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Much work has been presented in the past few years concerning bug discovery through 
fuzzing. Everything from the feasibility of exhaustive generation fuzzing, to the 
continued productivity of simple mutation fuzzing has been covered. This paper will 
build on this by making the assumption that finding bugs is a foregone conclusion, and 
will instead discuss the pre- and post-fuzzing process necessary to efficiently analyze 
vulnerabilities for a given program to the stage where exploitability has a high 
confidence, and exploitation can be handed off or undertaken in house. This process will 
be driven by intelligent, analyst-driven automation, with a focus on the continued 
production of exploitable bugs with a minimum of wasted effort. 
 
 
1 Introduction 
 

Input fuzzing is a technique in 
which data is programmatically 
generated and provided to a program in 
an effort to exercise available code paths 
and expose memory corruption flaws.  
This method of flaw discovery has been 
proven a necessary step in the testing 
methodologies of both attackers and 
defenders.  For attackers fuzzing is an 
essential process because it represents 
the highest return on investment with 
regards to time and effort.  It is a process 
which can be undertaken with little 
startup cost and in parallel with more 
intensive efforts such as reverse 
engineering.  Further, this fuzzing can be 
split into a first stage of simple mutation 
fuzzing while a more in depth generation 
stage is prepared.  This ability of 

parallelization combined with a high rate 
of return is unmatched by other 
techniques.   

Due to the above reasons, 
network defenders as well as software 
developers can be assured that those 
targeting their assets will make use of 
this technique. While code review is a 
more complete method of bug discovery, 
it is by no means fool proof.  Simple 
mutation fuzzers often find bugs that are 
difficult to identify under a manual code 
review and generation fuzzers are 
capable of exhaustively testing protocols 
and file formats, therefore a defender’s 
fuzzing must necessarily be more 
complete than an attacker’s.   

While an attacker searching for 
an inroad into a system need find only a 
single high-quality bug, and has the 
benefit of time, a defender must find the 
great majority of high-value bugs before 
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release.  This will necessitate a multi-
tiered solution comprised of speedy 
mutation fuzzing, more complete 
generation fuzzing, code review, and 
regression testing. That said, this paper 
is not focused on the requirements of a 
defender.   
 The focus of this paper is on the 
goals of an attacker.  Specifically we 
will consider the goals and resources of 
two specific minded types of attacker.  
Firstly, we will consider the attacker 
who has a target in mind for long term 
and consistent infiltration.  We will 
assume that this attacker has an idea of 
the software and systems in use by his or 
her target.  Secondly, we are concerned 
with the freelance researcher whose goal 
is to reliably discover exploitable 
vulnerabilities, and weaponize them for 
sale.  These two attackers are linked by 
common goals and concerns.  They each 
must produce consistently high-value 
vulnerabilities, while simultaneously 
conserving human as well as CPU time.  
Human time and effort must be freed up 
for the more complex and less robotic 
task of exploit development, while 
wasted CPU time directly subtracts from 
bug yield.  Thus, efficiency and 
consistency are our goals, while 
reproduction of work and wasted human 
effort are our enemies. 
 We will rely upon the prior work 
of others to convince the reader of the 
effectiveness of fuzzing itself, and only 
touch briefly upon the choice of fuzzer 
as it pertains to the cost-benefit analysis 
of the process as a whole.  We will also 
assume that the choice of target is 
outside the control of the attacker, and is 
instead chosen by environment, or 
market pressures. We will begin with an 
overview of the process by which our 
workflow was created, step by step, 
before providing example solutions that 

proved effective for the authors in 
practice.  Next, we will cover the 
specifics of the automated solutions 
which were created to facilitate this 
workflow.  Finally, we will contrast the 
full solution with a more straightforward 
scenario in which a researcher simply 
runs a fuzzer and deals directly with its 
output. 
 
