatNEx, StringCbCopy, StringCbCopyEx, StringCbCopyN, StringCbCopyNEX,
StringCbGets, StringCbGetsEx, StringCbLength, StringCbPrintf, StringCbPrintfEx, StringCbVPrintf, StringCbVPrintfEx, StringCchCat,
StringCchCatEx, StringCchCatN, StringCchCatNEx, StringCchCopy, StringCchCopyEx, StringCchCopyN, StringCchCopyNEX,
StringCchGets, StringCchGetsEx, StringCchLength, StringCchPrintf, StringCchPrintfEx, StringCchVPrintf, StringCchVPrintfEx

Other Safe String Manipulation Functions are like following:
strcpy_s, wescpy_s, _mbscpy_s

strcat s, wescat_s, mbscat_s

strncat s, strncat s 1, wesncat s, wcesncat s 1, mbsncat s, mbsncat s |

strncpy_s, _strnepy_s_l, wesnepy_s, _wesnepy_s 1, _mbsncpy_s, mbsncpy s 1

sprintf s, sprintf s 1, swprintf s,



Removal of unsafe string routines is also a good signature.
strcpy, wesepy, _mbscpy

strcat, wescat, _mbscat

sprintf, sprintf 1, swprintf, swprintf 1, swprintf 1

Integer Overflow

Integer overflow is one of the vulnerabilities that can cause heap overflow by miscalculating the
allocation size of the memory. If you supply huge number and if the vulnerable code is adding or
multiplying some number to the original number to put some additional stuff that can be a problem.
Because the memory allocated for the integer has fixed size, the number it can express has lower and
upper limit. If the number is going over the limit it rolls over to the minimum number and becomes the
minimum number it can express. And this cause security problem when buffer manipulation is involved
with this wrongfully calculated length.

Examples

MS10-030

This vulnerability is from Microsoft Outlook mail client. The problem happens during processing
responses from IMAP server. If the attacker runs some hostile IMAP server and convince the users to
connect to it or by intercepting user's traffic and injecting this malicious IMAP traffic, he can attack the
client by overflowing the buffer using integer overflow.

If you run the diffing, you can see the vulnerable functions as in Picture 24.



List »MS10-030 »Microsoft Outlook Express 6 »inetcomm.dll

Security
Unpatched 4+ Patched %+ Implication ~
Score
?RootProps_EndChildren@CHTTPMailTrans port @@QAEJKZ ?Contactinfo_EndChildren@CHTTPMailTranspot@@QAEJXZ 5
STR_ATT COMBINED STR_ATT REMDERED
:lrrrrrrn11Trn11111111Trn||||||||||||||||||||| (RN RN NN nnnnnnnnn e nnn e A NN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE
= ?ResponseSTAT@CPOP3Transport@@AAEXKZ ?ResponseSTAT@CPOP3Trans port@@AAEXKS 4 =
:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIlIIIIIIIIIIIl:
7ResizeMsgSegiumTable@ClmapdAgent@@UAGJK@Z ?ResizeMsgSegMumTable@Clma ent UAGJ 4
STR_ATT_MORMSUBJ STR_ATT_REMDERED 3
STR_ATT_PRIORITY STR_ATT_REMNDERED 3
?ResponseGenericList@CPOP 3Transport @ @AAEXKZ ?ResponseGenericlist@CPOP3Trans port @@AMEXKT 3
7ProcessTransactTestResponse@CHNNTPTransport @@AAESXT ?StartLogon@CHNMNTPTrans port @@EAAEXET 3
?7GetMsgSegNumToUIDAray@ClmapdAgent@@UAGIPAPAKPAK  ?GetMsgSegNumToUIDAray@ClmapdAgent@@UAGIPAPAKPAK 3
@z @z
STR_ATT_SERVER STR_ATT_FORMAT 2
221CActivelMovie@@UAE@XZ 221CBGImage@@UAE @XZ 2
?CheckForCompleteResponse@ClmapdAgent@@AAEXPADKPAW  ?CheckForCompleteResponse@ClmapdAgent@@AAEXPADKPAW 2
4IMAP_RESPONSE_ID 4IMAP_RESPOMNSE_ID
STR_ATT STOREMSGID STR_ATT_REMDERED 1
STR_ATT_FORWARDTO STR_ATT_FORMAT 1
2Exclusivelnlock@CExSharal ockWithMestAllawe d@E@QAEXKT PExelusivelUnlock@CExSharal ack@@QAEXKE 1

Picture 24: Modified functions from MS10-030 Outlook Express 6 patch

Now look into ResponseSTAT method from CPOP3Transport class on the 3™ line of Picture 24. It has
an additional call to “ULongLongToULong”.

________________________________________________________________________________________________________________________________________

i [TE1BDED?] :

: -Iea eax, [ebptvar_C] :
i l—llllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIO
;[7618DCFO] E::ush eax ; unsigned  int32 *
IHIIIIIIIllllIIIIIIIIllllIIIIIIIIIIIIIIIIIIIIIIIII" |
i1push 4 '

1pop ecx ;

Emnv ecx, ebx

:shl ecx, 2
:Iea eax, [esi+584h] Eimuv eax, ebx

'push ecx ; unsigned __int32
IE‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

E
=push edx
z

:Iea edi, [esi+580h]

Ep"'Sh eax ; void ipush eax ; unsigned __int64

=..IlIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
"muv [ebp+var_C], edi

icall THrAlloc@@Y GJPAPAXK@Z; HrAlloc(void * *,ulang) ':muv [ebp+var_10], edi

LR AR NE ]

'mov [edi], ebx

: &IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE
il B s -cau ?ULongLongToULong@@YGJ_KPAK@Z: |
| int64,ulong *) =
EI"I"IIZI'u' [Ebp+“‘lar—10]‘ EEh T rrrrrrrrr T T e rree e

il short loc_7618DD36

3

=‘Ir:"|lcl|':ll K IEJ!}I\‘IIélrl Ifi’llélal}zlllllllll

]I short loc_7618DEGS

Picture 25: Additional call to ULongLongToULong




This routine is to convert 64 bit integer to 32bit integer. The original integer is coming from eax and
edx register (64bit) which is calculated by multiplying 4 to the original integer. From line
“text:7618DE1F” it compares return value of the function with 0. The return value smaller than 0
means error during processing the number and it'll lead to immediate return of the function.

