
Android: From Reversing to Decompilation

Anthony Desnos, Geoffroy Gueguen
ESIEA: Operational Cryptology and Virology Laboratory

desnos@esiea.fr, gueguen@esiea.fr

Abstract

This talk deals with Android’s bytecode analysis. The Android system is now widespread, and lots of
applications are developed each days. These applications are mostly written in Java, though it is possible
to do calls to binaries or shared libraries. To be executed on the DVM the Java source code is translated
into Java bytecode (.class files) and then a tool named ‘dx’ is used to convert it into the Dalvik format
(.dex files). Such a conversion is needed as the DVM is a register-based machine whereas the JVM is a
stack-based one, and as such they have different opcodes.

Due to the nature of the bytecode, its reversing is somewhat easier than machine code. Indeed, unlike
machine code, (Dalvik) bytecode contains semantic information that allows us to do a better analysis.
We can get useful details on variables, fields, methods. . . We can create signatures for a method, or we
can use the android permissions to see where a specific one is used in an application. The analysis part
allows us to extract the control flow graph (which is composed of basic blocks, and which cannot be
modified dynamically due to the virtual machine) which is used to represent the different possibles paths
of an application.

Furthermore, we have implemented new algorithms to calculate the similarity distance between two
applications, a useful information to know if your application has been stolen from the android market.
It’s also possible to use similarity to do ‘diffing’ of Android applications is useful to see patches of bugs
or insertion of evil code, this is why we have developed a combination of techniques to quickly see the
differences between two applications. Moreover it’s interesting to have the ability to manipulate in a
simple way all these new formats (APK, DEX, Dalvik bytecode, Android’s binary xml) to automate
testing directly in a program or in a specific interpreter.

There are some ways to retrieve the Java source code of an application from the bytecode, for instance
some people use a software which transforms Dex bytecode into Java bytecode and then combine it with
a regular Java decompiler. But the resulting code often looks like an obfuscated version which does
not compile than real source code. That’s why we developed a new decompiler which uses only Dalvik
bytecode to create an original Java source code. We present a new open-source tool (Androguard) written
in Python (and some parts of C language) which help the reversing of Android applications, as well as
our decompiler.

1 Introduction

According to [22], Android consumers in the U.S spend an average of 56 minutes per day on their phones,
with two-thirds of this time spent with Android applications. Moreover, Andy Rubin, Senior Vice President
of Mobile at Google [31] stated that they have over 500.000 Android devices activated every day. So it is
easy to understand [26] why this platform is an increasingly interesting target for misuse.

Many tools have been released to interact with Android applications. Assemblers and dissasemblers, like
smali/bakmali [17] are useful to reverse engineer Android applications. Advanced tools such as apktool [7]
are very useful to modify an application and repackage it. Decompilers [30] [28] transform Android bytecode
to Java bytecode to enable use of classical Java decompilers [23] [14] [27], although they have some issues [4]
during the decompilation.

In this paper, we introduce new algorithms for static analysis of Android applications, in order to address
some problems that users and developers are encountering. All of the algorithms are based on the similarity

1

distance using real world compressors [11]. The first problem that we discuss is how it is possible to create
a rip-off indicator to identify whether an application is similar to another one or not, i.e., to determine if
someone pirated an application or parts of an application. We can extend this problem to extract automati-
cally malware that has been injected into an application. In addition, if we can find similarities between two
applications, the algorithm can be applied to evaluate the efficiency of an obfuscator on the application. A
secondary issue that we address, is how it is possible to obtain and visualize the differences between two valid
versions of an application. We have used our algorithms to identify small dissimilarities in methods and in
basic blocks (without using graphs) in order to use the longest common subsequence algorithm [1] to extract
exact differences. We then discuss how it is possible to recover the source code of an application thanks
to the information the dalvik bytecode carries. We also show an amusing bug we found in disassemblers
regarding the recovery of numbers.

In the first section, we define the similarity distance, and describe how we have choose our compressors
in order to have the maximum performance with the best distance similarity. Next, we describe our main
algorithm to compare applications in order to find similarities. We then extend this algorithm to identify
dissimilarities and perform difference analysis between two applications. In the last section we describe the
different phases commonly implemented in a decompiler and how we adapted them to our own. In the
conclusion, we discuss future work and some open problems to encourage further research in this area.