 
2 Vulnerability Research 
Workflow 
 
Traditionally, vulnerability research has 
been focused on bug discovery methods, 
while the surrounding process is left as 
an exercise for the reader.  Generally, 
the reader has interpreted the required 
exercise to simply involve starting the 
fuzzer and consuming snack foods.  This 
is because the goal has always been to 
simply find bugs, at which point you 
provide a collection of several hundred 
crashes to a vendor and leave the triage 
work to people who have the code.  If, 
however, your goal is to produce high-
value vulnerabilities for discretionary 
use, a different problem presents itself.  
This problem does not consist of how to 
force a fuzzer to produce crashes, but 
rather what to do when your fuzzer 
produces an excessive number of crashes 
of unknown quality. 
 The standard fuzzer use case 
includes the following steps:  

1) Select a target 
2) Select a fuzzer 

a. If the fuzzer is a mutation 
fuzzer, select input data 

b. If the fuzzer is a 
generation fuzzer, create 
the necessary templates 

3) Run the fuzzer 
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4) Evaluate output files by hand for 
exploitability 

a. 1st pass - remove certainly 
unexploitable bugs 

b. 2nd pass - select probably 
exploitable bugs 

c. 3rd pass - select a single 
bug worth putting 
significant triage and 
exploit development time 
into 

 
The target selection process itself may 
comprise multiple parts.  This paper 
assumes that the program is chosen 
largely by market factors and so is 
outside power of the attacker.  However, 
the issue of attack surface as target 
decision should not be ignored and will 
be discussed in a later section. The 
concentrated fuzzing of independent 
attack vectors and code paths in general 
can be beneficial.  Further, an attacker 
may decide to focus on specific areas 
due to network design or code age. 

Apart from this, we should be 
chiefly interested in improving the 
second and fourth stages, as they will 
comprise the bulk of the human effort. 
 
Fuzzer Engine Selection 
 
 Fuzzer selection comes down to 
a choice between the use of human time 
and the use of CPU time.  Use of a 
generation fuzzer is the more exhaustive 
option, and will in general find more 
bugs, however from the standpoint of an 
attacker this may not be the optimal 
choice.  The reason for this is that a 
generation fuzzer requires a good deal of 
time to create the original template for 
each separate format or protocol you 
wish to attack. This is tedious, time 
consuming work which will take time 
from exploit development, testing, and 

documentation.  More often than not, 
this expensive human time can be 
replaced with CPU time in the form of a 
less intelligent mutation based fuzzer.  
The question then is how hard is the 
target; does the time to find a bug with a 
mutation fuzzer mean that developers 
will be stuck with downtime, and can 
this be rectified with more hardware? 
Note that this trade off can only be made 
by an attacker; it would be negligent on 
the part of a defender to ignore 
generation fuzzing altogether.  In the 
case of an organization with sufficient 
resources to hire dedicated template 
writers, generation fuzzing should be 
undertaken in addition to mutation 
fuzzing.  As Charlie Miller notes, the 
bug sets discovered by the two fuzzer 
types often can be disjoint. 
 
Input Set Population 
 
 We should point out here that 
mutation fuzzing is not without its 
startup costs.  The choice of base input is 
of the utmost relevance to bug count.  A 
poor choice of input file may well result 
in an empty-handed exploit development 
team.  The primary concern here is that 
the base input chosen exercises a 
majority of the code paths concerned 
with the functionality being tested.   
Code path coverage should be distinct 
from simple code block coverage in this 
measure; this will be covered in section 
3.  It can be helpful for larger targets to 
split fuzzing efforts by functionality to 
be tested.  This will allow developers, 
later in the process, to reuse recently 
reverse engineered knowledge of the 
section of the program in question.  It 
will also allow you to quickly populate a 
stable of inputs and begin testing. 
Attempting to compile a set of inputs to 
exercise the entirety of a complex 
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program can take quite some time. It can 
also be useful to constrain research to a 
specific area of a common program in 
order to reduce the likelihood that others 
perform research in that area.  
 One solution for expediting the 
population of an input set is to simply 
gather as many files exhibiting a certain 
trait as possible, then filter them down.  
For example, if one wished to find a 
JBIG2 vulnerability in a PDF, they could 
follow these steps in collecting input 
files for a mutation fuzzer.  Firstly, 
collect a reasonable sample of PDF files 
from the internet, possibly with a simple 
Google search-and-scrape program.  
Next, you might utilize a code path 
discovery program to narrow down your 
large stable to one that exercises the 
majority of the functionality you wish to 
test. Section 3 will discuss a possible 
implementation of this functionality 
utilizing dynamic binary 
instrumentation.   
 