.text:7618DE07 lea  eax, [ebp+var C]

.text:7618DEOA push eax ;unsigned  int32 *

.text:7618DEOB push 4

.text:76 18DEOD pop

.text:7618DEOE mov

.text:7618DE10 mul

.text:7618DE12 push

.text:7618DE13 push > ;unsigned  int64

.text:7618DE14 mov  [ebp+var_C], edi

.text:7618DE17 mov  [ebp+var_10], edi

.text:7618DE1A call ?ULongLongToULong@@YGJ _KPAK@Z ; ULongLongToULong(unsigned __int64,ulong *)

text:7618DEIF cm eax, edi

So if you look up the reference manual of the API “ULongLongToULong”, you can see the following
description. Basically the call to “ ULongLongToULong” fails when the input is overflowing 32bit
value range.

In the case where the conversion causes a truncation of the original value, the function returns
INTSAFE E ARITHMETIC OVERFLOW and this parameter is not valid.

Intsafe.h from Microsoft's SDK show the error code. And it's like following.

#define INTSAFE E ARITHMETIC OVERFLOW ((HRESULT)0x80070216L) // 0x216 = 534 =
ERROR ARITHMETIC OVERFLOW

And also the same file shows the function implementation.
//
// ULONGLONG -> LONG conversion
//
inline
HRESULT
ULongLongToLong(
__in ULONGLONG ullOperand,

__out__deref out range(==,ullOperand) LONG* plResult)

HRESULT hr;

if (ullOperand <= LONG MAX



*plResult = (LONG)ullOperand;
hr=S OK;

*plResult = LONG_ERROR;
hr=INTSAFE E ARITHMETIC OVERFLOW;

return hr;

Basically it checks the argument against LONG MAX and if it's too big, returns error status code with
INTSAFE_E _ARITHMETIC OVERFLOW.

If you trace back where it's getting the original input for ULongLongToULong call, you can see that
actually it's coming from the “StrTolntA” API and the argument for the API is “[ebp+]pSrc]” which is
retrieve from the IMAP server supplied status line.

[7618DDE4]

push [ebp+lpSrc] ; IpSrc

[7618DCCE]

push [ebp+lpSrc] ; IpSrc
mov edi, ds:__imp__StrTolntA@4; StrTolntAlx)
mov edi, ds:__imp__StrTolntA@4; StrTolntA(x)
call edi ; StrTolntA(x); StrTolntAfx)
call edi ; StrTolntA(x); StrTolntA(x)
push [ebp+var 8] ; IpSrc
push [ebp+var_8] ; IpSrc

SRR RN
CRRRRRR RN RN NN

call edi ; StrTolntA(x); StrTolntAfx)
(AL R L R RN RN RN RN RN RN R RNl
xor edi, edi
QIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:
cmp [esi+578h], edi =
(AR RN RN
mov [ebp+var_18], eax

call edi ; StrTolntA(x); StrTolntA(x)

cmp dwaord ptr [esi+578h], 0

-

mav [ebptvar_C], eax

jnz short loc_7618DD2C
jnz short loc_T618DESE

Picture 26: Call to Str1olntA to convert string to integer

So looks like Microsoft is fixing integer overflow issue using newly introduced safer number handling
functions. You can read Michael Howard's blog on this issue from his blog post Safe Integer Arithmetic
in C. So we can use these safe integer arithmetic functions to generate signature for integer overflow.
One thing to note is that even though the blog says the functions are inlined, and also the intsafe.h
include file also shows that the functions are inlined, for some reason this patch file doesn't have the
function call inlined. Anyway even though it's inlined, we can create specific signature for that pattern
using INTSAFE _E ARITHMETIC OVERFLOW constant value.



http://blogs.msdn.com/b/michael_howard/archive/2006/02/02/523392.aspx
http://blogs.msdn.com/b/michael_howard/archive/2006/02/02/523392.aspx

JRE Font Manager Buffer Overflow(Sun Alert 254571)

This example is from Oracle JRE font manager vulnerability. The overflow happens due to integer
overflow. Picture 27 Shows the overview of the patched function.

File Graphs Help

sub_6DZC4AGD sub_GD244AF2

\ wall 5::_&32&4322 %

BO2C4ATH

emp edi,=2i
inb shartloo_ECR44EZE

60244B14

ish i
moe edi, [e5ps10K]
lea 2a, [edi-0AK]
emp #32, 2000000k
jnb short lno_602C4430

lea o, [edie0h]

omp eox, 238
inb shortloc_0244EIZE

!

m

BOZC4AST

push eaz; size t
call ds:mallog

B02C4A80

pop £ci
jmp short o ED2CAAGF

BOZCHASE

test e, 2k
e shortIoe_BD2C4A92

60244E52

§02C4A94

mow dword ptr [eax]. DAABICEARK
60244828 mcs [22504], i

mow dword pi [eax], 0445305480 lea ect, [earedi]

o bate pi [ec-2]. 5ah
mow b pir [ece3], 0F O
mow edi esi]

o it sl

le o, [eanedi]
miow bite pir [2c248], 58
mose byte pt [eci+3]. 0F Oh -
« i, b « i, 3

push271zh
jmp shartloe_60244B78

List OF Matches

Functions  Bocks |

Original | Patched Match R... | Type Fingerprint(Qriginal) [ Fingerprint(Patched) | Parent(ariginal) [ Parent(Patched) [ B
[m] 60244827 ccd201020102

O 6D244B18 CcBf01026c1202026c860...

