
Black Hat USA 2010 Page 1 of 11 Harder, Better, Faster, Stronger

Harder, Better, Faster, Stronger: Semi-Auto Vulnerability
Research

Richard Johnson
Lurene Grenier

Sourcefire, Inc
July 2010

Much work has been presented in the past few years concerning bug discovery through
fuzzing. Everything from the feasibility of exhaustive generation fuzzing, to the
continued productivity of simple mutation fuzzing has been covered. This paper will
build on this by making the assumption that finding bugs is a foregone conclusion, and
will instead discuss the pre- and post-fuzzing process necessary to efficiently analyze
vulnerabilities for a given program to the stage where exploitability has a high
confidence, and exploitation can be handed off or undertaken in house. This process will
be driven by intelligent, analyst-driven automation, with a focus on the continued
production of exploitable bugs with a minimum of wasted effort.

1 Introduction

Input fuzzing is a technique in
which data is programmatically
generated and provided to a program in
an effort to exercise available code paths
and expose memory corruption flaws.
This method of flaw discovery has been
proven a necessary step in the testing
methodologies of both attackers and
defenders. For attackers fuzzing is an
essential process because it represents
the highest return on investment with
regards to time and effort. It is a process
which can be undertaken with little
startup cost and in parallel with more
intensive efforts such as reverse
engineering. Further, this fuzzing can be
split into a first stage of simple mutation
fuzzing while a more in depth generation
stage is prepared. This ability of

parallelization combined with a high rate
of return is unmatched by other
techniques.

Due to the above reasons,
network defenders as well as software
developers can be assured that those
targeting their assets will make use of
this technique. While code review is a
more complete method of bug discovery,
it is by no means fool proof. Simple
mutation fuzzers often find bugs that are
difficult to identify under a manual code
review and generation fuzzers are
capable of exhaustively testing protocols
and file formats, therefore a defender’s
fuzzing must necessarily be more
complete than an attacker’s.

While an attacker searching for
an inroad into a system need find only a
single high-quality bug, and has the
benefit of time, a defender must find the
great majority of high-value bugs before

Black Hat USA 2010 Page 2 of 11 Harder, Better, Faster, Stronger

release. This will necessitate a multi-
tiered solution comprised of speedy
mutation fuzzing, more complete
generation fuzzing, code review, and
regression testing. That said, this paper
is not focused on the requirements of a
defender.
 The focus of this paper is on the
goals of an attacker. Specifically we
will consider the goals and resources of
two specific minded types of attacker.
Firstly, we will consider the attacker
who has a target in mind for long term
and consistent infiltration. We will
assume that this attacker has an idea of
the software and systems in use by his or
her target. Secondly, we are concerned
with the freelance researcher whose goal
is to reliably discover exploitable
vulnerabilities, and weaponize them for
sale. These two attackers are linked by
common goals and concerns. They each
must produce consistently high-value
vulnerabilities, while simultaneously
conserving human as well as CPU time.
Human time and effort must be freed up
for the more complex and less robotic
task of exploit development, while
wasted CPU time directly subtracts from
bug yield. Thus, efficiency and
consistency are our goals, while
reproduction of work and wasted human
effort are our enemies.
 We will rely upon the prior work
of others to convince the reader of the
effectiveness of fuzzing itself, and only
touch briefly upon the choice of fuzzer
as it pertains to the cost-benefit analysis
of the process as a whole. We will also
assume that the choice of target is
outside the control of the attacker, and is
instead chosen by environment, or
market pressures. We will begin with an
overview of the process by which our
workflow was created, step by step,
before providing example solutions that

proved effective for the authors in
practice. Next, we will cover the
specifics of the automated solutions
which were created to facilitate this
workflow. Finally, we will contrast the
full solution with a more straightforward
scenario in which a researcher simply
runs a fuzzer and deals directly with its
output.

