Deconstructing ColdFusion

BlackHat USA 2010
July 29, 2010




VERACODE
Bios
= Chris Eng = Brandon Creighton
— Senior Director of Research at — Security Researcher at Veracode
Veracode = Previously
. PI’EVIOUS|y — Engineer/architect at VeriSign MSS
— Technical Director and Consultant at (ex-Guardent); focus on high-volume
@stake (and Symantec, through security event storage & transmission
acquisition) = Other

— Security Researcher, etc. at NSA .
y ! — Operations/goon volunteer at several

= Other conferences (DEFCON, SOURCE BOS,
— Frequent speaker at security HOPE 5)
conferences — Ninja Networks party badge firmware
— Contributor to various CWE, OWASP, dev
WASC projects — Old stuff: Stint as the maintainer of
— Advisory board for SOURCE OpenB5D/vax (~1999-2002)

Conferences (BOS, BCN)

— Developed @stake WebProxy (for any
old timers out there)



T
VERACODE

Agenda

ColdFusion Background and History
Platform Architecture and CFML

» Practical Tips for Developers and Code Reviewers
= ColdFusion Behind the Curtain



ColdFusion Background and

History




T
VERACODE

ColdFusion History

= Originally released in 1995 by Allaire
— Motivation: make it easier to connect simple HTML pages to a database
— Initially Windows only with built-in web server

= Migration to J2EE with ColdFusion 6 in 2002
— Everything compiled to Java classes before being run
— Apps can be bundled up as WARS/EARs, including admin interface if desired
— Bundled with JRun

= | atest version is ColdFusion g released in 2009

— Most recent features focus on integration with other technologies, e.g. Flash,
Flex, AIR, Exchange, MS Office, etc.



T
VERACODE

Historical Vulnerabilities

= Within the past 12 months

— Multiple XSS, some as recent as May 2010 (not much detail available)
— “Double-encoded null character” CVE in August 2009

= Lots of XSS in sample apps, administrator Ul, error pages
= Source code disclosure

— JRun canonicalization mistakes, bugs in sample applications
= Authorization vulnerabilities related to administrative Ul
= Sandbox escape scenarios

= Prior to ColdFusion 6 (Allaire/Macromedia days)
— Arbitrary file retrieval
— XOR used to encrypt passwords
— Predictable session identifiers (may have been sequential, IRC)
— Various DoS conditions and buffer overflows



T
VERACODE

Who Uses ColdFusion Anyway?

= | ots of people, believe it or not. Let's start by asking Google...

ext:asp 1,170,000,000
ext:aspx 1,220,000,000
ext:cfm 310,000,000
ext:jsp 518,000,000
ext:php 5,060,000,000
ext:pl 139,000,000
ext:py 5,130,000

ext:rb 244,000



T —————
VERACODE
Who Uses ColdFusion Anyway?

= "More than 770,000 developers at over 12,000 companies
worldwide rely on Adobe® ColdFusion® software to rapidly build
and deploy Internet applications. And with more than 125,000

ColdFusion servers deployed, ColdFusion is one of the most widely
adopted web technologies in the industry.”

P ) _ '
Bank of America <> Cltl % Smithsonian

el l Il I e

\—" verizon @aﬂfnw;@




T
VERACODE

ColdFusion Prevalence by Vertical




VERACODE

Our Motivations

= We were developing ColdFusion support for our binary analysis
service, so we were doing the research anyway

= Few resources available on securing or testing ColdFusion apps

— ColdFusion 8 developer security guidelines from 2007
http://www.adobe.com/devnet/coldfusion/articles/dev_security/
coldfusion security cf8.pdf

— “Securing Applications” section of ColdFusion g developer guide is similar,
almost entirely about authentication methods
http://help.adobe.com/en US/ColdFusion/q.o/Developing/coldfusion g dev.pdf

— OWASP ColdFusion ESAPI started May 2009, abandoned (?) June 2009
http://code.google.com/p/owasp-esapi-coldfusion/source/list

— EUSec presentation from 2006 focused mostly on the infrastructure footprint
and deployment issues (admin interfaces, privilege levels, etc.)
http://eusecwest.com/eswo6/eswob-davis.pdf