2 Similarity

The similarity distance based on real world compressors is called the Normalized Compression Distance
(NCD) [11]. The NCD of two elements A and B is defined as dNCD(A,B). We can compute

• C(A) and LA = L(C(A));

• C(B) and LB = L(C(B));

• C(A|B) and LA|B = L(C(A|B));

where A|B is the concatenation of A and B, C is the compressor, and L is the length of a string. Then
dNCD(A,B) is defined by

dNCD(A,B) =
LA|B −min(LA, LB)

max(LA, LB)
. (1)

The NCD is based on the similarity [11] of elements. A compressor C is normal if the following four
axioms are satisfied up to an additive O(log n), where n is the maximal binary length of the elements involved
in the inequalities:

1. Idempotency: C(xx) = C(x), and C(ε) = 0, where ε is the empty string.

2. Monotonicity: C(xy) > C(x).

3. Symmetry: C(xy) = C(yx).

4. Distributivity: C(xy) + C(z) 6 C(xz) + C(yz).

The idea demonstrated in the following simple example. If you take three elements

• X (”HELLO WORLD”) and the length of the compression Y = C(X) = 6,

• X’ (”HELLO WOORLD”) and the length of the compression of Y’ = C(X’) = 7,

• X” (”HI !!!”) and the length of the compression of Y” = C(X”) = 3.

2

the compression of C(XX’) will be similar to C(X) whereas the compression of C(XX”) will not be similar
to C(X).

In addition to these four inequalities being respected by a given compressor, in a real context we must
have timing constraints for execution of the algorithm. The compression rate is not a determining factor for
the choice of the compressor if it complies with the following rules:

1. C respects the four inequalities,

2. C(x) is calculated within an acceptable amount of time.

We studied 5 implementations of different algorithms to choose the one that respects the most inequalities:

• zlib [25], bz2 [3], LZMA [2], XZ [12], Snappy [18].

We chose to test all compressors with random text data sets [13] (the test sets are text data, because
we will not submit binary data to our compressor) on the four inequalities. The following tables show the
resulting number of matches, the total length of compression, and the execution time of each compressor:

Idempotency
LZMA 0/9, 900, 1.45565796

XZ 0/9, 1824, 0.72005010
zlib 0/9, 894, 0.00037599
bz2 0/9, 1294, 0.00088286

Snappy 1/9, 1208, 0.00010705

Monotonicity
LZMA 72/72, 9645, 11.65594506

XZ 72/72, 17108, 5.70679307
zlib 72/72, 9177, 0.00256300
bz2 72/72, 11334, 0.00596595

Snappy 72/72, 13354, 0.00065804

Symmetry
LZMA 26/72, 12266, 11.68412399

XZ 54/72, 20008, 5.68789411
zlib 26/72, 11474, 0.00305796
bz2 72/72, 12972, 0.00746584

Snappy 14/72, 17476, 0.00071502

Distributivity
LZMA 504/504, 153377, 163.45748401

XZ 504/504, 259812, 79.99475789
zlib 504/504, 144557, 0.03746986
bz2 504/504, 170142, 0.09060693

Snappy 504/504, 215810, 0.00880289

3

After these tests (more in [13]) Snappy was selected because speed of compression is far superior and this
compressor respects the inequalities.

2.1 Similarity Algorithm

We propose an algorithm to find efficiently and quickly the similarities (and differences) of methods between
two applications (without debugging information). In our case, we have tested and implemented it with
bytecode (Java [29] or Dalvik [20]) files but it is possible to extend this algorithm to classical binaries. This
algorithm is an improvement in the field of executable comparison as it applies new techniques with very
efficient, precise, and timely results in many domains.

This algorithm is composed of the following steps:

• Generate signatures for each method.

• Identify all methods which are identical.

• Identify all methods which are partially identical by using NCD (with Snappy compressor).

So the global idea is to associate each method of the first application with others of the second application
(unless the method match directly) by using NCD with an appropriate compressor.

The algorithm produces and detects the following elements:

• identical methods,

• similar methods,

• new methods,

• deleted methods.

2.1.1 Initialization of methods

The algorithm (1) must initialize each method, so we can associate several attributes to a method as shown
in figure 1:

• the entropy, based on the raw binary data,

• a buffer which represents the sequence of instructions, with useless information removed from it,

• a unique checksum (or hash) based on the previous buffer,

• a signature.

In order to create the checksum of a method, we must remove and retain some information associated with
an instruction. It is a very important to remove false positives easily. Thus we need to remove information
which is a direct result of the compilation and information which can be changed by a simple modification:

• registers, offset of a jump instruction.

And we need to retain:

• the original name of the instruction (group in a single name the jump instructions), strings, integers
and floats, constants, etc.