2 Vulnerability Research
Workflow

Traditionally, vulnerability research has
been focused on bug discovery methods,
while the surrounding process is left as
an exercise for the reader. Generally,
the reader has interpreted the required
exercise to simply involve starting the
fuzzer and consuming snack foods. This
is because the goal has always been to
simply find bugs, at which point you
provide a collection of several hundred
crashes to a vendor and leave the triage
work to people who have the code. If,
however, your goal is to produce high-
value vulnerabilities for discretionary
use, a different problem presents itself.
This problem does not consist of how to
force a fuzzer to produce crashes, but
rather what to do when your fuzzer
produces an excessive number of crashes
of unknown quality.
 The standard fuzzer use case
includes the following steps:

1) Select a target
2) Select a fuzzer

a. If the fuzzer is a mutation
fuzzer, select input data

b. If the fuzzer is a
generation fuzzer, create
the necessary templates

3) Run the fuzzer

Black Hat USA 2010 Page 3 of 11 Harder, Better, Faster, Stronger

4) Evaluate output files by hand for
exploitability

a. 1st pass - remove certainly
unexploitable bugs

b. 2nd pass - select probably
exploitable bugs

c. 3rd pass - select a single
bug worth putting
significant triage and
exploit development time
into

The target selection process itself may
comprise multiple parts. This paper
assumes that the program is chosen
largely by market factors and so is
outside power of the attacker. However,
the issue of attack surface as target
decision should not be ignored and will
be discussed in a later section. The
concentrated fuzzing of independent
attack vectors and code paths in general
can be beneficial. Further, an attacker
may decide to focus on specific areas
due to network design or code age.

Apart from this, we should be
chiefly interested in improving the
second and fourth stages, as they will
comprise the bulk of the human effort.

Fuzzer Engine Selection

 Fuzzer selection comes down to
a choice between the use of human time
and the use of CPU time. Use of a
generation fuzzer is the more exhaustive
option, and will in general find more
bugs, however from the standpoint of an
attacker this may not be the optimal
choice. The reason for this is that a
generation fuzzer requires a good deal of
time to create the original template for
each separate format or protocol you
wish to attack. This is tedious, time
consuming work which will take time
from exploit development, testing, and

documentation. More often than not,
this expensive human time can be
replaced with CPU time in the form of a
less intelligent mutation based fuzzer.
The question then is how hard is the
target; does the time to find a bug with a
mutation fuzzer mean that developers
will be stuck with downtime, and can
this be rectified with more hardware?
Note that this trade off can only be made
by an attacker; it would be negligent on
the part of a defender to ignore
generation fuzzing altogether. In the
case of an organization with sufficient
resources to hire dedicated template
writers, generation fuzzing should be
undertaken in addition to mutation
fuzzing. As Charlie Miller notes, the
bug sets discovered by the two fuzzer
types often can be disjoint.

Input Set Population

 We should point out here that
mutation fuzzing is not without its
startup costs. The choice of base input is
of the utmost relevance to bug count. A
poor choice of input file may well result
in an empty-handed exploit development
team. The primary concern here is that
the base input chosen exercises a
majority of the code paths concerned
with the functionality being tested.
Code path coverage should be distinct
from simple code block coverage in this
measure; this will be covered in section
3. It can be helpful for larger targets to
split fuzzing efforts by functionality to
be tested. This will allow developers,
later in the process, to reuse recently
reverse engineered knowledge of the
section of the program in question. It
will also allow you to quickly populate a
stable of inputs and begin testing.
Attempting to compile a set of inputs to
exercise the entirety of a complex

Black Hat USA 2010 Page 4 of 11 Harder, Better, Faster, Stronger

program can take quite some time. It can
also be useful to constrain research to a
specific area of a common program in
order to reduce the likelihood that others
perform research in that area.
 One solution for expediting the
population of an input set is to simply
gather as many files exhibiting a certain
trait as possible, then filter them down.
For example, if one wished to find a
JBIG2 vulnerability in a PDF, they could
follow these steps in collecting input
files for a mutation fuzzer. Firstly,
collect a reasonable sample of PDF files
from the internet, possibly with a simple
Google search-and-scrape program.
Next, you might utilize a code path
discovery program to narrow down your
large stable to one that exercises the
majority of the functionality you wish to
test. Section 3 will discuss a possible
implementation of this functionality
utilizing dynamic binary
instrumentation.