— Other presentations dedicated to ColdFusion security



Platform Architecture and CFML




T
VERACODE

CFML Building Blocks

" Pages
— Main entry points of a CF application
— Similar to an HTML page (or PHP, JSP, etc.) except using CFML tags
— .cfm extension

= Components
— Contain reusable functions / variables for use by other code
— Written entirely in CFML
— .cfc extension
" Functions (UDFs)
— Defined inside components or pages
— Called using CFINVOKE or inside a CFSCRIPT block/expression
— Can be exposed as an entry point inside components



VERACODE
CFML Page Lifecycle, Part 1

= When a page is requested, search
. . Risgzzsctf:r Applil_czziaoln.cfc Y Clrfg/lel;(fcr?r;n
for (and execute) Application.cfc | ;

N

or Application.cfm first v

Local

Application.cfm

= Application.cfm s a plain old |

N

CFML file, while Application.cfc ’

Parent

Application.cfc

defines hooks into application |

N

events %

Parent
Application.cfm

= Common uses for this |

mechanism: " y
— Login management |
— Centralized data validation Appioot

Application.cfc

— Messing with session variables |

N

v

App Root
Application.cfm

— Error handling

Y/N




T
VERACODE

Inside Application.cfc

= onApplicationStart: application start (can access request variables)
= onApplicationEnd: application timeout/server shutdown

= onSessionStart: new session (can access request variables)

= onSessionEnd: session ends

= onRequestStart: called before every request (can access request
variables)

= onRequest: called after onRequestStart code ends (can access request
variables)

= onRequestEnd: called after request has been processed (can access
request variables)

= onMissingTemplate: called when an unknown page has been requested
(can access request variables)

= onError: when an uncaught exception occurs (can access request variables
sometimes; check Event value)



_
VERACODE

CFML Page Lifecycle, Part 2

= Asingle page caninclude
code from many different
locations e PO
index.cfm
= Custom tags are similar to ’\
local includes, but with

different dataflow behavior

— <cf foo> iskind of like
<cfinclude
template=""foo.cfm'>

Tag Libraries
Servlet
except that changes made to Methods
. .. . Bridges
variables are not visible in the :

calling page

UDFs

from remote
.cfcfiles

Included

Local .cfm
files via
custom tags

Servlet
JspContext

UDFs

from local
.cfcfiles JSP Custom

Custom C++
or Java tags

* There are also built-in tags (coxneh
for interacting with remote
HTTP, FTP, LDAP, SMTP,

and POP servers



VERACOIDE
Variables are Dynamically Scoped

= Silos of global variables named “scopes” can be confusing

= Variable accesses can be fully-qualified (prefixed with scope name)

or not qualified at all

<cfoutput>#foo#</cfoutput>
<cfoutput>#URL . foo#</cfoutput>

* The unqualified scope can be temporarily "enhanced” with the
results of a query row or loop iteration, e.qg.

<cfquery name="qry" datasource="myDataSource">

SELECT coll, col2, col3 FROM myTable
</cfquery>
<cfoutput query="'gry">#coll#, #col2#, #col3#</cfoutput>
<cfoutput query=""gry">#qgry.coll#, #qgry.col2#,
#qry.col3#</cfoutput>

= Qutput without iteration is also possible:
<cfoutput> #gry.coll#, #gry.col2#, #qry.col3# </cfoutput>



VERACODE

Variable Scopes

T 2

Variables
Application
Arguments
Attributes
Caller

Request

This
ThisTag
URL
Form
Cookie
CGl
Session

Client

the variable binding stack local to the current page

global to every page in an app; set in application.cfc

arguments to a function (may be tainted if called by a remote UDF)
used to pass data to .cfm custom tag pages/threads

used within custom tags; reference to the calling page’s Variables scope

persistent across all code for the lifetime of the request; useful within custom
tags and cfincluded pages

struct/component *member variables”

analogous to Request scope for custom tag pages
parameters present in HTTP query string
parameters present in HTTP POST body

HTTP request cookies

CGl variables, some server-defined and some tainted
persistent across a single site visit

client-specific persistent storage; outlasts session variables



T —————
VERACODE
Variable “types” in CF

* The CF type system hasn’t changed significantly since the gos
= Implicit conversions to/from strings are the norm

