Return-Oriented
Exploitation

g

Dino A. Dai Zovi
Independent Security Researcher
rail of Bits

Context

S i~ o

«r Full control of EIP no longer yields immediate
arbitrary code execution

R Primarily due to increasing availability and utilization
of exploit mitigations such as DEP and ASLR

«r Attackers must identify other supplementary
vulnerabilities to enable exploitation of memory
corruption issues

R Memory address/layout disclosure vulnerabilities

R Availability of known executable code at static,
predictable, or chosen locations

&R l.e. non-ASLR DLLs, JIT sprays, IE .NET user controls

Agenda

S i~ o

«r Current State of Exploitation
R Return-Oriented Exploitation

«r Borrowed Instructions Synthetic Computer
R Or, ROP in Evenings and Weekends

R Return-Oriented Exploitation Strategies
«r Exploiting Aurora on Windows 7

«r Conclusion

Current State of

Exploitation
& =

A Brief History of Memory
Corruption

S i~ o

Morris Worm (November 1988)
R Exploited a stack buffer overflow in BSD in.fingerd on VAX
R Payload issued execve(“/bin/sh”, 0, 0) system call directly

Thomas Lopatic publishes remote stack buffer overflow exploit
against NCSA HTTPD for HP-PA (February 1995)

“*Smashing the Stack for Fun and Profit” by Aleph One
published in Phrack 49 (August 1996)

R Researchers find stack buffer overflows all over the universe
R Many believe that only stack corruption is exploitable...

A Brief History of Memory
Corruption

S i~ o

R “JPEG COM Marker Processing Vulnerabillity in
Netscape Browsers” by Solar Designer (July 2000)

R Demonstrates exploitation of heap buffer
overflows by overwriting heap free block
next/previous linked list pointers

e Apache/llS Chunked-Encoding Vulnerabilities
demonstrate exploitation of integer overflow
vulnerabillities

R Integer overflow => stack or heap memory
corruption

A Brief History of Memory
Corruption

S i~ o

«r |n early 2000’s, worm authors took published
exploits and unleashed worms that caused
widespread damage

R Exploited stack buffer overflow vulnerabilities in
Microsoft operating systems

&R Results in Bill Gates’ “Trustworthy Computing” memo

«r Microsoft’'s Secure Development Lifecycle (SDL)
combines secure coding, auditing, and exploit
mitigation

Exploit Mitigation

S i~ o

«: Patching every security vulnerability and writing 100%
bug-free code is impossible

R Exploit mitigations acknowledge this and attempt to make
exploitation of remaining vulnerabilities impossible or at
least more difficult

a2 Windows XP SP2 was the first commercial operating
system to incorporate exploit mitigations

Protected stack metadata (Visual Studio compiler /GS flag)
Protected heap metadata (Heap Safe Unlinking)
SafeSEH (compile-time exception handler registration)

Software and hardware-enforced Data Execution
Prevention (DEP)

238 R

« Windows Vista and 7 include Address Space Layout
Randomization (ASLR) and other mitigations

Mitigations Make Exploitation
Harder

R s . R
A
‘ASLR
‘DEP/NX
>
33 @ saresen
o=
i B
‘Heap
Metadata
Protection
‘Stack
Cookies
Mitigations ¢

Exploitation Technigques
Rendered Ineffective

Mitigations requires OS, Compiler, and
Application Participation and are additive

Heap protections,
SEH Chain
Validation

Stack
cookies, SEER
SafeSEH

e

What mitigations are active In
my app?

S i~ o

«r It Is difficult for even a knowledgeable user to determine
which mitigations are present in their applications

R Is the application compiled with stack protection?
R Is the application compiled with SafeSEH?

R Do all executable modules opt-in to DEP (NXCOMPAT)
and ASLR (DYNAMICBASE)?

R Is the process running with DEP and/or Permanent DEP?