Fuzzer Execution 
 
 A distinction must be made here 
between the fuzzing engine, which 
performs the creation of flawed input, 
from the testing of that input and its 
subsequent evaluation of results.  While 
it is the contention of the authors that the 
fuzzing engine itself matters little in the 
discovery of bugs, the testing and 
evaluation matters greatly where time 
and effort are concerned.  The reason for 
this is that there are many opportunities 
in this phase of testing to capture data 
that would otherwise have to be 
reproduced later in the process.   
 The decision on what 
information to capture depends on the 
time and space necessary to capture it, 
and the likelihood of its usefulness.  
Some information, for example the stack 

trace and instruction on which the 
program failed is always necessary, and 
so regardless of cost should be collected.  
This data is needed to differentiate 
individual crashes (or “bucket” them) 
and therefore will always be required. 
Other data, such as taint analysis, takes 
more effort to gather and is only needed 
when confidence of exploitability is 
higher.  Expensive analysis can be 
performed later in the process and 
parallelized depending on available CPU 
resources.  
 
Metadata Collection 
 
 The key to effective data 
collection is debugger integration.  
When first presented with a fuzzing 
engine, the immediate impulse is to see 
if it can find bugs.  Once run for a 
sufficient period of time, the user is 
presented with a set of inputs which may 
or may not cause a crash.  In many cases 
the input generation phase is combined 
with the testing phase. In this case the 
user is presented with a set of inputs 
which will cause a crash or fault in a 
given process. In the second case, work 
has been done which must be redone.  
When presented with an input which 
exercises a bug condition, the first step 
of triage for a vulnerability developer is 
to make a quick pass decision as to the 
exploitability of the bug.  Therefore, it is 
far more efficient to gather all data 
relevant to this decision which does not 
significantly slow down the rate of 
testing at test time, rather than redo the 
work of reproducing the crash later.  In 
addition to this trade-off analysis, there 
are a few goals we’d like to achieve with 
the data we collect. 

1) We’d like to determine roughly 
what class the bug falls into 
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2) We’d like to have some idea as 
to the probability of 
exploitability (just a first pass) 

3) We’d like to have enough 
information to separate bugs into 
“buckets” as mentioned before. 
 

To some degree, regardless of the 
cost, requirements 2 and 3 must be 
satisfied.  Luckily, this is generally done 
with little impact to speed. The decisions 
made by the authors with regards to 
what data to collect, along with the 
methods used are discussed in sections 3 
and 5. 
 
Data Storage 
 
 As important as the fact that you 
store necessary data is the way in which 
you store it. There are a few goals we’d 
like to achieve in our data storage.   
 

1) We’d like to store information 
about all crashes indefinitely 

2) We’d like to be able to search for 
a set of crashes with arbitrary 
characteristics 

3) We’d like to be able to change 
the criteria of our searches, and 
the data we store as we learn 
more about differentiation of 
crashes 

4) We’d rather not destroy too 
many hard drives in the process 

 
Points 1 and 2 are particularly 

important and tend to suggest that the 
most efficient and capable way to store 
ones crashes is with some form of 
database.  The solution utilized by the 
authors is discussed in Section 5. 
 