O 6D244B25 ccd301020102

[]6D2C4AD9  6D244B71 100% Tree cclb01020102 cclb01020102 6D2C4AD3 6D244B68 E
[I6D2C4ACC  6D244B64 100% Tree c20102cclb01020102  cc2c0102cclb01020102  6D2CAACE 6D244B5E

[]6D2C4AD3  6D244B68 100% Fingerprint  cc7a03020102cc2c0402  ccTa03020102cc2c0402 0 0

[]6D2C4ADD  6D244B75 100% Tree ccsfos2 ccEfs02 6D2C4AED 6D244B55

[]6D2C4AC6  GD244BSE 100% Tree 150302050 Cc160302050: 6D2C4ABD 6D244B55

[]6D2C4AEE  6D244B80 100% Fingerprint  cc860102cc0601020502c...  ccB60102¢c0601020502¢... 0 0

[]6D2C4ABD  6D244B55 100% Fingerprint  cc7a01020402ccd801020...  cc7a01020402¢<d801020... 0 0

[]6D2C4AB6  GD244BAE 100% Tree ccBf0502 CcBf0502 6D2C4A9A 6D244832

[]6D2C4AE2  GD244BTA 100% Tree CcBf0102cc100702 CcBf0102cc100702 6D2C4ABS 6D244B4E il
Flanacaana  anaasoa Snne it 7NININENY_TNANIN - 7-RPNONENI-T a0 a

Picture 27: Patched basic blocks

If you zoom in, you can see the following basic blocks. What you can notice here is the “malloc” APIs
in the both sides. You can just feel that this is about heap overflow and involving integer overflow.

b | r .
cmp edi, eax
EO2C4A74 inb short loe:_GO244E2E |
push edi
mow edi, [esp+10h]
lea eay, [adi+0Ah]
cmp eay, 2000000k RIS
jnb short loz_GD2C4420 lea ecy, [edis0Ah]
CIMp ey, a3l
\ jnb shart loc_E0244E25
f EO2C4A83
B0ZC4ASD push eax; size_t

call ds:malloc
pop ecH
jmp short loc_EO2C4ASF

WOr eay, ean

s
Picture 28: Unpatched basic blocks Picture 29: Patched basic blocks

If you look closer, unpatched codes only have one “cmp” instruction, but the patched on has one more
additional “cmp” instruction. The red colored lines on the right side of Table 2 is to do additional sanity
check of the length. Originally it was checking the result of “edi+0x0a” against 0x2000000, but with



new code it's also checking “edi” value itself against 0x2000000. So if the original “edi” value was
bigger than 0x2000000 and also bigger enough to overflow back into smaller integer value than
0x2000000 when 0x0a is added, then it could have passed original sanity test leading to integer
overflow by allocating too small value with big length for copying data.

Original Patched

text:6D2C4A75 mov edi, [esp+10h] .text:6D244B07 mov  edi, [esp+10h]
text:6D244B0B mov  eax, 2000000h

.text:6D2C4A79 lea eax, [editOAh] .text:6D244B14 lea ecx, [editOAh]
text:6D2C4A7C cmp  eax, 2000000h .text:6D244B17 cmp  ecx, eax
text:6D2C4A81 jnb  short loc 6D2C4A8D .text:6D244B19 jnb  short loc_6D244B25

text:6D2C4A83 push eax ; size t text:6D244B1B push ecx ; size t

Table 2: Comparison between the basic blocks

In this case the fix was adding additional cmp instruction, and it's happening around malloc API. So
you can use both additional “cmp” instruction and “malloc” API as the signatures for integer overflow.

Signatures
Safe integer conversion functions can be used to check sanity of an integer derived from string.

Here's the list of arithmetic functions that is doing safer operation.

UnsignedMultiply128, Int8§ ToUChar, Int8 ToUInt8, Int8§ ToUShort, Int8 ToUlInt, Int8 ToULong, Int8 ToULongLong, UInt8ToInt8,
[UInt8ToChar, ByteToInt8, ByteToChar, ShortToInt8, ShortToUChar, ShortToChar, ShortToUInt8, ShortToUShort, ShortToUInt,
ShortToULong, ShortToULongLong, UShortToInt8, UShortToUChar, UShortToChar, UShortToUInt8, UShortToShort, IntToInt8,
IntToUChar, IntToChar, IntToUInt8, IntToShort, IntToUShort, IntToUlInt, IntToULong, IntToULongLong, UlntToInt8, UlntToUChar,
[UIntToChar, UlntToUInt8, UlntToShort, UlntToUShort, UlntToInt, UlntToLong, LongToInt8, LongToUChar, LongToChar,
LongToUInt8, LongToShort, LongToUShort, LongToInt, LongToUInt, LongToULong, LongToULongLong, ULongTolnt8,

[ULongToUChar, ULongToChar, ULongToUInt8, ULongToShort, ULongToUShort, ULongToInt, ULongToUlInt, ULongToLong,
LongLongToInt8, LongLongToUChar, LongLongToChar, LongLongToUInt8, LongLongToShort, LongLongToUShort, LongLongTolnt,
LongLongToUlnt, LongLongToLong, LongLongToULong, LongLongToULongLong, ULongLongToInt8, ULongLongToUChar,
[ULonglLongToChar, ULongLongToUInt8, ULongLongToShort, ULongLongToUShort, ULongLongTolnt, ULongLongToUlnt,
ULongLongToLong, ULongLongToULong, ULongLongToLongLong, UInt8 Add, UShortAdd, UlntAdd, ULongAdd, SizeTAdd,
SIZETAdd, ULongLongAdd, UInt8Sub, UShortSub, UlntSub, ULongSub, SizeTSub, SIZETSub, ULongLongSub, UInt8Mult,
[UShortMult, UIntMult, ULongMult, SizeTMult, SIZETMult, UlongLongMult

You can also reference this page from MSDN for more information.

In case safe version of the string comparison routine is inlined, you can use constant value of
INTSAFE_E ARITHMETIC OVERFLOW, which is 0x80070216L, as a signature for safer integer
conversion routines.

