
Blitzableiter – The Release
(BETA)

Countering Flash Exploits

Felix ‘FX’ Lindner
BlackHat USA, July 2010

Agenda

� Motivation

� Flash Attack Surface

� Flash Victims

� Flash Security Options

� Introduction of Blitzableiter

Blitzableiter – The Release (BETA)

� Flash Internals

� Blitzableiter Internals

� Adobe Virtual Machine 1

� AVM1 Code Analysis

� Enforcement of
Functionality

Motivation

� Results from a project initiated in late 2008 by the German Federal Office
for Information Security (Bundesamt für Sicherheit in der
Informationstechnik) showed Adobe Flash to be the weakest Rich Internet
Application technology

� Adobe Flash runtime unfixable (at least for a third party)

� Traditional detection mechanisms (AV/IDS) #fail

� The constant surfacing of new attacks against Flash requires a defense
approach that doesn’t depend on attack signatures

� We didn’t want to build yet another AV

� The goal still is to be done with it at some point in time, once and for all.

Security Concerns with Adobe Flash

Adobe Flash Attack Surface

� Flash files (SWF) is a container format for:

� Vector graphics data (shapes, morphing, gradients)

� Pixel graphics formats (various JPEG, lossless bitmaps)

� Fonts and text

� Sound data (ADPCM, MP3, Nellymoser, Speex)

� Video data (H.263, Screen Video, Screen Video V2, On2 Truemotion VP6)

� Virtual machine byte code for the Adobe Virtual Machines (AVM)

� All data structures from file format version 3 until the current version 10 are
still supported

� The parser is completely written in unmanaged languages (C/C++)

Security Concerns with Adobe Flash

Flash Victims I: Pr0n End Users

� End user’s Flash Player can be triggered by any web page

� Commonly exploiting parser vulnerabilities (e.g. CVE-2007-0071*, CVE-
2010-2174), yielding direct code execution within the victim’s browser
process

� DNS rebinding attacks

� CSRF-style attacks including additional HTTP headers (e.g. UPNP)

� Exploit toolkits with Flash frontend: Determining exact OS and browser
versions, then downloading the appropriate exploit.

� 97% of all web browsers report Flash installed

Security Concerns with Adobe Flash

* “Application-Specific Attacks: Leveraging the ActionScript Virtual Machine”, Mark Dowd

End User Requirements

� The vast majority of exploits use intentionally malformed Flash files to
trigger a vulnerability

� End users need a verification or enforcement mechanism to ensure
Flash files are well-formed

� Technically, a property the Flash Player must ensure, but that’s exactly
where the problem is

� Preferably integrated into web browser or proxy server

� End users require said mechanism to perform well, i.e. not taking too
long or requiring too many resources

Security Concerns with Adobe Flash

Flash Victims II: Web Site Owners & Ad Networks

� Advertisement Networks are forced to accept pre-compiled
Flash content from Ad-Agencies as banner material

� Submitted content is manually inspected (if at all)

� No way to verify or enforce contractual requirements

� Flash byte code sometimes changes behavior after the banner was
accepted: It pulls trigger or additional code from remote server.

� Malicious advertisements have hit major news sites

� NYTimes.com, Handelsblatt.de, Zeit.de, Heise.de, etc.

Security Concerns with Adobe Flash

Web Site Owner & Ad Network Requirements

� Ensuring the Flash file is well-formed and does not carry an exploit is
only partially sufficient for web site operators

� It helps, however, to protect the review people from Flash exploits

� Desired is the ability to define rules mapping contractual requirements

� E.g.: a banner advertisement can only forward the user’s browser to the
previously agreed campaign URL

� E.g.: a social network site widget is not allowed to load additional content
from a third party server

� Computational expense is of less concern, thoroughness is

� Processing happens upon submission of the content, on the server side

Security Concerns with Adobe Flash

Native Security Functionality of Adobe Flash

(this slide is intentionally left blank)

Security Concerns with Adobe Flash

Native Security Functionality of Adobe Flash

� Very limited settings within the Flash Player configuration page, using
an actual Flash file

� Camera and microphone access, local storage limits, hardware video
acceleration, “older security system”, DRM licenses

� Much more useful settings can only be made in mms.cfg, a local user
specific configuration

� AutoUpdateDisable, AllowUserLocalTrust, LocalFileLegacyAction,
LegacyDomainMatching, ThirdPartyStorage, FileDownloadDisable,
FileUploadDisable

� There is no proof of origin for Flash files (i.e. no digital signatures)

Security Concerns with Adobe Flash

Flash Malware and the Anti-Virus Industry

� Flash malware is not very well detected by anti-virus software

� AV software epically fails when the malware is uncompressed

Sample Detection Detection
(uncompressed)

Simple generic downloader 18/41 (43.91%) 16/39 (41.03%)