Crash Prioritization 
 

Assuming we’ve done our job in the 
area of data storage, several options 
present themselves as far as crash 
prioritization is concerned.  If we are 
able to store crashes across fuzzing runs, 
as well as across differing programs, 
then it becomes feasible to pick targets 
over time which lend themselves easily 
to the exploitation techniques of the day.  
While recent work has endeavored to 
determine the exploitability of crashes, it 
seems that currently these solutions 
provide a suggestion at best. For this 
reason, it is the contention of the authors 
that rather than consider the absolute 
exploitability of a given crash, it is more 
useful to consider crashes in terms of 
ease of exploitability. Utilizing the 
searching capability we’ve created, it 
becomes possible to search out and 
selectively triage bugs with properties 
that suggest that they may be exploitable 
with a given technique.   As the 
understanding of what is possible to 
exploit and what is easily exploitable 
changes with the release of new 
techniques the attacker may modify 
searches to find examples which were 
once difficult and time consuming but 
are no longer. In addition, this allows the 
attacker the ability to make a basic guess 
as to the effort necessary to produce and 
exploitable bug.   

Depending on one’s crash-flow, and 
the use for which the exploits are being 
created, it can also be useful to prioritize 
in a secondary fashion on other data 
points.  For example, one might give 
preference to readily exploitable crashes 
for which there are very few examples 
found in its bucket.  This would suggest 
that the bug in question is less likely to 
be found and then fixed, ensuring a 
longer shelf life to the end product. 
 
Crash Reevaluation 
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Since it is our goal to extend our 

stable of possibly exploitable crashes 
across boundaries of both programs and 
time, it is necessary to perform some 
form of crash reevaluation as programs 
are updated.  Crash reevaluation is 
simply the act of retesting the currently 
known crashing test cases from a prior 
version on the new version of the 
software.  To accommodate this, it is 
necessary to store the version number of 
the target software as crashes are 
discovered.  Remember that crashes 
occurring only in older, but still in use, 
software is still quite useful. 

Attention paid to changes in software 
over time can provide valuable insight 
into the prospective shelf-life of a crash. 
If a given crash exists in an older version 
of software while not in a newer version 
due to changes not related to an explicit 
bug fix, one may be able to assume that 
despite reevaluation of the code by 
developers, the bug was not discovered.  
In the future, the older, buggy code is 
not likely to be checked again, and other 
bug hunters are less likely to search in 
the old version for bugs when a new 
version exists for testing. 

Performing crash reevaluation and 
subsequent database updating is a simple 
and speedy process and will save a good 
deal of time.  If an attacker does not 
perform crash reevaluation they are left 
with two time consuming options.  The 
first is to rerun all tests.  While it is 
possible that new bugs could be added 
and that this would ferret them out, it 
may or may not be worth the time to 
check if no significant functionality has 
been added to the program.  If 
significant functionality has in fact been 
added, rather than re-run all tests it can 
be faster to tailor a set of input cases to 
cover only the new code in question.  

The other option is to retest buckets by 
hand when a crash is chosen for further 
testing only to find that it has been 
patched.  

Bindiff may be used to aid this 
process.  When new versions of the 
target become available, the attackers 
may diff the versions and subsequently 
make use of code path coverage analysis 
to selectively target changed code.  
 
Workflow Overview 
 

Based on time and perceived target 
posture the attacker makes an initial 
decision on fuzzer type.  If a mutation 
fuzzer is chosen, a stable of input files is 
collected, then narrowed down to a 
reasonable size based on code path 
coverage.  If a generation fuzzer is 
chosen, templates are then created for 
the input formats or protocols in 
question. Templates, once created, 
should be tested for completeness 
through the usage of code path coverage 
analysis, rather than reliance on the 
specification. If resources permit, 
attackers should make use of both.   

As crashes are registered within the 
database evaluations of acceptable bug 
parameters may be established.  
Attackers must weigh considerations 
such as ease of discovery, ease of 
exploitation, and weight of target 
software. The considerations which 
make up this weighted decision are 
dependent on the desires of the attacker.  
For example, exploits for immediate use, 
or low end botnet creation would ignore 
the ease of discovery aspect. When 
considering creating a relationship with 
a high end buyer, ease of exploitability is 
less important, while ease of discovery is 
of the greatest importance. With these 
parameters established, database 
searches may be created. 
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If software is updated some 
automated reverse engineering should be 
employed to determine the extent of 
changes and decide if a new stable of 
inputs should be assembled, or if 
changes are minor enough to warrant a 
simple crash reevaluation process. 