Also you can check the existence of atoi, atoi 1, wtoi, wtoi 1 or StrTolnt Function functions on both
sides of files.


http://msdn.microsoft.com/en-us/library/ff521655(v=VS.85).aspx

Additional cmp x86 operation is a good sign of integer overflow check. It will perform additional range
check for the integer before and after of the arithmetic operation. Counting additional number of "cmp"
instruction in patched function might help deciding integer overflow.

Invalid Validation of Parameters

There are also some bugs that is not related to memory corruption. One of them is invalid validation of
parameters. It can happen for process creation or also for calling some privileged APIs. I'll show you
two examples of parameter validation failures and their patch methods. There is no easy way to detect
these patches in general way, but still it's possible to create signatures case by case.

Examples

Insufficient Validation of Parameters Java Deployment Toolkit

The first example is the vulnerability found by Tavis Ormandy. The issue is passing dangerous
parameters to “javaw.exe” command line through web pages. If you run the vulnerable dll through
DarunGrim, you can get some result like Picture 30.

File View Graphs Help

ST Y

sub_1000BE7E1 sub_1000E7B4
1000B7E1 it 1000B7E4
puzh ebp wor al, al
moy ebp, e retn

o SLJ'E ezp, ZDEB n

puzh [ebp+ar . char”

cah zub_1 830&245
test al, al

m

pop ecx
iz shart loc_1000B7C3

entCommand'

You can see unpatched one has whole a lot of red and yellow blocks, but in the patched function, the
whole function's basic blocks have been removed. With further investigation, the function is



responsible for querying registry key for JNLPFile Shell Open key and launching it using
CreateProcessA API.

MS09-020:WebDav ACL failure
This vulnerability was found by Thierry Zoller. The detail is in his blog IIS 6 / IIS 5 /IIS 5.1+ Webdav

auth bypass (update #7). The details from Microsoft SRD team is at More information about the IIS
authentication bypass.

1=3a =L, l'.'-ﬂl'l"' I]
moy eal, [ebp-12CH]
push dword per [ean] ; cohwideChar
moy eas, [ebp-124h]
push dwaord ptr [ebp-120h]; [pWwideCharStr
zub eay, e=i
push eby ; cohMultiByte
push dyard pir [ebp-Toghl: IRRAuliSuteStr
neqg eay
sbb eax, ean
and eay, 8

min I%nleaHfIleWF = i 13
push dward ptr [ebp fﬁi'h]'qé de'lf'age

call edi; r'-'1l.|It|Bgte-T-:u".-.l'lu:Ie-I:har[x.H.x.H.x.H] PAultiByte TowWideChar|
Picture 31: Original call to MultszteTo WideChar

JIIIIIIIIIIII

push dword pir [ebx] ; cohWideChar
mov esi, ds;imp_ MultiByteTo'wWide Chan@24; MultiByte TowWideChar(s,x5.5.5.%)]
push dword per [ebp-12Ch]: IptwideCharStr
sub eay, ecy
lea edi, [ean+1]

push edi ; cchiulkiByte

push dwond s {bpelsdhkd phdulsiByre St
= push®;dwFlags =

push it e (B! 'fzsm ‘CdePage
call esi; MultiByte ToWideCharlx g,z ue]; MultiByte TowideChar [0, 2,0.2)

Picture 32: Patched call to MultiByteTo WideChar

MultiByteToWideChar Function explains meaning of dwFlags value 8 like following:

B_ERR_INVALID_CHARS

[Windows Vista and later: The function does not drop illegal code points if the application does not set this flag.

Windows 2000 Service Pack 4, Windows XP: Fail if an invalid input character is encountered. If this flag is not set, the function silently
drops illegal code points. A call to GetLastError returns ERROR NO UNICODE TRANSLATION.

The problem is that unpatched logic was using the return value from call to “FISUTF8Url(char const
*)” function, and if it detects UTF-like string inside the string using some heuristics, it will set the
dwFlags to 0, otherwise 8. So if it thinks that the string is in UTF-8 format, it will not set

MB_ERR _INVALID CHARS(8) flag even though there are some invalid UTF-8 characters. And this
logic failure leads to ACL check failure.


http://msdn.microsoft.com/en-us/library/dd319072(VS.85).aspx
http://blogs.technet.com/b/srd/archive/2009/05/18/more-information-about-the-iis-authentication-bypass.aspx
http://blogs.technet.com/b/srd/archive/2009/05/18/more-information-about-the-iis-authentication-bypass.aspx
http://blog.zoller.lu/2009/05/iis-6-webdac-auth-bypass-and-data.html
http://blog.zoller.lu/2009/05/iis-6-webdac-auth-bypass-and-data.html

Signatures

If validation of parameters are related to process creation routine, we can check if the original or
patched function has a process creation related APIs like CreateProcess function in modified functions.

The WebDav issue is related to string conversion routine like MultiByteToWideChar Function, we can
check if the modified or inserted, removed blocks have these kinds of APIs used in it. If the pattern is
found in modified blocks, it's a strong sign of UTF-8 conversion issue

Use-After-Free

Use-After-Free bug is a new kind of bug class that is very popular these days. It's usually used together
with heap-spraying. If you don't have an ability to create excessive amount memory to fill in the freed
memory, the success rate of the attack using this vulnerability will drop drastically. So that's why
usually this bugs are found in Internet Explorer.

Examples

CVE-2010-0249-Vulnerability in Internet Explorer Could Allow Remote Code Execution

This vulnerability is from Internet Explorer. And this was exploited in the wild before it's reported to
Microsoft. The issue happens when event is fired for some object that is already released in the
memory. The binary diffing result will look like following Picture 33.