Gnida.A 29/41 (70.73%) 8/40 (20.00%)

SWF_TrojanDownloader.Small.DJ 21/39 (53.85%) 11/41 (26.83%)

Statistics generated using Virustotal.com on December 24, 2009

Security Concerns with Adobe Flash

Blitzableiter – An Alternative Defense Approach

� Straight command-line filter program

� “Blitzableiter” is the German term for lightning rod, since it turns dangerous
lightning into a harmless flash

� Implemented in fully managed C#, targeting the .NET 2.0 runtime

� Binary compatible with the Microsoft CLR as well as Mono 1.2

� Receives a potentially malicious Flash file (SWF) as input

� Grossly malformed files are rejected

� Produces a (hopefully) non-malicious Flash file as output

� Well-formed input files produce functionally equivalent output files

Introducing the Blitzableiter Security Tool

NoScript Supports Blitzableiter

� Giorgio Maone introduced support for external filters in his popular
NoScript add-on for Mozilla Firefox

� MIME-Type based filtering using external programs

� Required some serious design and code changes to allow for processing in
background threads

� Current versions (1.9.9.x and above) already support external filters,
development versions (2.0rc2 and above) provide additional information to the
filter (origins of page and content)

� We would like to thank Giorgio very much for his support!

� His extraordinary willingness to cooperate, responsiveness, speed and quality
of implementation should be an example for many others.

Introducing the Blitzableiter Security Tool

NoScript Supports Blitzableiter

Introducing the Blitzableiter Security Tool

Integrating Blitzableiter into Web Sites

� Web Site integration as post-processing step for upload
functionality is trivial

� Simply start Blitzableiter with the uploaded file as input

� If OS return value is 0, move the output to the intended destination

� If OS return value is < 0, present upload user with log output

� A Blitzableiter SOAP API is under consideration / construction

Introducing the Blitzableiter Security Tool

Blitzableiter is Open Source under GPLv3

� This project is open source, so you can apply something like
Kerckhoffs’ Principle and verify its protection value yourself

� No yellow box solution that magically protects you

� We would love to see more integration in other software that
must deal with Flash files

� Bug reports are also very welcome

Introducing the Blitzableiter Security Tool

http://http://http://http://blitzableiter.recurity.comblitzableiter.recurity.comblitzableiter.recurity.comblitzableiter.recurity.com

Demo Time

… what can possibly go wrong?

Introducing the Blitzableiter Security Tool

Flash Files from the Inside

� Flash files (also called movies) follow the SWF (apparently
pronounced “swiff”) file format specification
� Version 3 to Version 10 are specified

� SWF files can be compressed using zlib methods

� Type-Length-Value structure
� The elements are called “Tags”

� The element ordering determines (partially) the rendering

� 63 Tag types are documented for Version 10

� Data structures are heavily version dependent

Flash Internals

A few Example Tag Types

� Control Tags manage general aspects of the file

� SetBackgroundColor, FrameLabel, Protect, End, EnableDebugger,
EnableDebugger2, FileAttributes, Metadata, …

� Display List Tags define and show graphic elements

� PlaceObject, PlaceObject2, PlaceObject3, RemoveObject, RemoveObject2,
ShowFrame, …

� Bitmap Tags hold bitmap graphics data

� DefineBits, DefineBitsJPEG2, DefineBitsJPEG3, DefineBitsLossless, …

� Buttons are special graphic objects that allow interaction (programming)

� DefineButton, DefineButton2, DefineButtonCxform, DefineButtonSound

Flash Internals

A Tag Data Structure Example

� Every Tag type has its own data
structures, often deeply nested
ones

� Many data structures are
composed of lists of sub-
structures, great places for
integer overflows and
signedness issues

� The Tag to the right is what
caused CVE-2007-0071 by
using a negative SceneCount
and a missing allocation return
value check in Flash Player

Flash Internals

Preventing Format Based Exploits:
Normalization through Recreation

1. Safely parse the complete SWF file

� Strictly verify all data structures against their specified properties

2. Discard the original file

3. Verify inter-Tag consistency and AVM byte code

� Potentially adjust the AVM byte code

4. Create a new, “normalized” SWF file for the final consumer
(e.g. the Flash Player)

Blitzableiter Internals

Implementation Details

� The Blitzableiter parser is completely managed code

� Out-of-bounds conditions and integer overflows are caught by the runtime and cause an
exception to be raised

� All TLV-style data structures are handled in individual memory streams, thus only
offering as much data as declared in the TLV header

� Trailing data is therefore discarded before parsing

� Parser modules ensure that all content of the TLV container is used

� The parser only accepts well-documented SWF data structures

� To provide the desired security level, this approach requires to parse every known data
structure within the SWF specification

� The parser also verifies version dependencies of data structures

Blitzableiter Internals

Example: Catching CVE-2007-0071

Blitzableiter Internals

reading rejected: Tag handler failed parsing: System.OverflowException

Adobe Virtual Machines

� The Flash Player contains two virtual machines

� AVM1 is a historically grown, weakly typed stack machine with
support for object oriented code

� AVM1 is programmed in ActionScript 1 or ActionScript 2

� Something around 80% of the Flash files out there are AVM1 code,
including YouTube, YouPorn, etc.