" Instead of type checks, validation often done with pattern matches:
— CFPARAM and CFARGUMENT “type” attributes
» <cTfparam name=""phoneno” type=""telephone> will throw an exception if
“*phoneno” is set and is not formatted as a standard US/NANPA phone number
= Types “boolean”, “creditcard”, “date”, “time”, “eurodate”, “eurotime”, “email”,

I I/ !
“float”, “numeric”, “guid”, “integer”, “range”, “regex”, “ssn”, “telephone”, "URL",
“uuid”, “usdate”, “variablename”, “xml”, “zipcode” all check the string representation
of the variable against regexes

= Limited type checks are possible: “array”, “query”, “struct”, and “string”

= Numerous opaque types reused among contexts

— Example: queries are used for database queries, directory iteration, |dap
queries, http/ftp requests, and others



VERACOIDE

CF Expressions

= Automatic interpolation with #-expressions inside cfoutput and

attributes:
— <cfoutput>#URL . foo#</cfoutput>

— <cfloop query = "MyQuery' startRow = "#Start#" endRow =
“HENd#'>
<cfoutput>#MyQuery.MyColIName#</cfoutput><br>
</cftloop>

= Dynamic scoping can hinder analysis
— <cfset foo="'bar''> vs. <cfset "#foo#"="#bar#">
— SetVariable("'foo', "bar') vs. SetVariable(foo, bar)

= Dynamic evaluation functions

— Evaluate() and PrecisionEvaluate()
— F()
— DE() — used in conjunction with the other two



Practical Tips for

Developers and Code Reviewers




T
VERACODE

Where to Look for Untrusted Data

URL.any_variable
FORM.any_variable
COOKIE.any_variable
FLASH.any_variable

= CGl.some_variables

— e.qg. PATH_INFO, QUERY_STRING, CONTENT_TYPE, CONTENT_LENGTH,
HTTP_REFERER, HTTP_USER_AGENT, etc.

— More on this later

= SESSION.some_variables

— Depends on application logic

= CLIENT.any_variable

— Only when client variables are enabled and storage is cookie-based

= CFFUNCTION arguments, when access="remote"



T
'VERACODE

XSS Defense Misconceptions

= Using scriptProtect attribute

— Replaces blacklisted tags such as <script>, <object>, etc. with <InvalidTag>
when rendering user-supplied input

— Doesn't block injection, aside from the most basic attack strings

= Example

— <cfapplication scriptProtect="all">
<cfoutput>You typed #URL.fToo#</cfoutput>

— Requesting page with ?foo=<script>alert("foo")</script> will return You typed
<InvalidTag>alert("foo")</script>

" Trivial to circumvent
— One of many possibilities: requesting page with ?foo=<img
src="http://l.imgur.com/4VpgN.jpg" onload="alert(‘foo")"> will happily execute
the alert() call
= Other regexes can be added to the blacklist, but it’s still a blacklist
(look for neo-security.xml if you insist)



T
'VERACODE

XSS Defense Misconceptions

= Assuming HTMLEditFormat() and HTMLCodeFormat() perform
sufficient HTML encoding

— They only encode <, >, ", and &
— Ineffective for unquoted or single-quoted tag attributes, or within script blocks
» <img #HTMLEditFormat(URL.foo)#>
» <img alt="#HTMLEditFormat(URL.foo0)#">
» <script>#HTMLEditFormat(URL . foo)#</script>
» <script>var x="#HTMLEditFormat(URL.fo0o)#" ;</script>
" etc.
— XMLFormat() encodes single quotes, but still won't prevent XSS in all situations

= Inside Javascript blocks



T
'VERACODE

XSS Risks in Default Error Pages

= This is effective whitelist-style input validation, right?
— <cfoutput>#1nt(URL.count)#</cfoutput>
— <cfset safenum=NumberFormat(FORM.bar)>
— <cfoutput>#JavaCast(''boolean', URL.booly)#</cfoutput>

= Default error page

— scriptProtect is enabled on the default error page, but we already saw how
(in)effective that is

Error Occurred While Processing Request

The value foo cannot be converted to a number.

Resources:

#* Enable Robust Exception Information to provide greater detail about the source
of errors. In the Administrator, click Debugging & Logging > Debug Output
Settings, and select the Robust Exception Information option.