«r Internet Explorer 8 on Windows 7 is 100% safe, right?
R |E8 on Windows 7 uses the complete suite of exploit
mitigations

@ ... as long as you don't install any 3"-party plugins or
ActiveX controls

Return-Oriented

Exploitation
& =

EIP != Arbitrary Code
Execution

S i~ o

«r Direct jump or “register spring” (jmp/call <reg>) into
Injected code is not always possible

&R ASLR and Library Randomization make code and
data locations unpredictable

e EIP pointing to attacker-controlled data does not
yield arbitrary code execution
R DEP/NX makes data pages non-executable

R On platforms with separate data and instruction
caches (PowerPC, ARM), the CPU may fetch old data
from memory, not your shellcode from data cache

EIP => Arbitrary Code
Execution

S i~ o

It now requires extra effort to go from full control of
EIP to arbitrary code execution

We use control of EIP to point ESP to attacker-
controlled data

xR “Stack Pivot”

We use control of the stack to direct execution by
simulating subroutine returns into existing code

Reuse existing subroutines and instruction
sequences until we can transition to full arbitrary
code execution

Stack Pivot

S i~ o

«r First, attacker must cause stack pointer to point into attacker-
controlled data

R This comes for free in a stack buffer overflow

R Exploiting other vulnerabilities (i.e. heap overflows) requires
using a stack pivot sequence to point ESP into attacker data

™R MOV esp, eaxXx

ret

® Xchg eax, esp
ret

= add esp, <some amount>
ret

«r Attacker-controlled data contains a return-oriented exploit
payload

R These payloads may be 100% return-oriented or simply act as
a temporary payload stage that enables subsequent
execution of a traditional machine-code payload 16

Return-to-libc

e

« Return-to-libc (ret2libc)

&R An attack against non- Arg 2
executable memory
segments (DEP, WX,
etc)

R Instead of overwriting
return address to return
into shellcode, return Next
into a loaded library to
simulate a function call

& Data from attacker’s
controlled buffer on Function
stack are used as the
function’s arguments

R i.e. call system(cmd)

Arg 1

function

“Getting around non-executable stack (and fix)”, Solar Designer (BUGTRAQ, August 1997

Return Chaining

e

R Stack unwinds upward

«r Can be used to call
multiple functions in
succession

«r First function must
return into code to
advance stack pointer
over function arguments

R |.e. pop-pop-ret

R Assuming cdecl and 2
arguments

Return Chaining

e

0043a82f:

ReX

Return Chaining

e

780da4dc:
push ebp
mov ebp, esp

sub esp, 0x100
mov eax, [ebp+8]

leave

ret

Return Chaining

e

780da4dc:
push ebp
mov ebp, esp

sub esp, 0x100
mov eax, [ebp+8]

leave

ret

Return Chaining

e

780da4dc:
push ebp
mov ebp, esp

sub esp, 0x100
mov eax, [ebp+8]

leave

ret

Return Chaining

e

780da4dc:
push ebp
mov ebp, esp

sub esp, 0x100
mov eax, [ebp+8]

leave

ret

Return Chaining

o
6842e84fF:
pop edi

pop ebp

ret

Return Chaining

o
6842e84fF:
pop edi

pop ebp

ret

Return-Oriented
Programming

P
mov eax, 0xc3084189

e Instead of returning to
functions, return to
Instruction sequences

followed by a return

R Can return into middle of
existing instructions to
simulate different
instructions mov [ecx+8], eax

ret

«r All we need are useable
byte sequences anywhere
In executable memory

“The Geometry oﬂr%gcgrﬁ Flesh on the Bone: Return-Into-Libc without Function Calls (on the x86)”, Hovav Shacham (ACM CCS

RE10r11,OrEt¥ed
PEOGraMarinG

S Aot 1k 2ra NSO
neL= JEET iNStiaR of =G TLE
cut Ligers hiem MesERME=
YO 2RE =L NE oL
iSLECtIONE +aXt
SEEIGMENtS

Credit: Dr. Raid’s Girlfriend

Return-Oriented Gadgets

e

cr Various instruction
sequences can be
combined to form gadgets
[eax] ,ecx
«r Gadgets perform higher- et
level actions
R Write specific 32-bit
value to specific
memory location