� AVM2 is an ECMA-262 (JavaScript) stack machine with a couple of
modifications to increase strangeness

� AVM2 is programmed in ActionScript 3

� The Flash developer community struggles to understand OOP

Flash Internals

The History of AVM1

� First scripting capability appears in SWF Version 3

� Something like a very simple click event handler

� SWF Version 4 introduces the AVM

� Turing complete stack machine with variables, branches and sub-routine
calls

� All values on the stack are strings, conversion happens as needed

� SWF 5 introduces typed variables on the stack

� Addition of a constant pool to allow fast value access

� Introduction of objects with methods

Flash Internals

The History of AVM1

� SWF 6 fixes SWF 5

� New Tag type allows initialization code to be executed early

� Checking of the type of an object instance is added

� Type strict comparisons are added

� SWF 7 brings more OOP

� New function definition byte code

� Object Inheritance, extension and test for extension (implements)

� Exception generation and handling (Try/Catch/Finally)

� Explicit type casting

Flash Internals

The History of AVM1

� SWF 8 never happened

� SWF 9 already brings the AVM2 into the format

� They call the byte code “ABC”

� SWF 10 is the currently specified standard

Keep in mind that all this is still supported!

Flash Internals

AVM1 Code Locations in a Flash File

� A Flash file can contain AVM1 code in 5 different types of
locations

� DoAction Tag contains straight AVM1 code

� DoInitAction Tag contains AVM1 code for initialization

� DefineButton2 Tag contains ButtonRecord2 structure that can carry
conditional ButtonCondActions, which are AVM1 code

� PlaceObject2 and PlaceObject3 Tags can contain ClipActions whose
ClipActionRecords may contain AVM1 code

� Many tools, including security tools, only handle DoAction

Flash Internals

AVM1 Code Properties

� AVM1 byte code is a variable length instruction set

� 1-Byte instructions

� n-Byte instructions with 16 Bit length field

� Branch targets are signed 16 Bit byte offsets into the current code block

� Function declarations are performed using one of two byte codes inline
with the other code

� Function declarations can be nested

� Functions may be executed inline or when called

� Try/Catch/Finally blocks are defined by byte code similar to functions

Flash Internals

Design Weaknesses in AVM1

� The byte offset in branch instructions allows:

� Jumps into the middle of other instructions

� Jumps outside of the code block (e.g. into image data)

� The signed 16 Bit branch offset prevents large basic blocks

� The Adobe Flash Compiler emits illegal code for large IF statements

� Instruction length field allows hiding of additional data

� Length field is parsed even for instructions with defined argument sizes

� Argument arrays contain their own length fields after the instruction
length field

Flash Internals

Design Weaknesses in AVM1

� The order of code execution appears to be non-deterministic

� Depends on the Tag order and type

� Depends on references to other Flash files

� Depends on the conditions set to execute

� Depends on the visibility of the object (z-axis depth)

Flash Internals

AVM1 Code Verification performed by Blitzableiter

� Is the instruction legal within the declared SWF Version?

� Does the instruction have exactly the number of arguments
specified?

� Is the declared instruction length correct and completely used?

� Does the code flow remain within the code block?

� Do all branches, try/catch/finally and all function declaration target
addresses point to the beginning of an instruction?

� This is ensured using linear disassembly instead of code flow disassembly

� Do all instructions belong to one and only one function?

Blitzableiter Internals

Countering Functional Attacks

� If done correctly and completely, the format normalization so
far leaves you with a representation of a nice and tidy SWF
file that you completely understand.

� Static analysis will provably not be able to determine what any
given code is actually doing.

� Emulation will cause a state discrepancy between your
emulation and the Flash player’s interpretation of the same
code.

Introspective Code Behavior Verification

Patching the Point of Execution

� In runtime analysis, you verify the arguments to the final API
call before the call is made.

� We are not part of the show when execution actually
happens.

� But we can introduce AVM1 code before the final API call that
inspects and verifies the arguments for us when executed.