® Check the ColdFusion documentation to verify that you are using the correct
syntax.

® Search the Knowledge Base to find a solution to your problem.

Mozillaf5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.3)

e Gecko/20100401 Firefox/3.6.3 (.NET CLR 3.5.30729)
Remote
10.0.5.220
Address
Referrer

Date/Time 24-May-10 02:36 PM




VERACODE
XSS Risks in Custom Error Handling

= Using casts to sanitize input can be ineffective unless the
application also defines an error page
<cferror template="errorhandler.ctfm" type="'request''>

Don’'t use #error.diagnostics# or #error.message# in your error page!

= Exception handling also works

<cftry>
<cfoutput>#int(URL.count)#</cfoutput>
<cfcatch>Exception caughtl!</cfcatch>
</cftry>

Don’t output #cfcatch.message# in your catch block without properly encoding it
first!



T
'VERACODE

Common SQL Injection Mistakes

= Using CFQUERY without CFQUERYPARAM
(also CFSTOREDPROC without CFPROCPARAM)

<cfquery name="'getContent" dataSource="myData''>
SELECT * FROM pages WHERE pagelD = #Page ID# OR
title = "#Title_Search#"</cfquery>

= #Title_Search# is not injectable; CF will automatically escape single
quotes for expressions inside the CFQUERY tag

= #Page_|D# is still injectable because it's not quoted
= Using CFQUERYPARAM

<cfquery name="'getContent" dataSource="myData''>
SELECT * FROM pages WHERE pagelD =
<cfqueryparam value="#Page ID"

ctsqltype=""cf_sgl _i1nteger'></cfquery>

(For unknown reasons, cfsqltype is an optional attribute)



T
VERACODE

Other OWASP Top Ten Vulnerabilities

= We won't waste time rehashing all of the common web
vulnerabilities

— Of course you can have CSRF, insecure cryptographic storage, broken
authentication, etc. in a ColdFusion app

— Nothing unique enough to warrant discussion here

= Here are some dangerous tags; it should be obvious why they are
dangerous if not properly restricted
— <cffile>
— <cfdirectory>
— <cfexecute>
— <cfregistry>
— <cfobject>



VERACODE
Directly Invoking UDFs

= Every method in a .cfc file is a potential entry point, e.g.
http://example.com/foo.cfc?method=xyzzy&arga=vala&argb=valb

= This URL will invoke method xyzzy on an anonymous instance of
component foo.cfc, with arguments arga="vala” and argb="valb”
(also valid with POST variables, although method must be passed in
the query string)
— If method doesn't exist, onMissingMethod is called

— If method isn't specified, then the request gets redirected to
CFIDE/componentutils/cfcexplorer.cfc

— Rules for application.cfc and application.cfm still apply

* |[n a source code review, look for sensitive functionality

implemented as UDFs, with the access attribute set to “remote”

<cffunction name="ListCategories" access="'remote"
returntype="‘query">




VERACODE

Evaluating Unscoped Variables

= |f you use a variable name without a scope prefix, ColdFusion checks
the scopes in the following order to find the variable:

1.

Variables (local scope)

2. CGl
3. URL
4.

5. Cookie
6.

Form

Client

= For example, in applications with sloppy variable naming, you can
almost always override POST (Form) parameters with GET (URL)
parameters

= Compare reads/writes of variables to identify scoping
inconsistencies



T
'VERACODE

Exploiting Unscoped Variables

= A generic case:

<cfif IsDefined("1mportantvar')>
DolmportantStuff()
<cfelse>

Sorry, you are not permitted to access this functionality.
</cfif>

» Putting 7importantVar=anything in the URL (or the POST body, or a
cookie) will bypass this check if importantVar has not already been
defined in the Variables scope



VERACODE
Exploiting Unscoped Variables

= Consider this logic to process a user login (yes, it's contrived)

<cfit AuthenticateUser(FORM.username, FORM.password) and
IsAdministrator(FORM.username)>

<cfset Client.admin = "true">
<cfelse>

<cfset Client.admin = "false">
</cfif>

= Other pages check whether the admin variable is true before

performing restricted actions

<cfift admin eq "true">

Put privileged functionality here!
<cfelse>

Sorry, only admins can access this!
</ctif>

= Putting 7admin=true in the URL will bypass this check because URL
variables precede Client variables in the search order



T
'VERACODE

Undefined Variables

= Similarly, ensure that variables are always initialized properly

= CFPARAM's "default" attribute only sets a variable if it's not set
already; use CFSET or an assignment inside cfscript

= Assume undefined, unqualified valuables are filled with request
data!