When database searches have 
yielded particular buckets of interest, 
auto-triage work may be undertaken and 
documentation of the crash can be 
generated. 
 
 
3 Enhanced Targeting 
and Input Selection 
 

The initial phases of fuzzing 
involve understanding the target 
program and the input data as thoroughly 
as possible so as to make informed 
decisions on where to spend available 
resources on fuzzing.  During this 
process the program should be analyzed 
to locate potential attack vectors which 
include traditional points of interest such 
as untrusted data entry points or 
ancillary data such as code age.  Once 
attack vectors have been enumerated, an 
assessment of which attack should be 
carried out can be undertaken.  This 
assessment will take into account the 
fuzzing tools on hand, the available CPU 
and human resources, as well as the 
amount of access a successful attack 
would give the attacker.  Once a point of 
attack has been chosen, the next step is 
to prepare or acquire the inputs that will 
be given to the fuzzer.  This section will 
detail enhancements to the targeting and 
input selection processes. 
 
Attack Surface Analysis 
 

Attack surface refers to the program 
code that interacts with untrusted data.  
This data may come from files, registry 
keys, network packets, and other input 
sources.  The goal is to find the locations 
where untrusted data enters the program 
and understand the size and complexity 
of the code that interacts with the data.  
This will be accomplished through an 
enumeration of possible data entry 
points and call graph analysis. 

The attack surface entry points 
for a program may be enumerated in part 
by using static analysis to detect I/O 
related function calls.  The static 
analysis approach does have drawbacks 
however, as call graph recovery will be 
incomplete and the detection may miss 
calls to I/O APIs that are called through 
wrapper functions.  As such, the static 
analysis approach works best for kernel 
mode code using the predefined 
Windows System Call API or in 
situations where C++ is not in use and 
wrapper functions are known or a large 
multi-modular graph can be generated.  
The key API calls to take note of as taint 
sources are read/write or send/recv I/O 
functions.  Additional hooks are required 
to identify the files, sockets, or registry 
keys associated with the taint: 
 
File  NtOpenFile 

NtCreateFile 
Network  connect 

listen 
Registry  NtOpenKey 

NtCreateKey 
Memory  NtCreateSection 

NtOpenSection 
Process  NtOpenProcess  

Thread  NtOpenThread  

Event  NtOpenEvent 
NtCreateEvent 

 
Any functions in the target binary that 
can reach these entry points on a 
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program call graph are interesting 
locations that may be manipulating 
external data.  The file path and 
permissions associated with these calls 
will reveal whether an attacker can 
modify these inputs. 
 Alternatively, dynamic analysis 
can offer a more reliable approach to 
discovering the attack surface exposed 
during an execution of a program. In the 
case of mutation fuzzing, dynamic 
tracing can help determine what attack 
surface is exposed by a particular input.  
This approach can also be used to 
determine whether a selected input 
exercises an area of code that may be of 
interest to the attacker, such as an area 
known to be prone to vulnerabilities or 
an area of code that has not been 
modified in a long time.  

The solution the authors have 
chosen currently implements detection 
of the high-priority attack surface 
involving file and network I/O using 
dynamic analysis.  Future work will add 
support for attack surface that less 
commonly results in vulnerabilities such 
as registry keys and Windows event 
objects.  
 