Fuzzer Execution

 A distinction must be made here
between the fuzzing engine, which
performs the creation of flawed input,
from the testing of that input and its
subsequent evaluation of results. While
it is the contention of the authors that the
fuzzing engine itself matters little in the
discovery of bugs, the testing and
evaluation matters greatly where time
and effort are concerned. The reason for
this is that there are many opportunities
in this phase of testing to capture data
that would otherwise have to be
reproduced later in the process.
 The decision on what
information to capture depends on the
time and space necessary to capture it,
and the likelihood of its usefulness.
Some information, for example the stack

trace and instruction on which the
program failed is always necessary, and
so regardless of cost should be collected.
This data is needed to differentiate
individual crashes (or “bucket” them)
and therefore will always be required.
Other data, such as taint analysis, takes
more effort to gather and is only needed
when confidence of exploitability is
higher. Expensive analysis can be
performed later in the process and
parallelized depending on available CPU
resources.

Metadata Collection

 The key to effective data
collection is debugger integration.
When first presented with a fuzzing
engine, the immediate impulse is to see
if it can find bugs. Once run for a
sufficient period of time, the user is
presented with a set of inputs which may
or may not cause a crash. In many cases
the input generation phase is combined
with the testing phase. In this case the
user is presented with a set of inputs
which will cause a crash or fault in a
given process. In the second case, work
has been done which must be redone.
When presented with an input which
exercises a bug condition, the first step
of triage for a vulnerability developer is
to make a quick pass decision as to the
exploitability of the bug. Therefore, it is
far more efficient to gather all data
relevant to this decision which does not
significantly slow down the rate of
testing at test time, rather than redo the
work of reproducing the crash later. In
addition to this trade-off analysis, there
are a few goals we’d like to achieve with
the data we collect.

1) We’d like to determine roughly
what class the bug falls into

Black Hat USA 2010 Page 5 of 11 Harder, Better, Faster, Stronger

2) We’d like to have some idea as
to the probability of
exploitability (just a first pass)

3) We’d like to have enough
information to separate bugs into
“buckets” as mentioned before.

To some degree, regardless of the
cost, requirements 2 and 3 must be
satisfied. Luckily, this is generally done
with little impact to speed. The decisions
made by the authors with regards to
what data to collect, along with the
methods used are discussed in sections 3
and 5.

Data Storage

 As important as the fact that you
store necessary data is the way in which
you store it. There are a few goals we’d
like to achieve in our data storage.

1) We’d like to store information
about all crashes indefinitely

2) We’d like to be able to search for
a set of crashes with arbitrary
characteristics

3) We’d like to be able to change
the criteria of our searches, and
the data we store as we learn
more about differentiation of
crashes

4) We’d rather not destroy too
many hard drives in the process

Points 1 and 2 are particularly

important and tend to suggest that the
most efficient and capable way to store
ones crashes is with some form of
database. The solution utilized by the
authors is discussed in Section 5.

Crash Prioritization

Assuming we’ve done our job in the
area of data storage, several options
present themselves as far as crash
prioritization is concerned. If we are
able to store crashes across fuzzing runs,
as well as across differing programs,
then it becomes feasible to pick targets
over time which lend themselves easily
to the exploitation techniques of the day.
While recent work has endeavored to
determine the exploitability of crashes, it
seems that currently these solutions
provide a suggestion at best. For this
reason, it is the contention of the authors
that rather than consider the absolute
exploitability of a given crash, it is more
useful to consider crashes in terms of
ease of exploitability. Utilizing the
searching capability we’ve created, it
becomes possible to search out and
selectively triage bugs with properties
that suggest that they may be exploitable
with a given technique. As the
understanding of what is possible to
exploit and what is easily exploitable
changes with the release of new
techniques the attacker may modify
searches to find examples which were
once difficult and time consuming but
are no longer. In addition, this allows the
attacker the ability to make a basic guess
as to the effort necessary to produce and
exploitable bug.

Depending on one’s crash-flow, and
the use for which the exploits are being
created, it can also be useful to prioritize
in a secondary fashion on other data
points. For example, one might give
preference to readily exploitable crashes
for which there are very few examples
found in its bucket. This would suggest
that the bug in question is less likely to
be found and then fixed, ensuring a
longer shelf life to the end product.

Crash Reevaluation

Black Hat USA 2010 Page 6 of 11 Harder, Better, Faster, Stronger

Since it is our goal to extend our

stable of possibly exploitable crashes
across boundaries of both programs and
time, it is necessary to perform some
form of crash reevaluation as programs
are updated. Crash reevaluation is
simply the act of retesting the currently
known crashing test cases from a prior
version on the new version of the
software. To accommodate this, it is
necessary to store the version number of
the target software as crashes are
discovered. Remember that crashes
occurring only in older, but still in use,
software is still quite useful.