= |[t's common to see code like:

<cfparam name="pagenum" default="1"">
<cfoutput>

Now showing page #pagenum#.
</cfoutput>

= This is exploitable; GET and POST variables will override pagenum



T
VERACODE

Environment Variables

= Legitimate variables in the CGl scope can be manipulated and in
some cases overridden via HTTP headers

= For example:

The CF expression #CGIL.HTTP_HOST# will contain “example.com”

The CF expression #CGIL.HTTP_HOST# will contain “evil.com”

" You can also override #CGI.SERVER_SOFTWARE#,
#CGI.PATH_INFO#, #CGI.WEB_SERVER_API#, and many others

= Be particularly careful with #CGILLAUTH_USER#



T
VERACODE

Persistence Issues

= Client scope variables can be configured in Application.cfm in the
CFAPPLICATION tag (attribute “clientmanagement”) or
this.clientmanagement in Application.cfc

— Keyed to browser via CFTOKEN/CFID cookies; actual variable storage may be
client-side (other cookies) or server-side (in a database or the Windows
registry)

— All of these cookies persist by default, so watch for cookie theft/stuffing attacks

* When client scope is enabled, tampering is possible if cookie
storage is enabled (“clientStorage” attribute/variable)

— No encryption or MAG; plain text



ColdFusion Behind the Curtain




T
VERACODE

Proprietary Classfile Format

= CF can compile pages/components to sets of Java classes using the
cfcompile utility

= One class per page plus one for every UDF

= All class generated for a single CFM/CFC file are placed in one file,
concatenated; a custom ClassLoader is used by CF to load them up

= Names of the resulting concatenated files are identical to those of
the source files

= Separately, ColdFusion Administrator can be used to bundle a
directory as an EAR/WAR



VERACOIDE
A Way to Slice Them: cfexplode

" Free, open-source Java utility, on Google Code as of now:
http://code.google.com/p/cfexplode/

= Splits concatenated classfiles into many; can accept individual
compiled CFC/CFM files or full WAR/EAR/JAR zip archives

% java -jar cfexplode.jar outdir index.cfm
% Is -1 outdir
total 40

-rw-r--r-- 1 cstone cstone 3534 2010-07-16 15:23
Iindex.ctfm.O.class

-rw-r--r-- 1 cstone cstone 2095 2010-07-16 15:23
Index.ctfm.3534 _class

-rw-r--r-- 1 cstone cstone 31234 2010-07-16 15:23
Index.ctm.5629_class

* |Individual classes easily analyzable (even with the free JAD and JD-
GUI)



T
VERACODE

Page/Component/Function Java Classes

= CFM/CFC: main point of entry is CFPage.runPage()
— Other methods called beforehand set up data: variable bindings
(bindPageVariables()), function names (registerUDFs()), data sources
= <cffunction>: main point of entry is UDFMethod.runFunction()

— Argument validation is done by the runtime; any types specified in
<cfargument> tags are translated into a static Map instance named
“*metaData”

= CflspPage (base class).pageContext is a plain old JspContext, so
pageContext.getOut() returns a JspWriter; this is used to do the
bulk of the output

— getOut() also used for things that aren’t actually output to the screen, such as
database queries

= Occasionally, parts of the body are factored out of runPage into
separate private methods named factoro(), factori(), factor2()..