& Add/sub/and/or/xor
value at memory
location with immediate
value Gadgets

R Call function in shared
library

Example Gadget

e

STORE
IMMEDIATE

mov
[ecx],eax

ret

VALUE

Return-Oriented POKE
Gadget

e

684a0f4e:
pop eax
ret

684a2367:
pop ecx
ret

684al23a:

mov [ecx], eax

ret

Return-Oriented POKE
Gadget

e

684a0f4e:
pop eax
ret

684a2367:
pop ecx
ret

684al23a:

mov [ecx], eax

ret

Return-Oriented POKE
Gadget

e

684a0f4e:
pop eax
ret

684a2367:
pop ecx
ret

684al23a:

mov [ecx], eax

ret

Return-Oriented POKE
Gadget

e

684a0f4e:
pop eax
ret

684a2367:
pop ecx
ret

684al23a:

mov [ecx], eax

ret

Return-Oriented POKE
Gadget

e

684a0f4e:
pop eax
ret

684a2367:
pop ecx
ret

684al23a:

mov [ecx], eax

ret

Return-Oriented POKE
Gadget

e

684a0f4e:
pop eax
ret

684a2367:
pop ecx
ret

684al23a:

mov [ecx], eax

ret

Return-Oriented POKE
Gadget

e

684a0f4e:
pop eax
ret

684a2367:
pop ecx
ret

684al23a:

mov [ecx], eax

ret

2

2

Generating a Return-
Oriented Program

S i~ o

Scan executable memory regions of common shared
libraries for useful instructions followed by return
Instructions

Chain returns to identified sequences to form all of the
desired gadgets from a Turing-complete gadget catalog

The gadgets can be used as a backend to a C compiler

“Preventing the introduction of malicious code is not
enough to prevent the execution of malicious
computations”

®R “The Geometry of Innocent Flesh on the Bone: Return-Into-

Libc without Function Calls (on the x86)”, Hovav Shacham
(ACM CCS 2007)

BISC
o

Borrowed Instructions Synthetic
Computer

BISC

S i~ o

«r BISC is a ruby library for demonstrating how
to build borrowed-instruction' programs

«r Design principles:
R Keep It Simple, Stupid (KISS)
&R Analogous to a traditional assembler
R Minimize behind the scenes “magic”
R Let user write simple “macros”

1. Sebastian Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique”. http://www.suse.de/~krahmer/no-nx.pdf

ROP vs. BISC

S~~~
Return-Oriented BISC

Programming

Reuses single ® Reuses single
instructions followed by a instructions followed by a
return return

Composes reused R Programs are written
Instruction sequences using the mnemonics of
Into gadgets the borrowed instructions
Requires a Turing- &R Opportunistic based on
complete gadget catalog Instructions available
May be compiled from a & Supports user-written
high-level language macros to abstract

common operations

Borrowed-Instruction
Assembler

S i~ o

« We don’t need a full compiler, just an assembler
R Writing x86 assembly is not scary
R Only needs to support a minimal subset of x86

« Our assembler will let us write borrowed-instruction
programs using familiar x86 assembly syntax

&R Source instructions are replaced with an address
corresponding to that borrowed instruction

« Assembler will scan a given set of PE files for
borrowable instructions

2 No support for conditionals or loops

BISC Scanner

S i~ o

«r Core scanner functionality is implemented through
binary regular expressions for known instruction
encoding formats

e Regular expressions for all known instruction
formats are combined into one complex regular
expression
R Handler procedure is called on each match to parse

Identified instruction instances and produce a symbol
representing the borrowable instruction

R l.e.; /\AX89[\x00-\x3F\xcO-\xff]\xc3/

R A match of \x8B\x01\xC3 produces the symbol
“MOV EAX, [ECX]”

— - S~ mm—m m n o _ —

$./bisc.rb EXAMPLE

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
AND
AND

INT3

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

EAX, ECX

EAX, [EAX]
ESI, ESI

ESI, [EBX]
[EAX], EAX
[EBX], EAX
[EBX], EBP
[EBX], EDI
[ECX], EAX
[ESP], EAX
EAX, EDX

ESI, ESI

EAX, ECX

EAX, EDX

EAX, [ECX]
[EAX], EDX
[EBX], EAX
[ECX], EAX
[ECX], EDX
[EDI], EAX
[EDX], EAX
[EDX], ECX
[ES1], ECX

BISC Borrowable
Instructions

S i~ o

ORe-EANXCSEGX

OR EAX, [EAX]
OR [EAX], EAX
OR [EDX], ESI

POP
POP
POP
POP
POP
POP
POP
POP
SuB
suB
SuB
SsuB
XCHG
XCHG
XCHG
XCHG
XCHG
XOR
XOR
XOR
XOR

EAX
EBP

EBX

ECX

EDI

EDX

ESI

ESP

EAX, EBP
ESI, ESI
[EBX], EAX
[EBX], EDI
EAX, EBP
EAX, ECX
EAX, EDI
EAX, EDX
EAX, ESP

EAX, EAX

EAX, ECX

EDX, EDX

[EBX], EAX

Programming Model

—eRe—

We write borrowed-
Stack UnW'ndS instruction programs

“downward”