?FireEvent@CE lement@EQAEJPEUPROPERTYDESC_BASICEEHPAVCT reeHode@@IPALIEVENTINFO@EH PFireE vent@CElement@EUAEJPBUPROPERTYDESC_BASIC@EHPAYCT reeh ode(@EPALEYENTINFO@EH

70535654, b 700;
cmp [ebp+var_14]. ebx cmp [[ehp-*\
v [ebpvar, 94, edi mov [ehpt
jzloc_7DETF2CE jzloc_ 7L

7D595869 7DD3388F
cmp [ebprarg_0). 403h cmp [ebprarg 0], 40
\r?zho{?D%Z?‘ZEE |r?z[locETD%BA92E

/

FOEIGETE 7DD33AGC

mav eax, [sbp+arg_ 6] push [sbp+arg_§
mo [sbp+var_104] eax lea eax, eEp+val_1£l4]
wish eax

mp loc_7D6272CF h
?ReplacePtn@CT reeM ode@ES GJPAPAYTE@PAYT @EZ; CTreeMNode:ReplaceP[CT reeMode * * CTresMode %)
Imp loc_YDCEAS2E

cmp esi, ebx
nz lo_/DBI5584

/

v

s

£

h, A
705272CE

7DCBAS2R

cmp £3i, ebx
inz loc_7DD33AB0

/

Picture 33: An addition of CTreeNode::ReplacePtr method

What you can notice from this diffing result is that “CTreeNode::ReplacePtr” is used in patched version
of the function. If you look into other modified functions related to event generation, you can see that it
also involves a lot of “CTreeNode::ReplacePtr” calls.



TFireEventi ouseE nterL eave@CE lementEEUAEHPAVCT reeM ode@@PAYCM essage@(@FF.). 0000PALE PFireE venttd ouseE nterl eave@CE lement@@OAEHPAVCT reeNode@E@PAY Cessage@@FF)J 0000PALE

sor [ebp+var_38] eax ~ shi eax, 0BR
movsy eax, [sbprarg_B] wor eaw, [ebpvar_38]
mav [ebp+var CC], eax
mo e, [edi+d h] wor [ebp+var_38], sax
mov [ebp+var_BC]. eax movsx eax, [ebp+arg_|
mov eax, [ebptarg_18] moy [ebpevar_CC), eax
mov [ebpevar DO, eak oy eax, [edi+ooh)
mov e, [ebp+an WC] mov [ebp+war_BC]. eax
mov [sbp+var_DE] eax lea eax [ehp+var DC]
mov eax, [sbp+arg_]
mov ecx._[Bax] call PReplaceP@CTreeN ode@i@mSs G PAPALT @F’AW @@\Z CTreeN ode:;:ReplacePtr{CTreeMode * # CTreeMode ¥
call MGettd arkupP@ECE lement@@OBE PAYCH ailup@iEi2Z; CElement:: Geth artkupPtr(void) push [eby E+arg_ 1C]
W edi, eax Iea BaH. [ehpwar Da]
I . [eby 68]
e ) call PReplacePUECTreeN ode @ESGIPAPAV] @PA\M @EZ: CTreeNode: ReplacePy{CTresNode " CTreehade *
push esi p loc_7DDOBEO?
lea eaw, [ebp+var_DC] mov aax [eb?ﬁr a
push eax
Thishd arkup @G GXPAPAVE Tieel ode@@PAVCM arkupEw@FPA,) &7 : TranstormT oT hist artkup(CTreel ode * = ChMarkup *.long =] cal 7EEIMavkupPh@EE\ament@@E!EEFAVEM arkup@EZ; CElement:: G etM arkupPtrvoid)
lea eax, [ebp+var_64] may Eﬁl, eak
push?s’i‘ aecx [EbE Var E%Z
lea ear. [ebp+var_D8] mmTuTalgElMarkuD@EVENTPAHAM@@HAEXPA\{EM?E)H (3%?% EWENTPARAM: TranstormModeFromT oT argettd arkup(C
ush eax Imp loc:
ThlsMarkuD@@YEXFAFAVETlaaNﬂda@@PAVEM arkup@@RPA] @7 TranstormT oT histd atkup[CTreeMode * * CMarkup * long *] ush e:
mp dword pir [edi+4], B004h ecx [ebE é}Z
Moy [ebp+arg_C] offselTs prDDpdescCEIemenlonmouseenler ETuTuTalgelMarkuD@EVENTPAHAM@@QAEXPAVEMar UE@@ EWYENTPARAM: TranstormModeT oT oT argethd arkup(Ch.
e v o i [, 00¢h
Moy [ebp+arg_C] offset s plopdescCEIementonmouseenler
inz Toc_ 7DD 33C08
70595588
mov [ebp+arg_Cl. offset _s_propdescCElementanmouseleave
impToc. 7057ED5E 7DD33008

mov [ebp+arg_Cl. offzet _s_pr descCEIementonmouse\
impToc_. de DOBE3C

FDA7BDER
mov eax, [ebp+arg C] b
raen A [Ravs TMNNREIT

Picture 34: Additions of CTreeNode::ReplacePtr methods

You can confirm this using IDA by checking the call reference to “CTreeNode::ReplacePtr” method.

.

Dire..  T. Address

1 settodeHit[CTreeMode *|+C C ¢ CTreeMode::ReplacePt[CTr

lUp p  CDoc:OnMouseMessage(uintuintlong long *intintintl+29F2  call 'r‘FleplaceF‘tr@ETreeNode@@SGJF‘AF‘A\H@F‘A\-"'I @57 CTreeMode:: ReplacePt(CTre
lidlUp p  CHessage:~CMessagefvoid)+E call  ?ReplacePtr@CT reeM ode@ @S GJPAPAY T @PAWT @B CTreeMode: ReplacePtCTre
4D, p  DlGetClassObject]= x =)+9913 call  PReplacePti@CT reeM odel@@s GJPARPAY T @PAYT @27 CTreeMode:ReplacePt(CTre
|40 p CDoc:PumpMessage(CMessage * CTreeMode =intl+26ESF call  ?ReplacePtr@CTreeM ode(@ @S GJPAPAYT EPAYT EES; CTreeMods:ReplacePr(CTre
llD.. p  CDoc:OnMousebessage(uint.uintlonglong *intintintl+350..  call ?ReplacePtr@CT reeh ode@@®S G/PAPAY ] @PAY] @EZ; CTreeMode:: ReplacePtCTre

Picture 35: Unpatched file's call reference to CTreeNode::ReplacePtr

The unpatched function has only 6 references to “CTreeNode::ReplacePtr” method.