Attention paid to changes in software
over time can provide valuable insight
into the prospective shelf-life of a crash.
If a given crash exists in an older version
of software while not in a newer version
due to changes not related to an explicit
bug fix, one may be able to assume that
despite reevaluation of the code by
developers, the bug was not discovered.
In the future, the older, buggy code is
not likely to be checked again, and other
bug hunters are less likely to search in
the old version for bugs when a new
version exists for testing.

Performing crash reevaluation and
subsequent database updating is a simple
and speedy process and will save a good
deal of time. If an attacker does not
perform crash reevaluation they are left
with two time consuming options. The
first is to rerun all tests. While it is
possible that new bugs could be added
and that this would ferret them out, it
may or may not be worth the time to
check if no significant functionality has
been added to the program. If
significant functionality has in fact been
added, rather than re-run all tests it can
be faster to tailor a set of input cases to
cover only the new code in question.

The other option is to retest buckets by
hand when a crash is chosen for further
testing only to find that it has been
patched.

Bindiff may be used to aid this
process. When new versions of the
target become available, the attackers
may diff the versions and subsequently
make use of code path coverage analysis
to selectively target changed code.

Workflow Overview

Based on time and perceived target
posture the attacker makes an initial
decision on fuzzer type. If a mutation
fuzzer is chosen, a stable of input files is
collected, then narrowed down to a
reasonable size based on code path
coverage. If a generation fuzzer is
chosen, templates are then created for
the input formats or protocols in
question. Templates, once created,
should be tested for completeness
through the usage of code path coverage
analysis, rather than reliance on the
specification. If resources permit,
attackers should make use of both.

As crashes are registered within the
database evaluations of acceptable bug
parameters may be established.
Attackers must weigh considerations
such as ease of discovery, ease of
exploitation, and weight of target
software. The considerations which
make up this weighted decision are
dependent on the desires of the attacker.
For example, exploits for immediate use,
or low end botnet creation would ignore
the ease of discovery aspect. When
considering creating a relationship with
a high end buyer, ease of exploitability is
less important, while ease of discovery is
of the greatest importance. With these
parameters established, database
searches may be created.

Black Hat USA 2010 Page 7 of 11 Harder, Better, Faster, Stronger

If software is updated some
automated reverse engineering should be
employed to determine the extent of
changes and decide if a new stable of
inputs should be assembled, or if
changes are minor enough to warrant a
simple crash reevaluation process.

When database searches have
yielded particular buckets of interest,
auto-triage work may be undertaken and
documentation of the crash can be
generated.

3 Enhanced Targeting
and Input Selection

The initial phases of fuzzing
involve understanding the target
program and the input data as thoroughly
as possible so as to make informed
decisions on where to spend available
resources on fuzzing. During this
process the program should be analyzed
to locate potential attack vectors which
include traditional points of interest such
as untrusted data entry points or
ancillary data such as code age. Once
attack vectors have been enumerated, an
assessment of which attack should be
carried out can be undertaken. This
assessment will take into account the
fuzzing tools on hand, the available CPU
and human resources, as well as the
amount of access a successful attack
would give the attacker. Once a point of
attack has been chosen, the next step is
to prepare or acquire the inputs that will
be given to the fuzzer. This section will
detail enhancements to the targeting and
input selection processes.

Attack Surface Analysis

Attack surface refers to the program
code that interacts with untrusted data.
This data may come from files, registry
keys, network packets, and other input
sources. The goal is to find the locations
where untrusted data enters the program
and understand the size and complexity
of the code that interacts with the data.
This will be accomplished through an
enumeration of possible data entry
points and call graph analysis.