FeRhel
IRERIE
Releliesns
RpsEad

Me Talk Pretty One Day

S i~ o

«® Each unigue return-oriented instruction is a word In
your vocabulary

«r A larger vocabulary is obviously better, but not
strictly necessary in order to get your point across

«r You will need to work with the vocabulary that you
have available

MOV EDX, [ECX]
MOV EAX, EDX

MOV ESI, 3 <:> ADD [ECX]. 3
ADD EAX, ESI

MOV [ECX], EAX

BISC Programs

S i~ o

«® Programs are nested arrays of strings representing
borrowed instructions and immediate values

i — o POP EAX"” . (Oxdeadbeef]
«r Arrays can be nested, which allows macros:
Mt |

P POP. BAX" & Oxdeadbeef];

BENIES

Higher-Order BISC

S i~ o

«r Consider macros “virtual methods” for common high-
level operations:

R Set variable to iImmmediate value
R ADD/XOR/AND variable with immediate value
R Call a stdcall/cdecl function through IAT

« Write programs in terms of macros, not borrowed
Instructions

« Macros can be re-implemented if they require
unavailable borrowed instructions

BISC Macros

S i~ o

«r Macros are ruby functions that return an array of
borrowed-instructions and values

def set (variable, value)
1Y (B b |
BROPFEAX" S cvalue;,
PEP@EREEX Y “variable;

HMICR AN ale el SeaIn i, €4

end

BISC Sample Program

S i~ o

e Ic e lbdn/env- ruby —I/opt/mgf3/1ib -T../1ib
require 'bisc'

bisc = BISC: :Assembler.new (ARGV)

def clear (var)
EeEET S |
NSO E R B RELETSREN 8 b7 i s e
RO S i A
O P IBEDGIE - e 0 B R R
RO R, ST
BABERA FEB X = R T
]

end

M = —priaaia lileaate(4)
E A) R OT8 b SX= B s G s
print bisc.assemble (Main)

ROP Faster, Not Harder

S i~ o

«r BISC intentionally uses simplest (dumbest)
Implementation and approach at every opportunity

R aka,“Return-Oriented Programming in Evenings and
Weekends”

R Effective, but still requires some manual work

= ROP, Zynamics style (i.e. the smart way)

R “Everybody be cool, this is a roppery!” by lozzo,
Kornau, and Weinmann

R Searches for gadgets in architecture-independent
manner using REIL meta assembly language

R Compiles virtual assembly language into sequence of
ARM returns

Return-Oriented

Exploitation Strategies
&

Bridge to Execution of
Traditional Payload

S i~ o

« Copy payload to executable memory
R Allocate new RWX memory
R Use existing RWX memory at known location
R WriteProcessMemory(WriteProcessMemory())

«r Build payload in executable memory
R Copy 1-N byte chunks found at known locations
® Sequence of returns to perform 4-byte writes

« Make memory containing payload executable

Data Execution Prevention

R

S i~ o

DEP uses the NX/XD bit of x86 processors to enforce the non-
execution of memory pages without PROT_ EXEC permission

&® On non-PAE processors/kernels, READ => EXEC

R PaX project cleverly simulated NX by desynchronizing
Instruction and data TLBs

Requires every module in the process (EXE and DLLS) to be
compiled with /NXCOMPAT flag

DEP can be turned off dynamically for the whole process by
calling (or returning into) NtSetinformationProcess()1

XP SP3, Vista SP1, and Windows 7 support “Permanent DEP”
that once enabled, cannot be disabled at run-time

1. “Bypassing Windows Hardware-Enforced Data Execution Prevention”,
skape and Skywing (Uninformed Journal, October 2005)