4

Algorithm 1 Algorithm for filtering names and operands of an Android instruction

Require: Instruction
buffer ← ””
// goto instructions
if Instruction.opvalue > 0x28 and Instruction.opvalue 6 0x2a then

buffer ← ”goto”
else

buffer ← Instruction.opname
end if
// an integer is present in the instruction
if integer in Instruction.operands then

buffer ← buffer + getIntegers(Instruction)
end if
// a string is present in the instruction
if Instruction.opvalue == 0x1a then

buffer ← buffer + getString(Instruction)
end if
return buffer

Figure 1: Attributes associated with a method

So if we use a unique checksum for each method, it is possible to quickly remove from the comparison,
methods which are exactly identical as show in figure 2.

Figure 2: Remove identical methods by using hash

2.1.2 Generating signatures of methods

We used a normal grammar presented by Silvio Cesare [9] to generate different types of signatures as needed
including the following:

5

• Control Flow Graph,

• API (current application, Android, Java),

• Strings,

• Exceptions.

We considered this signature as an interesting input for the distance similarity because this signature
does not include information about instructions. The information in the signature is more general, (e.g., the
presence of a basic block, if a specific package is called, etc). Of course it is possible to modify the grammar
in order to have a controlled output.

The following is an example of the grammar signature for a method:

Procedure : := StatementList
StatementList : := Statement | Statement StatementList
Statement : := BasicBlock | Return | Goto | I f | Fie ld | Package | St r ing | Exception
Return : := ’R’
Goto : := ’G’
I f : := ’ I ’
Bas icBlock : := ’B’
F i e ld : := ’F’ 0 | ’F’ 1
Package : := ’P’ PackageNew | ’P’ PackageCall
PackageNew : := ’C’
PackageCall : := ’M’
PackageName : := ε | Id
St r ing : := ’S ’ Number | ’S ’ Id
Exception : := Id
Number : := \d+
Id : := [a−zA−Z]\w+

Thus we can generate a particular signature for a method based on selected features. We must create the
best signature to identify methods, in order to identify highly identical methods. Moreover we have not used
particular dependencies like strings, names of classes/methods/fields, etc. We have used only the following
elements:

• Control Flow Graph,

• External API used (Android + Java),

• Exceptions.

For example, we can generate different signatures for one method, with more or less detail:

Lorg/ t0t0 /androguard/TC/TCD; equal (I Ljava/ lang / St r ing ;) Ljava/ lang / St r ing ;
−> : B[P1F0P0P1P1SP1P1SP1P1P1P1IS]B[S]B[RS]B[SG]
−> : B[P1F0P0P1P1S1P1P1S6P1P1P1P1IS4]B[S4]B[RS4]B[S4G]
−> : B[F0SSIS]B[S]B[RS]B[SG]
−> : B[P1{Ljava/ lang / In t eg e r ; t oS t r i ng (I) Ljava/ lang / St r ing ;}F0P0{Ljava/ lang / St r i ngBu i l d e r

; } [. . .] P1{Ljava/ lang / St r ing ; equa l s (Ljava/ lang /Object ;) Z} IS]B[S]B[RS]B[SG]

2.1.3 Identification of methods

If we need to ensure a better match between methods, it is possible to add the following elements to calculate
the similarity distance by using a filtering algorithm [5]:

• the entropy,

• the buffer which represents the sequence of instructions.

6

With the NCD (Algorithm 2, the signature function returns the previous described signature, and the
clean function removes useless information of each instruction of the method), we use the Snappy compressor
to accelerate the comparison between all methods, to detect exactly the same methods (algorithm 3, figure
3), partially the same methods (algorithm 3), new methods (algorithm 4, figure 4) or deleted methods
(algorithm 5).

Algorithm 2 Algorithm of similarity to calculate the distance between two methods

Require: a1, a2
n1 ← NCD(signature(a1), signature(a2))
n2 ← NCD(clean(a1), clean(a2))
return (n1 + n2) / 2

Algorithm 3 Algorithm for finding identical or similar methods between two applications

