Finger Pointing for Fun, Profit and War?

Tom Parker tom.at.rooted.dot.net

Quick Introduction...

- Background & Recent Events
- Attribution why do we care?
- Technical Analysis Today
- Technical Attribution 101
- Enhancing Existing Methodologies
- Non Technical Data Correlation & Augmentation

Media & "Cyber War" Love Affair

- WSJ "Wide Cyber Attack Is Linked to China"
- 60 Minutes "Sabotaging the System"
- Google/Adobe "Aurora Incident"
- Targeted SCADA Malware?

Cyber Conflict Lexicon

- Cyber War
- Adversary / Actor
- Attribution
- APT?

Attribution – Why do we care?

- LE/Actor Deterrents
- Actor Intelligence
 - Profiling Adversarial Technical Capabilities
 - Insight into State Sponsored Programs
 - Creating Linkage Between Actor Groups
 - Tracking the Supply Chain

Attribution: What are we looking for?

- The obvious An individual or group of individuals name(s), street address, social networking page etc..
- However...
 - We often don't care about this...
 - Doesn't generally help develop countermeasures
 - Attributing to the actor/group level is often enough for profiling efforts

Attribution Continued...

- Attribution at actor group level
 - Differentiation between groups
 - Identification of group geography
 - Indications of sponsorship
 - Nation State (China, Russia or Korea?)
 - Organized Crime (RBN et al?)
 - Activist Group
 - Where worlds collide
 - Code sharing between groups

Conventional Analysis Data Sources

- Static and Runtime Binary Analysis
- Memory Forensics
- Vulnerability Exploitation & Payload Analysis
- Command & Control
- Post-Exploitation Forensics

Analysis Today Continued...

- What Happened?
- How did they get in?
- What did they exploit to get in?
- What was done once on the system?
- Are they still there?
- How can this be prevented in the future?

Automated Analysis Today

- Anti Virus:
 - Known Signature
 - Virus-Like Characteristics
- Sandbox / Runtime Analysis
 - What does the code do?

Analysis Today Continued...

- Lots of R&D Associated with Modern AV/Analysis Technologies.
- Typically Designed to Provide End User with a one or a zero, and no exposure to any shades of grey.
- LOTS of useful metadata processed under the hood that we can make better use of.

Static and Runtime Binary Analysis

- What does the code "do"?
- How does it ensure persistence?
- What changes are made to the system

Attribution Research Intro

- Cyber Adversary Working Group (DC)
- RAND Conference
- Cyber Conflict Studies Association
- Blackhat Briefings (2003, 2004, 2006)
- Auditing the Hacker Mind (Syngress)

Environment Property

- (o) World Events / Political Environment
 - Motivation
- (o) Associations / Intel Sources
 - Knowledge / Intel
- (o) Adversary Activity Groups
 - Motivation / Knowledge

Attacker Property

- (o) Resources Skills Time Finance Initial Access
- (o) Inhibitor ##/S Pr(S)/A Pr(D)/A
 Pr(NT)/D C/(D) U/{P}
 (o) Driver/Motivator

Motivation

Capability

Target Property

- (o) PhysicalEnvironment Location Defenders
 - Owner
- (o) Electronic Environment Operating Systems

Hardware

IPR Resources

(o) Value

Attack Inhibitors

- Payoff/Impact Given Success
- Perceived Probability of Success Given an Attempt
- Perceived Probability of Detection Given an Attempt
- Perceived Probability of Attribution Given Detection
- Perceived Consequences of Attribution
- Adversary Uncertainty Given the Attack Parameters

Attack Drivers

- Payoff/Impact Given Success
- Perceived Probability of Success Given an Attempt
- Perceived consequences of failure

Adversary attack fingerprints

- Key Attack Meta Data
 - Attack sources
 - Other Relevant Packet Data
 - Attack tools and their origins
- Attack methodology
 - Planning
 - Execution
 - Follow through

Attack tool meta data: Origins

- All attack tools have their origins...
- These can be put into two broad categories:
 - Public
 - Often simply prove a concept
 - Often not 'robust'
 - Many contain backdoors
 - Private
 - Frequently more robust than public counterparts
 - Generally better written
 - May be based on private attack API's

Attack tool meta data: Use

- How easy is it to use a given attack tool
- Prior technical knowledge required to use tool
- Prior target knowledge required to use tool
- Was it an appropriate tool to use for a given task?

Example Attack Scoring Matrix

	Web Application Flaws	Public	Private
•	Proprietary Application Penetration:		
	SQL Injection	3	5
•	Open Source Application Penetration:		
	SQL Injection	3	5
•	Proprietary Application Penetration:		
	 Arbitrary Code Injection 	2	4
•	Open Source Application Penetration:		
	 Arbitrary Code Injection 	2	4
•	Proprietary Application Penetration:		
	 OS command execution using MSSQL Injection 	3	5
•	Proprietary Application Penetration:		
	OS command execution using SyBase SQL Injection	3	5
•	Proprietary Application Penetration:		
	SQL Injection only (MS SQL)	4	6
•	Proprietary Application Penetration:		
	SQL Injection only (IBM DB2)	6	8
•	Proprietary Application Penetration:		
	SQL Injection only (Oracle)	6	8

Furthering the Toolset

- Large Bodies of RE/Analysis Research
 - Almost all geared around traditional IR
 - In most cases; not appropriate for attribution

Application of Current Tool Set To Attribution Doctrine

- Can be possible through...
 - Exploit /Payload Analysis
 - Known Tooling/Markings
 - Normally Requires Manual Effort to Identify
 - Binary Image Meta Data
 - Email Addresses
 - User Names
 - Etc..