Example Return-Oriented

Payload Stage

S i~ o

« DEP/NX prevents execution of data in non-
executable memory, but does not prevent dynamic
creation of new executable code

® Whereas iOS’s code signing enforcement does

«r Four basic steps to obtain arbitrary code execution:

R
R
R

GetESP — Records value of ESP for use later
Allocate — Allocates new executable memory

Copy — Coples traditional machine code payload into
newly allocated executable memory

Jump — Executes payload from newly allocated
memory

Machine
Code
Payload

Jump

Copy

Allocate

GeteESP

e

pop ecx

ret

xchg eax, esp

ret

mov [ecx], eax

ret

; ECX = &(IpESP)

Machine
Code
Payload

Jump

Copy

Allocate

GeteESP

e

pop ecx

ret

xchg eax, esp ; EAX = ESP

ret

mov [ecx], eax

ret

Machine
Code
Payload

Jump

Copy

Allocate

GeteESP

e

pop ecx

ret

xchg eax, esp

ret

mov [ecx], eax ; *IpESP = EAX

ret

Machine
Code
Payload

Jump

Copy

Allocate

Allocate

e

pop eax ; EAX = &IAT VA

ret

mov eax, [eax]

ret

push eax

ret

Machine
Code
Payload

Jump

Copy

Allocate

Allocate

e

pop eax

ret

mov eax, [eax] ; EAX = &(VA)

ret

push eax

ret

Machine
Code
Payload

Jump

Copy

Allocate

Allocate

e

pop eax

ret

mov eax, [eax]

ret

push eax

ret

; VirtualAlloc(Q)

Machine
Code
Payload

Jump

Copy

Allocate

Allocate

e

pop ecx

ret

mov [ecx], eax

ret

; ECX = &lpMem

Machine
Code
Payload

Jump

Copy

Allocate

Allocate

e

pop ecx

ret

mov [ecx], eax ; Store ret val

ret

Machine
Code
Payload

Jump

Copy

Allocate

Copy

e

pop eax

ret

mov eax, [eax]

ret

pop ecx

ret

- EAX = &IpESP

Machine
Code
Payload

Jump

Copy

Allocate

Copy

e

pop eax

ret

—>» mov eax, [eax] ; EAX = *IpESP

ret

pop ecx

ret

Machine
Code
Payload

Jump

Copy

Allocate

Copy

—eRe—

pop eax

ret

mov eax, [eax]

ret

offset from saved POP €¢X ; ECX = offset

| ESP to argument reg
| to overwrite

Machine
Code
Payload

Jump

Copy

Allocate

Copy

e

add ecx, eax

ret

pop eax

ret

mov [eax], eax

ret

; ECX = &argO

Machine
Code
Payload

Jump

Copy

Allocate

Copy

e

add ecx, eax

ret

—> pop eax

ret

mov [eax], eax

ret

; EAX = &lpMem

Machine
Code
Payload

Jump

Copy

Allocate

Copy

e

add ecx, eax

ret

pop eax

ret

mov [eax], eax

ret

; EAX = IpMem

Machine
Code
Payload

Jump

Copy

Allocate

Copy

e

mov [ecx], eax ; *arg0 = IpMem

ret
;> do similar to set argl on
:: stack to address of embedded

;> machine code payload

;> call memcpy through IAT

Machine
Code
Payload

Jump

Copy

Allocate

Copy

e

mov [ecx], eax

ret

; do similar to set argl on
- stack to address of embedded

; machine code payload

; call memcpy through IAT

Machine
Code
Payload

Jump

Copy

Allocate

Copy

e

mov [ecx], eax ; *arg0 = IpMem

ret
;> do similar to set argl on
:: stack to address of embedded

;> machine code payload

;> call memcpy through IAT

Machine
Code
Payload

Jump

Copy

Allocate

Jump

e

pop ecx

ret

mov eax, [ecx]

ret

push eax

ret

; ECX = &lpMem

Machine
Code
Payload

Jump

Copy

Allocate

Jump

e

pop ecx

ret

mov eax, [ecx] ; EAX = IpMem

ret

push eax

ret

Machine
Code
Payload

Jump

Copy

Allocate

Jump

e

pop ecx

ret

mov eax, [ecx]

ret

push eax

ret

; Jmp IpMem

Alternative Strategies

S i~ o

«r Variations

R Create a new heap with HeapCreate() and
HEAP_ CREATE_ENABLE_EXECUTE flag, copy
payload to HeapAlloc()'d buffer (“DEPLIb”, Pablo
Sole, Nov. 2008)