Dire.. T. =+ Addess Text
). | NTINFO *HM_TYPE}+... ca e e .
lWdlUp p  CDociOnMouseMessage(uint uint long long * int int int}+ 29E E call ?ReplacePtr@CT reeNode@@SGJF’APAV'I (EPAVEES: CT reeNode::HeplaceF'tr[E'
lAdD.. p  CDoc:OnMouseMessage(uint uint long long * int int int)+ 352FD call  ?ReplacePtr@CT reeM ode@@s GIPAPAY T @RAY 1@ EE; CTreeMode:: ReplacePi[C
4D p CDoc:PumpMessage(CMessage * CTreeMode * int)+270B9 call  ?ReplacePtr@CT reet odedE@s GIPAPAY @PAY ] @Er; CTreeM ode:: ReplacePir|C
4D, p  CElement:BubbleE ventHelperCTreeNode * long long long.intint 1+ 78F 25 cal  YReplaceP@RCT reeMode@@S GIPAPAYTERAYTE@ES: CTreeMode:: ReplacePt(C
|4D.. p  CElement:BubbleE ventHelper(CTreeNode * long.long long.int.int 1+ 78F5E call  ?ReplacePh@CT reeMode@@S GIPAPAY T EPAY 1 EEE: CTreeMode: ReplacePt(C
lAlD.. p  CElement:FirsEventPROPERTYDESC_BASIC const “int CTreeMode *long,...  call  7ReplaceP@CT reeode@i@s GIPAPAY 1 EPAY 1EET; CTrecMode: ReplacePt(C
L,l_L D.. p  CElement:FireEventtougeEnter aave[CTreeM ode * Chiessage * short short .. call  ?ReplacePtr@CT reet oded@i@s GIPAPAY @PAY @Er; CTreeMode:: ReplacePir|
lAlD.. p  CElement:FireE vertouseE rterleave(CTreeMode * CMeszage * shortshort ). call  ?ReplaceP@CT reeModel@i@s GIPAPAYTERAY1EEZ: CTreeMode: ReplacePt(C
4D, p  CElement:FireStdE vent_MouseHelperCTreeMode * CMessage * shart.short . call  7ReplacePh@CT reeNoded@Es GIPAPAYTE@PAY1E@EZ: CTecNode: ReplacePt(C
Il LlUp p  CElement:FirsStdE vent_MouseHelperCTreeMods * Chessage = shorshort .. call  ?ReplacePr@CT reeModef@i@s GIPAPSY 1 EPAY 1EET: CTrecMods: ReplacePt(C
ldUp p  CElement;:Fire_activationH elperlong,CElement *long,intintint EVENTINFO *..  call  ?ReplacePr@CT reeNodel@Es GIPAPSY 1@PAY1@EZ; CTreeMode: ReplacePi(C
L,l_L D.. p  CElement:Fire_ActivationHelper(long CElement * long,intintint EVEMTIMNFO = call  ?ReplacePtr@CT reet oded@i@s GIPAPAY T @PAY T @Er; CTreeMode:: ReplacePir|
D p  CElement:Fire_activationH elperflong, CElement * long intinkint EVENTINFO * . call  7ReplacePh@CT reeNodel@Es GIPAPAYTE@PAY1@EZ; CTeeNode: ReplacePt(C
| 1D, p  CElement:Fire_fctivationHelperlong.CE lement *long.intintint EVEMTIMFO = call  ?ReplacePr@CT ree oded@Es GIPAPEY ] @PAY 1 EEE; CTeeMode: FeplacePirC
|4dD.. p  CElement:Fire_ActivationH elperlong,CElement * long.intintint EVENTINFO * .. call  ?ReplacePir®CT reeNodel@@E@Ss GIPAPSY 1@PAY1@ET: CTreeNode:: ReplacePt(C
il dD.. p  CElement;:Fire_activationH elperlong,CElement *longintintint EVENTINFO *..  call  ?ReplacePr@CT reeNodel@@E@s GIPAPSY 1@PAY1@EZ; CTreeMode:;: ReplacePt(C
il D, p  CElement:Fire_onlayoutcompletelintulong)+32 call  ?ReplacePtr@CT reet odedE@s GIPAPAY @PAY ] @Er; CTreeM ode:: ReplacePir|C
Ml D, p  CElement:fireEventushort * tagaRIANT * short ¥)+131 cal  YReplaceP@RCT reeMode@@S GIPAPAYTERAYTE@ES: CTreeMode:: ReplacePt(C
LLL D.. p CElement:fireEventushart tagVAF! IAMT * shart #)+152 call  ?ReplacePtr=CT reeNode@@SGJF‘AF‘AW @F‘AW &E CT reeNode::HeplaceF'tr[E'

Picture 36: Patched f le's call reference to CTreeNode: ReplacePtr



While the patched function has the call references all over the places as seen in Picture 36. And the
function name implies that they are all related to event processing.

If you look into the “CTreeNode::ReplacePtr’” method. It looks like Picture 37. It's calling
“CTreeNode::NodeAddRef” and “CTreeNode::NodeRelease” methods.