Input Selection 
 

Knowledge of the attack surface 
allows the attacker to optimize the 
fuzzing efforts to concentrate only on 
inputs relevant to the targeted area of 
code.  Specifically, this process requires 
tracing the execution of the program in 
order to record basic blocks and API 
calls relevant to program input.  The 
solution implemented by the authors 
utilizes PIN, a dynamic binary 
instrumentation framework, to facilitate 
efficient program tracing.  Trace 
efficiency is fairly crucial as the process 
of determining input priority will require 

a recording of the program execution 
once for each supplied input.   
Traditional solutions for execution 
tracing require the use of the Windows 
debugging API.  Use of the debugging 
API requires context switching at each 
block executed which negatively impacts 
performance.  It is because of this 
performance consideration that the 
chosen solution utilizes a dynamic 
binary instrumentation approach. 

Once the trace has been recorded, 
a program execution graph can be built.  
The recorded trace will include data that 
records information about loaded 
modules, block execution, and attack 
surface related API execution.  A graph 
representation of the program execution 
can be built based upon the data in the 
trace.  The edges of the graph can be 
inferred by the order of the blocks and 
the API trace facilitates filtering of the 
graph down to the relevant sub-graph 
that is reachable from the blocks that 
take input from the target input source.  
Once constructed, the graphs can 
automatically be analyzed for 
differences in coverage and a ranking 
can be achieved based upon inputs that 
closely match the targeted fuzzing 
criteria.  
 
 
4 Fuzzing Process 
 
 The basic fuzzing process is 
comprised of four steps.  These steps are 
input generation, process setup, testing, 
and data collection.  Input generation 
should be handled by your fuzzing 
engine, and as previously mentioned, is 
the least important aspect of the process. 
 The first important step is to 
ensure that the process to be tested is in 
a state that will facilitate simple and 
accurate collection of data should a crash 
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occur.  This includes the setup of a 
debugging environment.  Ideally, post 
mortem debugging is to be avoided in 
favor of a process opened in a debug 
environment due to timing issues and 
changes that are made to the process 
space in the post-mortem scenario.  
When running the process in a 
debugging environment, some 
knowledge of the process can sometimes 
be necessary to collect the most useful 
data from a crash.  In many cases, a 
process will throw, then properly handle 
exceptions that will cause your 
debugging environment to trap, but are 
not useful for exploitation.  In these 
cases, the debugger must be told to 
ignore the exceptions in question.  Other 
processes may however be unable to 
handle these exceptions, and ignoring 
them may cause the data gathered at the 
time of an unrecoverable crash to be less 
useful.  In addition, the process setup is 
the proper time to ensure that if there are 
applicable crash discovery technologies 
(such as page heap) that they are in place 
for the new process. The authors’ 
solution was implemented with a custom 
Windows debugging API wrapper in 
which the process was set up and 
launched. 
 The next step of the process is to 
provide the input to the program which 
is being tested.  The primary issue of 
concern here is when a test may be 
considered completed.  The simple 
solution to this is to observe the process 
with manually provided inputs and 
decide upon a static time.  This can be 
both wasteful in some test cases, and too 
aggressive to catch crashes for others. A 
better solution is to baseline the process 
in an idle state, then monitor CPU and 
memory usage for a return to this 
baseline once the input is processed. In 
the authors’ debugging wrapper, CPU 

monitoring is performed with the 
Windows WBEM interface.  A 
maximum test length may also be 
provided through a configuration file. 
 Finally, should the program 
throw an exception that isn’t ignored by 
the debugger, data collection should 
begin.  The first step here is to collect 
the necessary information to produce a 
unique fingerprint for the crash.  This 
will be used in the "bucketing" process 
to determine if a particular crash was 
previously seen and what variations exist 
on the crash.  Generally, this can be done 
by collecting the stack trace and the 
crashing address, and creating a hash of 
the data.  Next, the entire block of 
assembly containing the crashing 
instruction should be collected.  This 
allows for later categorization of the 
crash as well as a simple indicator of 
exploitability.  Lastly, registers and 
crash-specific metadata should be 
collected and stored.  The tested solution 
collected this data using the Windows 
debugging API, then passed it on to a 
data storage server with curl where it 
was then stored in a database for later in 
the triage process. 
 