Require: apps1, apps2
exact ← {}
diff ← {}

for a1 ← apps1.methods() do
if a1.hash not in apps2.hash then

for a2 ← apps2.methods() do
if a2.hash not in apps1.hash then

Append(diff[a1], similarity(a1, a2))
end if

end for
else

Append(exact, a1)
end if

end for
for a1 ← diff.methods() do

a1.sort()
end for

Algorithm 4 Algorithm for identifying new methods

Require: apps1, apps2, diff
new ← []
for a2 ← apps2.methods() do

if a2.hash not in apps1.hash then
state ← true
for a1 ← diff.methods() do

if a1.checksort(a2) then
state ← false
break

end if
end for
if state == true then

Append(new, a2)
end if

end if
end for

7

Figure 3: Find exact/similar methods between two applications

Algorithm 5 Algorithm for identifying deleted methods

Require: apps1, apps2, diff
delete ← []
for a1 ← diff.methods() do

if a1.getsort() == 0 then
Append(delete, a1)

end if
end for

The signature of each method helps to compare all methods more quickly, but an algorithm based on
clustering can filter identical methods before our algorithm in order to accelerate the comparison, and can
be very interesting in the case of comparing one element against N elements.

It is possible to detect all different or identical methods, but we do not care about the entire application.
This is a problem as we need to take into account other information associated with an Android application
in order to extend the ratio of similarity to a entire application.

We can add the following information from an application:

• strings, constants (integers, floats), various internal data like ”fill array data”.

2.2 Detecting pirated applications aka rip-off indicator

A major problem in the Android market is the theft of applications, because it is very easy to download an
application and to crack/re-package it with smali/basksmali/apk-tool to push it in different markets. While
it is possible to compare an application with reverse engineering tool manually using a tool such as baksmali
[17], IDA [16] or Androguard [13], it is very time consuming and inefficient. Automated approaches are
better to compare other applications with the original when piracy is suspected.

8

Figure 4: Identify new methods between two applications

With the previous algorithms, we have all the required information to calculate an indicator (between
0.0 to 100.0) to indicate whether the application has been stolen.

To do that (Algorithm 6), we apply a designation (between 0.0 (identical) to 1.0 (different)) to each
attribute:

• 0.0 to a perfect identical method,

• value of the NCD for a partial identical method,

• value of the NCD for the general information of the application (strings, constants, etc.).

Moreover we exchange the compressor (Snappy) at the end of the algorithm with the XZ compressor in
order to have a more comprehensible value for the final user.

Algorithm 6 Algorithm to calculate the similarity between two applications

Require: diff, exact
marks ← []
for a1 ← diff.methods() do

Append(marks, GetFirstSortValue(a1))
end for
for a1 ← exact.methods() do

Append(marks, 0.0)
end for
finalmark ← 0.0
for i ← marks.get() do

finalmark ← (finalmark + (1.0 - i))
end for
finalmark ← (finalmark / Len(marks)) * 100

9

We have tested the algorithm 6 in multiple cases. The cases include two different applications (Listing
1), two identical applications (Listing 2), two ”quite” identical applications (Listing 3), and with a known
stolen and repackaged application (Listing 4).

Listing 1: Similarity of two different applications

desnos@dest iny :˜/ androguard$. / androsim . py − i examples / obfu/ c l a s s e s t c . dex apks/ c l a s s e s . dex
DIFF METHODS : 3
NEW METHODS : 199
MATCH METHODS : 0
DELETE METHODS : 4
[0 .99816107749938965 , 1 . 0 , 1 . 0 , 1 . 0]
0 .0459730625153

Listing 2: Similarity of identical applications

DIFF METHODS : 0
NEW METHODS : 0
MATCH METHODS : 14
DELETE METHODS : 0
[0 .08235294371843338 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]
99.4509803752

Listing 3: Similarity of quite identical applications

DIFF METHODS : 1
NEW METHODS : 0
MATCH METHODS : 12
DELETE METHODS : 0
[0 .14427860081195831 , 0 .095238097012042999 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0]
98.2891664441

Listing 4: Similarity of a stolen application

desnos@dest iny :˜/ androguard$. / androsim . py − i apks/HolyFuckingBiblev11−market−mi l i t i a −.apk
apks/ ho l y f u ck i ngb i b l e . apk

DIFF METHODS : 1
NEW METHODS : 81
MATCH METHODS : 72
DELETE METHODS : 0
[0 .8460613489151001 , 0 .091269843280315399 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

98.7333362268

We can see that the final mark is very useful for a developer to determine whether his application has
been stolen or not, partially or totally, because he can inspect each method which matches with another.

2.3 Evaluation of Android obfuscators

Another problem with Java or Android applications is the transformation of the source code in bytecode.
This transformation can be easily reversed by using a classical decompiler like jad, jd-gui or dava, with vary-
ing degrees of reliability. Moreover virtual machines do not allow code modification on the fly (polymorphic)
and it is a real problem for classical packers. Nevertheless, Android developers use obfuscators frequently
such as proguard [24] or dasho [33] to prevent the reverse engineering of their software.