Introspective Code Behavior Verification

Example: ActionGetURL2

� ActionGetURL2 is the most widely used action to forward
browsers to potentially dangerous targets

� When we handle the Flash file, we know the origin of it

� We introduce a Same Origin Test before the actual
ActionGetURL2 instruction is executed

Introspective Code Behavior Verification

Determining What Method Is Called

� Method calls are implemented in AVM1 as a sequence of:

� Therefore, we need to check if we are
dealing with an instance of the object
first and then determine the method:

Introspective Code Behavior Verification

ActionConstantPool 0:'receiving_lc' [...] 8:'connect'
ActionPush [0]Const8:07 [1]UInt32:00000001 [2]Const8:00
ActionGetVariable
ActionPush [0]Const8:08
ActionCallMethod

ActionStackSwap
ActionPushDuplicate
ActionPush String:OBJECTTYPE
ActionGetVariable
ActionInstanceOf
ActionNot
ActionIf ExitPatch:
ActionStackSwap
ActionPushDuplicate
ActionPush String:connect
ActionStringEquals
ActionIf CleanUp:

Generically Cleaning Up The Stack

Introspective Code Behavior Verification

ActionPop # Remove method name
ActionPop # Remove object reference
ActionPush String:$RANDOM # Create a variable with a random name
ActionStackSwap # Swap variable name and number of arguments
ActionSetVariable # Store number of arguments
RemovalLoop:
ActionPush String:$RANDOM # Push random variable name
ActionPushDuplicate # Duplicate
ActionGetVariable # Get number of arguments
ActionPush UInt32:0 # Push 0
ActionEquals2 # Compare
ActionIf RemovalLoopDone: # If number of arguments == 0, we are done
ActionPushDuplicate # Duplicate random variable name again
ActionGetVariable # Get number of arguments
ActionDecrement # Decrement it
ActionSetVariable # Store in random variable name
ActionPop # Now remove one of the original arguments
ActionJump RemovalLoop: # Repeat
ActionPop # Remove remaining string
ActionPush UNDEFINED # Return UNDEFINED to the code that called

the method

Example: Gnida

� Adding a function to the top of
the code sequence in order to
perform all the object and
method checks in one place

� Patching all ActionCallMethod
places to verify the call using
our check function

� One can easily see the
significant code blow-up
(~250% the original size)

Static Analysis

� We can provably not determine all call arguments using static
analysis, therefore a code patch is the safer method

� But we can determine calls and arguments that are loaded directly
from the constant pool or static values on the stack

� In order to determine values, we need:

� Backward tracing of the virtual machine stack using code flow

� Code Flow Graphs in order to trace along basic blocks and edges

� E.g.: even the constant pool can be overwritten anywhere in AVM1 code

Blitzableiter Internals

Higher Level Verification Modelling

� The goal is to model:
“Does the 2nd argument of any call to ObjectA.MethodB begin with the
following string?”

� The current implementation uses a dual stack machine approach

� An internal stack machine performs individual static analysis operation steps to
model conditions we want to verify

� If the internal stack machine cannot deterministically continue, all basic
operations emit AVM1 code to perform the same operation within the file.

� The individual operations are of small granularity

� Example: ArgN determines the value of the n-th argument on the stack

� Easier to verify the equivalence of the internal and the AVM1 representation

Blitzableiter Internals

Covering the AVM2

� The AVM2 implementation is its own can of worms

� AVM2 is currently still incomplete in Blitzableiter �

Blitzableiter Internals

Real World Behavior

� We are “eating our own dog food” and are happy so far

� YouTube and YouPorn work, and so do many other sites

� Just in case, you can switch individual Tag type parsers in the configuration file from
parsing and normalization to simple byte array copy mode

� Flash files with code obfuscation will in almost all cases be rejected for format
violations within the AVM byte code

� This also affects some larger sites, such as hulu.com

� Many third party SWF generators emit invalid Flash files

� Use of undocumented Tag types for unknown purposes

� Use of reserved fields or undocumented AVM byte codes

� Simply ridiculously broken files, which the Flash Player will accept anyway (the problem!)

Challenges and Issues

Please Report Compatibility Issues

� When a Flash file is rejected by Blitzableiter, you receive an error log
dialog (configurable)

� The dialog allows you to send the log to us, in case you are convinced the
Flash file in question was not malformed

� Please keep in mind that many non-malicious Flash files are nevertheless
malformed files and should be filtered

� We only store the API request and the log file content

� It’s HTTP, sniff it yourself if you don’t believe us

� We also want to know about Flash files that are visually or audibly different
from the not normalized input file. We need your help to fix those cases!

Challenges and Issues

Conclusions

� We think that Blitzableiter shows the viability of signature-free
protections against file format based attacks using a managed
language parser and format normalization.

� Automated code property verification and enforcement allow
distributors of Flash content to enforce contractual regulations
and requirements right when they receive it.

� Not surprisingly, it’s also a fairly tricky area.

� We hope the tool is a useful addition to your browser
protection measures and we rely on your feedback!

Finishing Up

Acknowledgements

� Robert Tezli for his commitment to the project

� Dirk Breiden for being an awesome team mate

� Mumpi for general awesomeness

� Thomas Caspers and Daniel Loevenich for their support

Finishing Up

Thank you!

fx@recurity-labs.com