 
5 Assisted Triage Process 
 

Finally, once an input has been 
generated that results in a program 
exception, the triage process can begin.  
The goal of the triage process is to 
determine the triggering condition, 
exploitability, and root cause.  To 
accomplish these goals effectively, a 
final deep trace is required to record the 
register state and dataflow properties of 
each instruction.  Specifically, all 
memory addresses that are read or 
written by an instruction are recorded so 



Black Hat USA 2010 Page 10 of 11 Harder, Better, Faster, Stronger 

that an additional dataflow graph can be 
constructed.  This graph is analyzed 
from the dataflow entry points specified 
by the traced APIs to identify instruction 
dependencies and propagate taint across 
instructions that interact with the fuzzed 
input.  The resulting taint graph can be 
overlaid onto the call graph and control 
flow graph to enable the researcher to 
visually identify the flow of execution 
and tainted data. This final view 
advances the three steps of the triage as 
described below.  

 
Exploitability 
 
 Exploitability can be determined 
by identifying tainted data in the context 
of the crash.  The surrounding code 
should be analyzed to determine which 
instructions impact program control. If 
tainted data is referenced by instructions 
prior to the crash, the attacker has found 
a condition that is highly likely to be 
exploitable. If the control instructions 
prior to the crash are not impacted by 
tainted data, then static analysis can be 
performed to determine exploitability.  
The use of symbolic execution and 
constraint solving are outside the scope 
of this paper, however they can be used 
to determine if future control 
instructions are influenced by part of the 
data that is currently under user control 
at the time of the crash.  
 
Root Cause 
 

Root cause analysis is an 
important part of vulnerability 
assessment for both the attacker and the 
defender.  For the defender it is 
important to identify root cause so that 
attempts to fix vulnerabilities are made 
at the original source of the problem.  
Failure to do so will result in patches 

that may be bypassed by slightly 
modifying the input.  For the attacker, 
root cause analysis can reveal the true 
impact of a vulnerability. In some 
situations an input will crash in a path 
that is impossible to fully control, 
however by analyzing the call stack 
leading to the crash an alternate code 
path may reveal itself to be exploitable.  

One approach to automating root 
cause analysis is done through graph 
analysis. The graphs of two or more 
crashing program executions using 
similar inputs should be compared to 
determine if tainted bytes referenced by 
the crashing instruction are tainted by 
the same source bytes. If the crashing 
instruction differs but the bytes in both 
crashing instructions are sourced from 
the same file location then a root cause 
other than the crashing instruction exists. 
The root cause may be represented by 
one of the crashes. This can be 
determined through manual analysis.  
 
Triggering Conditions  
 
 In the case of mutation fuzzing, 
the triggering conditions are known, 
however when a foreign crash without 
knowledge of the input modifications 
presents itself the triggering condition 
must be identified to begin the triage 
process.  Triggering conditions can be 
determined by performing reachability 
analysis on the taint propagation graph.   
Reachability analysis finds paths 
between two nodes in a graph, and as 
such can be used to determine the code 
location that originally interacted with 
user data that lead to the program 
exception. The current solution takes 
into account only reachability and does 
not fully analyze the program constraints 
on the data. 
 



Black Hat USA 2010 Page 11 of 11 Harder, Better, Faster, Stronger 

 
6 Conclusions 
 

Through the course of research 
the authors began with a simple fuzzing 
framework, and worked outward, 
determining pain points and alleviating 
them with automation.  As work 
continued it became apparent that the 
important factors in the continued 
discovery of exploitable vulnerabilities 
was not so much the exhaustive nature 
of the fuzzer, but rather the post 
processing which separated what are 
currently considered to be exploitable 
bugs from those which are certain to 
never be exploitable, and also from those 
which may be exploitable with a good 
deal of work.   

While the decisions made by the 
authors in their own work are specific to 
their goals in fuzzing, they have done 
their best to enumerate the 
considerations taken into account when 
coming to these decisions and list them 
for the reader. 
 
 