VERACODE
CF Variables in Java: Static References
= Static references, usually used = When compiled:
for local bindings protected final Object
<cfset vfoo="value 1"> runpage()
<cfparam name="pbar" {
default="value2"> /7 .. . .
<html> VFOO.set("value 1");
<cfoutput> _whitespace(out, "\n");
vfoo: #vfoo# pbar: i
#pbar# checkSimpleParameter (PBAR,
</cfoutput> "value2");_
</html> out.write(""\n\n<html>\n
")
// ..
out.write('\n
vfoo: ");

out.write(Cast. String(
_autoscalarize(VF00)));
out.write(" pbar: ");
out.write(Cast. String(
_autoscalarize(PBAR)));
_whitespace(out, "\n

LI N



_—_—__———
VERACODE

CF Variables in Java: Static References

= How variables are bound to the page

private Variable PBAR;

private Variable VFOO;

protected final void bindPageVariables(VariableScope varscope,
LocalScope locscope)

{
super .bindPageVariables(varscope, locscope);
PBAR bindPageVariable("'PBAR", varscope, locscope);
VFOO bindPageVariable("'VFO0", varscope, locscope);

}



_—_—__———
VERACODE

CF Variables in Java: Dynamic References

= Dynamic references, explicitly-scoped variables

<html>
<cfoutput>
#url .quux#
</cfoutput>
</html>

= When compiled:
protected final Object runPage()

{
// ..
out.write('<html>\n ");
_whitespace(out, "\n ");
out.write(Cast. String(
_resolveAndAutoscalarize("URL", new String[] {
"QUUX™ })) )
// ..

}



T
'VERACODE

Other Ways to Set/Access Variables

* Bind the name “scope” to a variable that represents the results of
the query

— <cfquery name="''scope’''>

= Looping over query results
— <cfoutput query="resultset'>
— <cfloop query>

= Structure member accesses
— <cfset x=StructNew()>
— <cfset x.member="vall'>

= <cfdump> tag for dumping variable contents
= Other|/O: files, HTTP requests, LDAP requests, mail messages



T
VERACODE

WAR/Application Structure

» CFMs/CFCs handled by different Servlets (CfmServlet and
CFCServlet, respectively)

* These locate the class(es) necessary based on URL and parameters,
then invoke their runPage()/runFunction() methods

= Chain of coldfusion.filter.FusionFilter classes (not related to J2EE
Servlet filters); these handle client-scope propagation

= Even if the “Include CF Administrator” option is unchecked, many

pages/components inside the CFIDE/ directory are included inside
every WAR

— Mapped by default

— Access may not be password-protected; easily disabled by a change to
neo-security.xml (see http://kb2.adobe.com/cps/404/kbsos799.html)




T
VERACODE

WAR Structure: Other Servlets

= * jsp: JSPLicenseServlet; passthrough for jrun.jsp.JSPServlet

= [flex2gateway/*, [flashservices/gateway/*, |CFFormGateway/*:
FLEX/plain Flash Remoting gateways for CFC methods
— [flashservices/gateway/pathi.path2.component = pathi/path2/component.cfc
— Gateways can be used in ActionScript NetServices.createGatewayConnection()

— Used internally by <cfgrid> and other built-in cf tags that generate Flash-based
Ul automatically

= GraphServlet: handles /CFIDE/GraphData.cfm (not actually a cfm
file); used by the cfchart tag.

= CFFileServlet: handles /CFFileServlet/*, and serves up files from a
cache directory; used by <cfimage>

= /cfform-internal/*: FLEX FileManagerServlet; serves a handful of
dynamically-generated images and js files

= /WSRPProducer/*: WSRP portlet management Axis service



Final Thoughts




T
VERACODE

Conclusions

= ColdFusion designed to be simple for "developers” to use, but it's
actually very complicated underneath

" |t's easy to make coding mistakes (or overlook vulnerabilities during
code review) if you don’t understand ColdFusion internals
— Request lifecycle
— Error handling
— Variable scopes and precedence

= Like many web application platforms, ColdFusion has a bunch of
“features” that are useful for debugging but also open up holes

= ColdFusion-generated Java classes are pretty ugly; use cfexplode to
help reverse engineer them

* The attack surface is huge by default; strip out unnecessary
components before deploying



T
'VERACODE

More Resources

= Whitepapers, webcasts, and other educational resources

— http://veracode.com/resources

= Veracode ZeroDay Labs Blog
— http://veracode.com/blog

* Download the cfexplode tool
— http://code.google.com/p/cfexplode/

» Contactinfo
— Email: ceng@veracode.com, bcreighton@veracode.com
— Twitter: @chriseng, @unsynchronized
— Phone: 781.425.6040