10

This leads to an interesting problem. ”How is it possible to evaluate an obfuscator?”. We can answer
this question by using similarity distance as described previously. If two applications have a high number of
equal functions (or almost equal functions), we can say that there is a problem with the obfuscation process.

The obfuscator can use several techniques to protect a Java/Android application:

1. change names of classes, methods, fields,

2. modify the control flow,

3. code optimization,

4. dynamic code loading,

5. change instructions with metamorphic technique.

The first option is not efficient with our similarity distance because we do not use debugging information.
The second option can be a problem with a classical distance, but the similarity distance is not sensible to
this point due to the real compressor. The third can be detected as removal instructions. The two latest
option is an issue and it is not covered by our algorithm. (We have not yet seen any tool which uses this
technique.) Even if this technique will be used we will have to do a normalisation of each method before
applying our algorithm.

We can protect an application with an obfuscator and we can calculate the distance by using a blackbox
technique (our similarity algorithm). If this distance is close to 100 then the obfuscator did a poor job by
using the first three techniques (or other equivalent techniques) as shown in listing 5.

Listing 5: Similarity of application protected by proguard and dasho

desnos@dest iny :˜/ androguard$. / androsim . py − i examples / obfu/ c l a s s e s t c . dex examples / obfu/
c l a s s e s t c p r o gua r d . dex

DIFF METHODS : 7
NEW METHODS : 4
MATCH METHODS : 0
DELETE METHODS : 0
[0 .47394958138465881 , 0 .040816325694322586 , 0 .059999998658895493 , 0 .040816325694322586 ,

0 .059999998658895493 , 0 .13333334028720856 , 0 .040816325694322586 , 0 .095238097012042999]
88.1878750864
desnos@dest iny :˜/ androguard$. / androsim . py − i examples / obfu/ c l a s s e s t c . dex examples / obfu/

c l a s s e s t c d a s h o . dex
DIFF METHODS : 2
NEW METHODS : 0
MATCH METHODS : 10
DELETE METHODS : 0
[0 .50084036588668823 , 0 .13114753365516663 , 0 .1428571492433548 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]
94.0396534709

2.4 Malware

In our algorithm, we can extract automatically new methods (methods that are not present in the first
application but in the second one). Typically, the case of an injected malware (Listing 6) in the Android
official or unofficial markets, a classical application is taken from a market, and the malware writer injects
his ”evil” code in the application and propagates the new application in different markets.

Listing 6: Similarity of application with injected malware

desnos@dest iny :˜/ androguard$. / androsim . py − i apks/com . swampy . sexpos 162 . apk apks/com . swampy
. sexpos . apk−GEINIMI−INFECTED. apk

DIFF METHODS : 0
NEW METHODS : 51

11

MATCH METHODS : 218
DELETE METHODS : 0
[1 . 0 , 0 . 0 , [. . .]]
99 .5433789954
desnos@dest iny :˜/ androguard$. / androsim . py − i apks/TAT−LWP−Mod−Dandelion−o r i g . apk apks/TAT−

LWP−Mod−Dandelion . apk
DIFF METHODS : 0
NEW METHODS : 31
MATCH METHODS : 18
DELETE METHODS : 0
[0 .68480598926544189 , 0 . 0 , [. . .]]
96 .3957579512

It is possible to isolate the malware quickly if we know the original application, which is an easy task
because the malware writer does not generally modify it, (i.e., all original code is intact). Further, it is also
possible to use this technique with multiple (but different) samples, in order to extract identical methods,
because these methods will be the methods of the malware.

Moreover we can isolate new injected methods, but it is possible to extend our algorithm by using diffing
techniques to determine whether someone has modified an original method to inject a hook or not.

3 Differences between applications

It is interesting to calculate the differences between two versions of an application (for reverse engineering)
to identify modifications in order to find a security bugfix, or after the injection of malware. The idea is to
detect classical modifications in a method including:

• modification of codes in a basic block,

• addition of new basic blocks.

We can use the algorithm of similarity in the previous section to find identical/similar methods in order
to extract modifications of instructions from basic blocks. We can add the following steps:

• Identification of identical basic blocks by using NCD,

• Extraction of added/removed instructions by using the longest common subsequence algorithm (LCS)[1].

Futhermore it is possible to change the signature of a method to have a small one to accelerate operations
by removing exceptions and API because it is not an important point in this algorithm.