The attack surface entry points
for a program may be enumerated in part
by using static analysis to detect I/O
related function calls. The static
analysis approach does have drawbacks
however, as call graph recovery will be
incomplete and the detection may miss
calls to I/O APIs that are called through
wrapper functions. As such, the static
analysis approach works best for kernel
mode code using the predefined
Windows System Call API or in
situations where C++ is not in use and
wrapper functions are known or a large
multi-modular graph can be generated.
The key API calls to take note of as taint
sources are read/write or send/recv I/O
functions. Additional hooks are required
to identify the files, sockets, or registry
keys associated with the taint:

File NtOpenFile

NtCreateFile
Network connect

listen
Registry NtOpenKey

NtCreateKey
Memory NtCreateSection

NtOpenSection
Process NtOpenProcess

Thread NtOpenThread

Event NtOpenEvent
NtCreateEvent

Any functions in the target binary that
can reach these entry points on a

Black Hat USA 2010 Page 8 of 11 Harder, Better, Faster, Stronger

program call graph are interesting
locations that may be manipulating
external data. The file path and
permissions associated with these calls
will reveal whether an attacker can
modify these inputs.
 Alternatively, dynamic analysis
can offer a more reliable approach to
discovering the attack surface exposed
during an execution of a program. In the
case of mutation fuzzing, dynamic
tracing can help determine what attack
surface is exposed by a particular input.
This approach can also be used to
determine whether a selected input
exercises an area of code that may be of
interest to the attacker, such as an area
known to be prone to vulnerabilities or
an area of code that has not been
modified in a long time.

The solution the authors have
chosen currently implements detection
of the high-priority attack surface
involving file and network I/O using
dynamic analysis. Future work will add
support for attack surface that less
commonly results in vulnerabilities such
as registry keys and Windows event
objects.

Input Selection

Knowledge of the attack surface
allows the attacker to optimize the
fuzzing efforts to concentrate only on
inputs relevant to the targeted area of
code. Specifically, this process requires
tracing the execution of the program in
order to record basic blocks and API
calls relevant to program input. The
solution implemented by the authors
utilizes PIN, a dynamic binary
instrumentation framework, to facilitate
efficient program tracing. Trace
efficiency is fairly crucial as the process
of determining input priority will require

a recording of the program execution
once for each supplied input.
Traditional solutions for execution
tracing require the use of the Windows
debugging API. Use of the debugging
API requires context switching at each
block executed which negatively impacts
performance. It is because of this
performance consideration that the
chosen solution utilizes a dynamic
binary instrumentation approach.

Once the trace has been recorded,
a program execution graph can be built.
The recorded trace will include data that
records information about loaded
modules, block execution, and attack
surface related API execution. A graph
representation of the program execution
can be built based upon the data in the
trace. The edges of the graph can be
inferred by the order of the blocks and
the API trace facilitates filtering of the
graph down to the relevant sub-graph
that is reachable from the blocks that
take input from the target input source.
Once constructed, the graphs can
automatically be analyzed for
differences in coverage and a ranking
can be achieved based upon inputs that
closely match the targeted fuzzing
criteria.

4 Fuzzing Process

 The basic fuzzing process is
comprised of four steps. These steps are
input generation, process setup, testing,
and data collection. Input generation
should be handled by your fuzzing
engine, and as previously mentioned, is
the least important aspect of the process.
 The first important step is to
ensure that the process to be tested is in
a state that will facilitate simple and
accurate collection of data should a crash

Black Hat USA 2010 Page 9 of 11 Harder, Better, Faster, Stronger

occur. This includes the setup of a
debugging environment. Ideally, post
mortem debugging is to be avoided in
favor of a process opened in a debug
environment due to timing issues and
changes that are made to the process
space in the post-mortem scenario.
When running the process in a
debugging environment, some
knowledge of the process can sometimes
be necessary to collect the most useful
data from a crash. In many cases, a
process will throw, then properly handle
exceptions that will cause your
debugging environment to trap, but are
not useful for exploitation. In these
cases, the debugger must be told to
ignore the exceptions in question. Other
processes may however be unable to
handle these exceptions, and ignoring
them may cause the data gathered at the
time of an unrecoverable crash to be less
useful. In addition, the process setup is
the proper time to ensure that if there are
applicable crash discovery technologies
(such as page heap) that they are in place
for the new process. The authors’
solution was implemented with a custom
Windows debugging API wrapper in
which the process was set up and
launched.
 The next step of the process is to
provide the input to the program which
is being tested. The primary issue of
concern here is when a test may be
considered completed. The simple
solution to this is to observe the process
with manually provided inputs and
decide upon a static time. This can be
both wasteful in some test cases, and too
aggressive to catch crashes for others. A
better solution is to baseline the process
in an idle state, then monitor CPU and
memory usage for a return to this
baseline once the input is processed. In
the authors’ debugging wrapper, CPU