R Call VirtualProtect on the stack and execute payload
directly from there

R “Clever DEP Trick”, Spencer Pratt (Full-Disclosure,
3/30/2010)

R WriteProcessMemory()
R “Séance” Technique

WriteProcessMemory()

S i~ o

« WriteProcessMemory(), instead of being used to
write into a debugged process, can be used to write
Into the caller’s process

«r If the destination memory page is not writable,
WriteProcessMemory() will make the page writable
temporarily in order to perform the memory write

« WriteProcessMemory() can be used to overwrite
itself with new executable code at a precise location
so that it executes the new code instead of returning
to the caller

“Séance” Technique

S i~ o

«r For when you don’t know the location in memory of
your buffer, but you can call WriteProcessMemory()

« Chalin a sequence of returns into WPM() to build
your shellcode in an existing .text segment from 1-N
byte chunks elsewhere in memory

«r Split desired payload into 1-N byte chunks identified
In readable memory at known or static locations

Do the Math

e

Permanent
DEP

Return-
Oriented Traditional

Payload Payload
Stage

Bypass
Exploit

Exploiting Aurora on
Win7
35

The “Aurora’ IE
Vulnerability

e

« EVENTPARAMS copied by
createEventObject(oldEvent) don’t increment
CTreeNode ref count

EVENTPARAM

CTreeNode

The “Aurora’ IE
Vulnerability

e

« EVENTPARAM member variable and CElement
member variable both point to CTreeNode object

EVENTPARAM

The “Aurora’ IE
Vulnerability

e

= When HTML element is removed from DOM,
CElement is freed and CTreeNode refcount CElement
decremented

EVENTPARAM

The “Aurora’ IE
Vulnerability

e

R If CTreeNode refcount == 0, the object will be freed and
EVENTPARAM points free memory

EVENTPARAM

CTreeNode

Exploiting The Aurora
Vulnerabllity

e

«r Attacker can use controlled heap allocations to replace freed
heap block with crafted heap block

EVENTPARAM

Crafted CTreeNode

----------------- » 0c0c0c0s

Exploiting The Aurora
Vulnerabillity

S = = g

The crafted heap block points to a crafted CElement object in
the heap spray, which points back to itself as a crafted vtable

CElement vtable

Crafted CTreeNode CElement xchg eax, esp
& (pop; ret)

OcOcO0c04 » 0c0cO0c08 0c0c0c08

& (ret)

Exploiting The Aurora
Vulnerabllity

e

«r Attacker triggers virtual function call through crafted CElement
vtable, which performs a stack pivot through a return to an
‘xchg eax, esp; ret’ sequence and runs return-oriented payload

CElement vtable

Exploit Demo
35

Conclusions
3o

DEP w/o ASLR I1s Weak
Sauce™

S i~ o

® No ASLR:

R Exploitation requires building a reusable return-
oriented payload stage from any common DLL

R One or more modules do not opt-in to ASLR:

R Exploitation requires building entire return-oriented
payload stage from useful instructions found in non-

ASLR module(s)

«r All executable modules opt-in to ASLR:

R EXxploitation requires exploiting a memory disclosure
vulnerability to reveal the load address of one DLL
and dynamically building the return-oriented payload

Take-Aways

S i~ o

= “Preventing the introduction of malicious code Is not
enough to prevent the execution of malicious
computations™

<z Demonstrate that while exploit mitigations make
exploitation of many vulnerabilities impossible or more
difficult, they do not prevent all exploitation
&R Modern computing needs more isolation and separation

between components (privilege reduction, sandboxing,
virtualization)

R The user-separation security model of modern OS is not
Ideally suited to the single-user system

R Why do all of my applications have access to read and
write all of my data?

1. “The Geometry of Innocent Flesh on the Bone: Return-Into-Libc without Function Calls (on the x86
Hovav Shacham (ACM CCS 2007)

Questions
e

@dinodaizovi
ddz@thetad44.org
http://trailofbits.com / http://thetad44.org