3.1 Identification of basic blocks

We have used the same algorithm 2 to compare basic blocks (algorithms 7, 8, 9, figures 5, 6), because it is
just a different level of granularity. So we use the NCD (also with Snappy compressor) to compare basic
blocks and checkums/hashes to quickly eliminate identical basic blocks.

3.1.1 Identification of added or removed instructions

After the identification of basic blocks we can use a classical algorithm like the longest common subsequence
problem (LCS) [1] to extract new and old instructions (algorithm 10).

So we must modify our sequence of instructions into a string to use the LCS algorithm. We can also used
a filtered algorithm on each single instruction to convert it to a value between 0 to 255.

For instance, the following basic blocks:

ADD 3
ADD 1
SUB 2

12

Algorithm 7 Algorithm of matching exactly or partially basic blocks between two methods

Require: bb1, bb2
diffbb ← {}
for b1 ← bb1.basicblocks() do

if b1.hash not in bb2.hash then
for b2 ← bb2.basicblocks() do

if b2.hash not in bb1.hash then
Append(diffbb[b1], similarity(b1, b2))

end if
end for

end if
end for
for b1 ← diffbb.basicblocks() do

b1.sort()
end for

Algorithm 8 Algorithm of similarity between two basic blocks

Require: a1, a2
n1 ← NCD(checksum(a1), checksum(a2))
return n1

Figure 5: Find exactly/partially the same basic blocks between two methods

IGET
ADD 3
GOTO

ADD 3
ADD 3
SUB 2
IGET

13

Algorithm 9 Algorithm of matching exactly or partially basic blocks between two methods

Require: bb1, bb2
newbb ← []
for b2 ← bb2.basicblocks() do

if b2.hash not in bb2.hash then
state ← true
for b1 ← diffbb.basicblocks() do

if b1.checksort(b2) then
state ← false
break

end if
end for
if state == true then

Append(newbb, b2)
end if

end if
end for

Figure 6: Find new basic blocks between two methods

Algorithm 10 Algorithm to extract added/removed instructions from a basic block

Require: b1, b2, toString
addins ← []
delins ← []
X ← toString(b1)
Y ← toString(b2)
addins, delins ← LCS(X, Y)

MUL 4
GOTO

are transformed in the following strings :

14

”\x00\x01\x02\x03\x00\x04”
”\x00\x00\x02\x03\x05\x04”

By using the LCS algorithm, we can get the instructions that we must add or remove, as shown in figure
7, in the first string (our first basic block) in order to find the differences between two basic blocks. If we
get the previous strings, it is possible to apply the LCS algorithm:

In : a = ”\x00\x01\x02\x03\x00\x04”
In : b = ”\x00\x00\x02\x03\x05\x04”
In : z = LCS(a , b)

In : z
[[0 , 0 , 0 , 0 , 0 , 0 , 0] ,
[0 , 1 , 1 , 1 , 1 , 1 , 1] ,
[0 , 1 , 1 , 1 , 1 , 1 , 1] ,
[0 , 1 , 1 , 2 , 2 , 2 , 2] ,
[0 , 1 , 1 , 2 , 3 , 3 , 3] ,
[0 , 1 , 2 , 2 , 3 , 3 , 3] ,
[0 , 1 , 2 , 2 , 3 , 3 , 4]]

We have a matrix with the different LCS, where the longest LCS has a length of four:

”\x00\x02\x03\x04”

This matrix is applied to the elements to add or to remove:

In : l a = [] l r = []
In : g e tD i f f (z , a , b , l en (a) , l en (b) , l a , l r)

00
− 01
+ 00

02
03

− 00
+ 05

04

In [1 1] : l a
Out [1 1] : [(1 , ’\ x00 ’) , (4 , ’\ x05 ’)]

In [1 2] : l r
Out [1 2] : [(1 , ’\ x01 ’) , (4 , ’\ x00 ’)]

In this example, we must do the following actions in the first basic block to get the second one :

• add : ADD 3 (position 1), MUL 4 (position 4)

• remove : ADD 1 (position 1), ADD 3 (position 4)

3.2 Visualization

The visualization is an important element during the analysis of differences between two applications, because
it is with this tool that the information is recovered. Current tools display differences with two CFGs (see
figure 8), but it is possible to merge [8] two CFGs to have only one as shown in figure 9.

We can improve the visualization by using a simple graphical chart:

• green for added instructions,

• red for deleted instructions.