monitoring is performed with the
Windows WBEM interface. A
maximum test length may also be
provided through a configuration file.
 Finally, should the program
throw an exception that isn’t ignored by
the debugger, data collection should
begin. The first step here is to collect
the necessary information to produce a
unique fingerprint for the crash. This
will be used in the "bucketing" process
to determine if a particular crash was
previously seen and what variations exist
on the crash. Generally, this can be done
by collecting the stack trace and the
crashing address, and creating a hash of
the data. Next, the entire block of
assembly containing the crashing
instruction should be collected. This
allows for later categorization of the
crash as well as a simple indicator of
exploitability. Lastly, registers and
crash-specific metadata should be
collected and stored. The tested solution
collected this data using the Windows
debugging API, then passed it on to a
data storage server with curl where it
was then stored in a database for later in
the triage process.

5 Assisted Triage Process

Finally, once an input has been
generated that results in a program
exception, the triage process can begin.
The goal of the triage process is to
determine the triggering condition,
exploitability, and root cause. To
accomplish these goals effectively, a
final deep trace is required to record the
register state and dataflow properties of
each instruction. Specifically, all
memory addresses that are read or
written by an instruction are recorded so

Black Hat USA 2010 Page 10 of 11 Harder, Better, Faster, Stronger

that an additional dataflow graph can be
constructed. This graph is analyzed
from the dataflow entry points specified
by the traced APIs to identify instruction
dependencies and propagate taint across
instructions that interact with the fuzzed
input. The resulting taint graph can be
overlaid onto the call graph and control
flow graph to enable the researcher to
visually identify the flow of execution
and tainted data. This final view
advances the three steps of the triage as
described below.

Exploitability

 Exploitability can be determined
by identifying tainted data in the context
of the crash. The surrounding code
should be analyzed to determine which
instructions impact program control. If
tainted data is referenced by instructions
prior to the crash, the attacker has found
a condition that is highly likely to be
exploitable. If the control instructions
prior to the crash are not impacted by
tainted data, then static analysis can be
performed to determine exploitability.
The use of symbolic execution and
constraint solving are outside the scope
of this paper, however they can be used
to determine if future control
instructions are influenced by part of the
data that is currently under user control
at the time of the crash.

Root Cause

Root cause analysis is an
important part of vulnerability
assessment for both the attacker and the
defender. For the defender it is
important to identify root cause so that
attempts to fix vulnerabilities are made
at the original source of the problem.
Failure to do so will result in patches

that may be bypassed by slightly
modifying the input. For the attacker,
root cause analysis can reveal the true
impact of a vulnerability. In some
situations an input will crash in a path
that is impossible to fully control,
however by analyzing the call stack
leading to the crash an alternate code
path may reveal itself to be exploitable.

One approach to automating root
cause analysis is done through graph
analysis. The graphs of two or more
crashing program executions using
similar inputs should be compared to
determine if tainted bytes referenced by
the crashing instruction are tainted by
the same source bytes. If the crashing
instruction differs but the bytes in both
crashing instructions are sourced from
the same file location then a root cause
other than the crashing instruction exists.
The root cause may be represented by
one of the crashes. This can be
determined through manual analysis.

Triggering Conditions

 In the case of mutation fuzzing,
the triggering conditions are known,
however when a foreign crash without
knowledge of the input modifications
presents itself the triggering condition
must be identified to begin the triage
process. Triggering conditions can be
determined by performing reachability
analysis on the taint propagation graph.
Reachability analysis finds paths
between two nodes in a graph, and as
such can be used to determine the code
location that originally interacted with
user data that lead to the program
exception. The current solution takes
into account only reachability and does
not fully analyze the program constraints
on the data.

Black Hat USA 2010 Page 11 of 11 Harder, Better, Faster, Stronger

6 Conclusions

Through the course of research
the authors began with a simple fuzzing
framework, and worked outward,
determining pain points and alleviating
them with automation. As work
continued it became apparent that the
important factors in the continued
discovery of exploitable vulnerabilities
was not so much the exhaustive nature
of the fuzzer, but rather the post
processing which separated what are
currently considered to be exploitable
bugs from those which are certain to
never be exploitable, and also from those
which may be exploitable with a good
deal of work.

While the decisions made by the
authors in their own work are specific to
their goals in fuzzing, they have done
their best to enumerate the
considerations taken into account when
coming to these decisions and list them
for the reader.