¥
B WL
; START OF FUMCTION CHUHMK FOR ?ReplacePtr@CTreeNodeBESGJPAPAVIEPAV1EEZ
loc_ 7DDB8B85: ; void =
:lﬂﬂ“lllllllllmﬂgllﬂﬂilIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|_
= |call ?HodeAddRefRCTreeNode@RQAEJXZ ; CTreeMode: :HodeaddRef{void) =
'-| t!?ﬁtllllIIIﬂﬂ&lllelaﬁIIIIlllIIIIIIIIIlllIIIIIIIIIllIIIIIIIIlllIIIIIIIIIlllIIIIIIIIIlllIIIIIIIIIIllIIIIIIIIIll:
mov [ebp+var_4], eax
jz loc_7DD16908
||
L ]
BN L
loc_7DD16988:
test ebx, ebx
mnoy [esi], edi
jnz loc_7DDBBAYC
y |
BN BN
jmp loc_ 7DD16912
loc_7DDB8AYC :
f“wllIIIIIIIEEH:IIEBI‘*IIIIIIIIIIIIIIIIllllIIIIllllllllIIIIllllllllIIIIllllIIIIIIIIIIIIIIIIIIIIIIIIllllIIIIlllll I:
=call ?HodeReleacedCTreeHode@RAQAEKXS ; ETreeNude::NudeRelease(uuid)E
:lljmulllIIIllﬂﬁlﬁnnﬂﬁ“‘lalllllllllllllIIIIllllllllIIIIllllllllIIIIllllIIIIIIIIIIIIIIIIIIIIIIIIllllIIIIlllll I;

; END OF FUNCTIOH CHUHK FOR ?ReplacePtrBCTreeNode@E5GJPAPAVIEPAVIEES
|

L I
[= 1.1 |
Picture 37: Main part of CTreeNode::ReplacePtr method

So with further analysis, we can see that the function releases reference to original memory pointer and
add new reference to the new CTreeNode object that has been passed as first argument to the method.



CTreeNode *orig_obj

4. Release reference counter

2. Remove ptr
NodeRelease

CTreeNode *arg_0

CTreeNode *arg_4

1. Add reference counter

NodeAddRef

Picture 38: Flow of logic in CTreeNode::ReplacePtr

So conclusion here is original binary was failing to replace pointer for the tree node. And freed node
was used accidentally later in the code. “ReplacePtr” methods in adequate places fixed the problem. We
might use “ReplacePtr” pattern for use-after-free bug in IE. But the effectiveness is fairly limited to this
same type of bug in Internet Explorer. Anyway, adding the pattern will help to find same issue later
binary diffing if they missed any function replace this time.

CVE-2010-0806: Use-after-free vulnerability in the Peer Objects component

In the wild exploit looked like this.
function blkjbdkjb()

S
L

ecjeefe();

var sdfsfsdf = document.createElement("BODY");
sdfsfsdf.addBehavior("#default#userData");
document.appendChild(sdfsfsdf);

try {

for (i=0; i<10; i++)

{

sdfsfsdf.setAttribute('s',window);

1
!



catch(e)

This is about setting invalid object as an attribute to “#default#fuserData” object. The object might be
expecting string variant type of object and will convert the original object to BSTR variant type leaving
some members of the structure pointing to invalid memory.

Here's the diffing results using DarunGrim.

I 4 1] 2 4 1] F
List Of Matches
Functions ] Blocks ]
Original Unmat... | Patched Unmat... | Different | Matched | Mat... o
O 0 1 18CComObject@VCHomePage@@... 0 0 0 0%
O 0 ?In\r-:ke@7SID|5patchImp|@UICI|entCap 0 0 0 0%
0 z 0 ( 0%
0 ’setAtlnbutE@CPerslstDataPeer@@UA 2 4
0 TsetAttribute@ CPersistUserData@ @UA... 1 4
v TmegoetvaE e U U
D PathAddBacksIashW@4 0 _PathAddBackslashW@4 0 0 1 100%
M bcaaerh n L e o n n 1 1hnos S

Picture 39: Patched functions from CVE-2010-0806

If you look into “CPersistUserData::setAttribute” function for function level diffing results, you can
find interesting change in the call to “VariantChangeTypeEx” function.

l

EI N 11
42085398 push 8 ; ut 8 ; ut
alse”| |4288539A push a ; uwFlags push abx ; wFlags
4208539C lea esi, [ebps+puargbest] push 4089h 5 lcid
4208539F push 48%h ; leid lea eax, [ebp+puarsSrc]
42085304 mou eax, esi push eax ; puvarSrc
42085306 push eax 5 puarsrc 1ea eax, [ebp+puargbest]
420853A7 push eax 5 puargDest push Bax 5 puvargbest
420853A8 call ds:__imp_ VariantChangeTypeEx@28 ; VariantChangeTypeEx(x,x,x,x,x) ca11 ds:__imp_ VariantChangeTypeEx@28 ; UariantChangeTypeEx(x,x,x,%,x)
42 0853AE mov edi, eax mou esi, eax
42085380 test edi, edi cmp esi, ebx
42085382 jnz short loc 42085415 iz short loc_u2BB53E3
| T
¥
R | I E N 1L
't loc_420853F4| | [420853F1 lea esi, [ebp+puargDest]] Llea esi, [ebprpuarst

* &

Picture 40: Diffing result

In unpatched function the 1% and 2™ arguments to function “VariantChangeTypeEx” are same as
shown in Picture 41



AL

push 8 ; ut

push edi ;: wFlags

lea esi, [ebp+puvarghest]

push 48%h : 1lcid

JMIUIIIllIIIllIﬁﬂ“ﬂllﬂﬁilllllllIIIIIllIIIllIIIIIIIIIIIIIIIIIIIIIIII:

pu5h eax ; puarSrc =

i:!" nnppnnRnR ?lelllll jnnpnnnn fnnEgaIIIn EIIIIII munn :
all imp arian%ﬂ ange ypEExEZB ; VariantChangeTypeEx{%,x,x,%,%)

mou Edl, eax

test edi, edi

jz short loc 66E61651

1
Picture 41: Call to VariantChangeType in unpatched function

In patched function the 1% and 2™ argument to function VariantChangeType is different as shown in
Picture 42.