15

Figure 7: Find added/removed instructions from a basic block

Figure 8: Visualization of differences by using two CFGs

Figure 9: Visualization of differences by using one CFG

Jump instructions are a major problem when we use only one CFG to display differences, for example : ”IF
X, Y [B-0x90, B-0x60]” which is a jump to 0x90 or 0x60 offsets (after the evaluation of the instruction)
can be changed to : ”IF X, Z [B-0x80, B-0x50]” with a jump to old or new basic blocks. If the block 0x50
is the same as 0x60 but the block 0x80 is new, we need to change the display with correct differences :

16

• IF X, Y [B-0x90, B-0x60]

• IF X, Z [B-0x80, B-0x60]

We need to resolve identical or new basic blocks at different offsets (our algorithm is not dependent of the
position of the basic block). We obtain the algorithm 11 which is the new CFG (with original, new and
different basic blocks) as shown in figure 10.

Algorithm 11 Algorithm of matching exactly or partially basic blocks between two methods

Require: origbb, diffbb, newbb
finalcfg ← []
for b1 ← origbb.basicblocks() do

if b1.name not in diffbb then
b1.tag ← ORIG
Append(finalcfg, b1)

else
b1.tag ← DIFF
Append(finalcfg, diffbb[b1.name])

end if
end for
for b1 ← newbb.basicblocks() do

b1.tag ← NEW
Append(finalcfg, b1)

end for
finalcfg.sort()

Figure 10: Differences and visualization between 2 basic blocks

3.3 Practical tests

Skype The 15th April 2011, AndroidPolice [6] released a new security vulnerability in Skype (version
1.0.0.831) for Android. This vulnerability exposes the users’ name, phone number, and chat logs to all

17

installed applications. The security bug is very simple, it is an incorrect usage of permissions to open files
[6].

So, it is possible for another application to access to all information of your skype account, like account
balance, full name, date of birth, city/state/country, home phone, office phone, cell phone, email addresses,
your webpage, your bio, instant messages. A few days after this vulnerability, Skype [32] release a new
version (1.0.0.983) which fixed this security bug. It is a good example to test our algorithm in a real case
like Skype because this application is not small and it is an interesting case of reverse engineering. We can
identify how many functions are :

• exactly identical: 8038,

• partialy identical: 165,

• new: 14,

• delete: 7.

We analyzed the 165 methods, by searching methods related to file permissions, by using the Java
API or directly with chmod program. Inside the 165 methods, most of them are related to simple constant
modification but we can identify a method really close to another one (with the same name) which manipulate
files:

Lcom/skype/ ipc /SkypeKitRunner ; run ()V with Lcom/skype/ ipc /SkypeKitRunner ; run ()V
0.269383959472

This method has four modified basic blocks, but only three basic blocks merit further investigation.
An integer value (it is the operating mode) of the method openFileOutput has been changed from 3 to 0

(listing 7) :

pub l i c ab s t r a c t FileOutputStream openFileOutput (S t r ing name , i n t mode)

where 3 and 0 are respectively :

• MODE WORLD READABLE (allow all other applications to have read access to the created file) and
MODE WORLD WRITEABLE (allow all other applications to have write access to the created file),

• MODE PRIVATE (the default mode, where the created file can only be accessed by the calling appli-
cation (or all applications sharing the same user ID)).

Listing 7: SkyperKitRunner class, run method: change mode of openFileOutput

DIFF run−BB@0x316 :
[. . .]
220(324) const−s t r i n g v7 , [s tr ing@ 2998 ’ c s f ’]
221(328) + const /4 v8 , [#+ 0] , {0}
222(328) − const /4 v8 , [#+ 3] , {3}
223(328) invoke−v i r t u a l v5 , v7 , v8 , [meth@ 120 Landroid/ content /Context ; (Ljava/ lang /

St r ing ; I) Ljava/ i o /FileOutputStream ; openFileOutput]
[. . .]

In another basic block, the first argument of chmod has been changed (listing 8) from 777 to 750 :

• RWX, RWX, RWX

• RWX, R-X, —

18

Listing 8: SkyperKitRunner class, run method: change argument of chmod

DIFF run−BB@0x348 :
229(346) invoke−s t a t i c [meth@ 5805 Ljava/ lang /Runtime ; () Ljava/ lang /Runtime ; getRuntime]
230(34 c) move−r e su l t−ob j e c t v2
231(34 e) new−i n s t ance v4 , [type@ 899 Ljava/ lang / St r i ngBu i l d e r ;]
232(352) invoke−d i r e c t v4 , [meth@ 5848 Ljava/ lang / St r i ngBu i l d e r ; () V < i n i t >]
233(358) + const−s t r i n g v5 , [s tr ing@ 2921 ’chmod 750 ’]
234(358) − const−s t r i n g v5 , [s tr ing@ 2904 ’chmod 777 ’]
235(358) invoke−v i r t u a l v4 , v5 , [meth@ 5855 Ljava/ lang / St r i ngBu i l d e r ; (Ljava/ lang / St r ing ;)