Exploit Analysis

- Exploits often re-worked for malware
 - Improved Reliability
 - Specific host type/OS level targeting
 - Possible to automate coloration with knowledge base of public exploits
- ANI Exploit Re-worked in malware to avoid IPS signatures for previous exploit

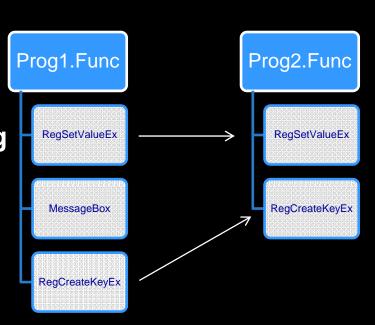
Exploit Reliability & Performance

- Crashes & Loose Lips Sink Ships
- Improved Performance
 - Advanced / Improved Shellcode
 - Re-patching Memory
 - Repairing Corrupted Heaps
 - Less Overhead
 - No Large Heap Sprays
 - Or Excessive CPU Overhead
 - Continued Target Process Execution

Exploit Failure

- Where possible failure may be silent
- Exploit Self Clean-Up:
 - Java hs_err log files
 - System / Application Log files
 - *NIX Core files

Exploit Applicability


- Reconnaissance Performed
 - Execution based on SW (browser) version?
 - Operating System
 - Less likely to function on ASLR / DEP

Exploit Selection

- Lots of Attention Toward Oday
- 1+Day != Low End Adversary?
- Old Attacks Often Re-Worked
 - Bypass IDS/IPS Signatures
 - Improved Payloads Demonstrate Capability

Code Isomorphism

- Lots of Investment from Anti-Code Theft World
 - Small Prime Product
 - Create Large Prime # Per Function
 - Unique Prime # / Each Opcode
 - Resistant to Reordering
 - API Call Structure Analysis
 - Function Checksums
 - Variables / Constant Tracking

Code Isomorphism Cont..

- Seokwoo Choi, Heewan Park et al
 - A Static Birthmark of Binary Executables Based on API Call Structure
- Halvar Flake
 - BinDiff

Function Level Code Isomorphism Based Attribution

- Reuse of Code Functions
 - Useful for closed-source projects
 - Good for tracking malware 'genomes'
- However...
 - Most malware based off of 'kits'
 - In most cases doesn't tell us much (or anything) about authors

BlackAxion

- Designed as Proof of Concept
- Utilizes int3 debugger breakpoints
 - Yes you're malware can detect me
- XML Model Defines Functions of Interest
 - Identification of API call context
 - Defines weighting of API calls

Further Development..

- DETOURS Hooks
- Kernel Hooks

DEMO / CASE STUDY

When code analysis #fails

- Other meta data:
 - C&C Channel Hosts Correlation
 - Check-In Server Identification
 - Post-Incident Artifacts
 - Auxiliary Tools / Code Utilized
 - Data Exfiltrated
 - Secondary Targets Attacked

When code analysis #fails

- Meta Data Relationship Analysis Tools
 - Maltego
 - Palantir

IRC / Chat Forums

From: "Stephen J. Moree"
Reply-To: "Stephen J. Moree"

Date: Wed,5 Sep 2007 08:22:21 +0800

To: creature incluffeed.com

Subject: India MRCA Request For Proposal

Sir,

This morning (28 Aug) we received the 211 page India Multi-Role Combat Aircraft (MRCA) Request for Proposal (RFP). The major RFP points are:

- 126 aircraft (86 single seat/40 dual); 18 built by OEM, 108 co-produced in India
- 1 or 2 engines; 14k-30k kg (30.9k-66.1k lb) max weight
- Active AESA radar capable of targeting 5 m2 at 130km (80.8 miles)
- 24 month fixed price validity of offer; option for 63 aircraft good for 3 years (fixed price)
- 50% Offset requirement
- Aircraft delivery to begin 36 months from contract, co-production begins 48 months from contract
- Tech transfer is broken into 5 categories, 60% is the highest percentage
- Performance Based Logistics (Life Cycle costs) are addressed, but India may/may not use as a final determiner
- Integrate US, Russian, and Indian weapons and avionics
- Source code given to India for indigenous computer upgrade capability IAW the Teaming Directive I've attached a copy of the complete RFP; however, we will provide a more detailed summary after our Teaming Meeting. We'll include this development in the SAF/IA Update and Friday's CSAF Update slide.

vr Steve

Stephen J. Moree Northeast Asia Branch Chief SAF/IA Pacific Division

CONFIDENTIALITY NOTICE: This electronic transmission is "For Official Use Only" and may contain information protected from disclosure under the Freedom of Information Act, 5 USC 552. Do not release outside of DoD channels without prior authorization from the sender.

Questions?