¥
BNl
G66EG1SF7 push 8 ; ut
GGEGISFD? push ebx ; WFlags
‘II@I@III@III?IEI&II Ilill$ll;lllllIIIIIJEI;IBI?III-IIIIIIIIIIIIIIIIIIIIIIIIIIfIII:II-IE:II-IIIjIIIIIIIIIIIIO
Z66E615FF lea eax, [ebp+puarsrc] =
S66EG61682 push eax ; pvarSrc =
J66E61683 lea Eax, [ebp+puvarglest] 2
566E616ﬂ6 Pu5h 2 UaFﬂDE5t=
6OEG1607 ¢ '1'1""""'&'""""""""'U"F'i'éH’EE angeTypeEx@20 ; VariantChangeTypeEx(x,x,%,%,x)
GGEG1680 mov esi, eax
G6EG160F cmp ESi, ebx
66E61611 jnz short loc 66E61672

™
Picture 42: Call to VariantChangeType in patched function

Looks like this vulnerability happens during converting Variant type to VT _BSTR when the type is not
VT _BSTR type. During the time it converts the data passed as the 3™ argument for the method. The

source and destination of the function were same and it could be a problem for the original Variant data
because the function will overwrite original object and the object will be used in other parts of the code

The fix is separating the source and destination of the call to preserve source argument data. So we can
use the “VariantChangeTypeEx” calls appearing in modified blocks as a signature for identifying these
kinds of vulnerabilities involving Variant type variable conversion issues.

Finding 1-day Exploit

If you look at the diffing results, you can see that actually two methods are modified. One was
“CPersistUserData::setAttribute” that is related to “#default#userData”, the other is
“CPersistDataPeer:: setAttribute” which we don't have any idea. If you look into function level
patching, “CPersistDataPeer:: setAttribute” has same type of modification to ““ VariantChangeTypeEx”
function call as in “CPersistUserData::setAttribute”. So we can see that the issue is not limited to



"#default#userData" persistent data. If you trace “CPersistDataPeer:: setAttribute” usage, you can
easily guess that the method is used by “savehistory” and “savesnapshot” behavior. So the problem is
not limited to "#default#userData", but also “#default#savehistory” and “#default#savesnapshot”
behaviors are affected.

With this new information you can write a simple 1-day exploit like following. This is just a POC and it
will only crash IE that has not been patched for CVE-2010-0806, but if you put heap-spraying code to
here that will make it a valid and full functional 1-day exploit that can perform remote code execution.

[<META NAME="save" CONTENT="history">
<STYLE>
.sHistory {behavior:url(#default#savehistory);}

</STYLE>

<SCRIPT>

function test()

,{
il.setAttribute( "x", document );
i2.setAttribute( "x", document );

i3.setAttribute( "x", document );

i4.setAttribute( "x", document );

[<INPUT class=sHistory type=text id=il onload="test()">

<INPUT class=sHistory type=text id=i2 onload="test()">

[<INPUT class=sHistory type=text id=i3 onload="test()">

<INPUT class=sHistory type=text id=i4 onload="test()">

No available documents on the Internet ever mentioned this issue. If you use binary diffing technology,
it's a matter of time before you can find something interesting like 1-day exploits that hasn't been
disclosed in any other places.

The problem with 1-day exploit is that many security appliances and software products are still heavily
dependent on signatures and they are using simple pattern matching as their main defense measure. If
an attacker figured out 1-day exploits and using them for their own benefits, then the original signature
will not cover the issue. So IPS vendors need to pay more attention to patch analysis and need to get
most out of the vendor patches to write their signatures. Even though the vendors are releasing more



and more information to the security vendors, looks like it's still more of the security vendor's work to
figure out how to protect users from the undisclosed vulnerabilities.

Signatures

We can make custom signatures incurred from each incidents of use-after-free bugs. Also if it involves
Variant related routines, we can use Variant data type handling APIs as the signatures. These kinds of
vulnerabilities are also different case by case, so further research is need to establish a stable way to
catch them.

Conclusion

Binary diffing can benefit IPS rule writers and security researchers. Locating security vulnerabilities
from binary can help further binary auditing.

There are typical patterns in patches according to their bug class. Security implication score by
DarunGrim3 helps finding security patches out from feature updates. The security implication score
logic is written in Python and customizable on-demand. Also we presented typical patterns for each
major vulnerability classes. The signature system needs for us to update the signatures as new patterns
are found. And data flow analysis using IDATracker will help the researchers to expedite the analysis
process.

This automatic security patch locating ability will be beneficial to the IPS rule writers. They can spend
more time in concentrating on what really matters instead of spending time to find the actual parts to
analyze. To achieve all these, | upgraded the current implementation of
DarunGrim(http://www.darungrim.org) binary diffing system to support pattern matching. And also I'm
going to release IDATracker as an open-source project soon.


http://www.darungrim.org/

	ExploitSpotting: Locating Vulnerabilities Out Of Vendor Patches Automatically
	Security Patch Analysis
	IPS Signatures

	Finding Security Patches
	Signature based matching
	Tracing Data Flow

	DarunGrim3
	Python Interface
	Security Implication Score
	Bin Collector
	Web Interface
	Usage
	Using Darungrim2.exe( Windows GUI )
	Using Web Console


	IDATracker
	Patterns Of Vulnerabilities and Patches
	Buffer Overflow
	Examples
	MS06-070
	MS08-067

	Signatures

	Integer Overflow
	Examples
	MS10-030
	JRE Font Manager Buffer Overflow(Sun Alert 254571)

	Signatures

	Invalid Validation of Parameters
	Examples
	Insufficient Validation of Parameters Java Deployment Toolkit
	MS09-020:WebDav ACL failure

	Signatures

	Use-After-Free
	Examples
	CVE-2010-0249-Vulnerability in Internet Explorer Could Allow Remote Code Execution
	CVE-2010-0806: Use-after-free vulnerability in the Peer Objects component
	Finding 1-day Exploit


	Signatures


	Conclusion