Ljava/ lang / St r i ngBu i l d e r ; append]
236(35 e) move−r e su l t−ob j e c t v4
237(360) invoke−v i r t u a l v3 , [meth@ 5719 Ljava/ i o / F i l e ; () Ljava/ lang / St r ing ;

getCanonicalPath]

And in the last modified basic block, there is a new call (listing 9) to a new method which fixes all files
in the context directory of the application :

Lcom/skype/ ipc /SkypeKitRunner ; ([Ljava/ i o / F i l e ;) V f i xPe rm i s s i on s]

which fixes all permissions (patch permissions from the previous version) to:

• RWX — — for a directory,

• RW- — — for a file.

Listing 9: SkyperKitRunner class, run method : call new method on files

417(5 c8) + move−ob j e c t / from16 v0 , v19
418(5 c8) invoke−v i r t u a l v4 , v3 , v2 , v5 , [meth@ 5804 Ljava/ lang /Runtime ; (Ljava/ lang /

St r ing ; [Ljava/ lang / St r ing ; Ljava/ i o / F i l e ;) Ljava/ lang /Process ; exec]
419(5 ce) + move−ob j e c t v1 , v4
420(5 ce) move−r e su l t−ob j e c t v2
421(5d0) + invoke−d i r e c t v0 , v1 , [meth@ 1923 Lcom/skype/ ipc /SkypeKitRunner ; ([Ljava/ i o /

F i l e ;) V f i xPe rm i s s i on s]

4 Decompilation

The Dalvik virtual machine is a register-based machine which executes Dalvik bytecode instructions. Its
working is different from a JVM, so its bytecode is different from Java bytecode. Hence, Java decompilers
cannot decompile it.

To overcome this issue, the common technique used by researchers who wants to take a look at the source
of an Android application is to use bytecode-to-bytecode compilers like ded[28] or dex2jar[30] to transform
the Dalvik bytecode into Java bytecode and then to use a regular Java decompiler (jd-gui[15], dava[27]. . .)
on top of it. Such a method is prone to errors that may exist in the conversion of the bytecode, resulting in
an erroneous source code.

Other analysts just use a disassembler [19, 21, 17]. We found that some of these disassemblers make
mistakes which could be used to hide information to an analyst who would use the result of the disassembly.
For example, dexdump does not correctly recover numbers, while IDA and baksmali doesn’t even try although
they give different outputs.

To be able to decompile an application, we first need to disassemble its bytecode. This first step is
performed by androguard. Due to the nature of the bytecode (which contains some high-level information)
we have access to classes, fields and methods of the application along with their type and name.

Once the disassembly process is done, we can start the decompilation. There is two main challenges that
we have to face :

• the first one is data-flow analysis,

19

Figure 11: Source & dexdump output

Figure 12: IDA disassembly

• the second one is control-flow analysis.

The data flow analysis goal is to improve the intermediate representation built from the bytecode. In order
to do this, compilations techniques are used on the IR, such as constant propagation, common subexpressoin

20

Figure 13: Baksmali disassembly Figure 14: androguard disassembly

elimination, dead code elimination,. . .
The control flow analysis goal is to structure the control flow graph of our methods. This phase modifies

the graph to identify structures like loops and conditions.

4.1 DVM representation

We chose to represent an android application by building an abstraction of the Dalvik machine. Our DVM
object contains all the classes of the android application. Classes are represented by a an object which
contains all the information of a class : visibility, type, name, methods,. . .

Methods are also abstracted by an object. As with the classes, methods objects contain all the information
of a method : visibility, type, name, parameters, . . . They are also given a memory, which is used to perform
some data flow analysis. Methods also contains the representation of the bytecode instructions.

Hence, we are able to decompile only one method of an application, and, if we set the memory right, we
can decompile only a single bytecode instruction. This can be use to do some debugging of the application.

4.2 Data and Control flow

An internal memory state is assigned to each methods. This memory is used to represent the registers of
the Dalvik virtual machine. The first thing we do to be able to do some data flow analysis is to construct
the control flow graph of the method. This graph is constructed by partitioning the bytecode instructions
of the method into basic blocks. A basic block is a sequence of instruction which has only one entry point
and one exit point.

When building the CFG, exceptions have to be treated a special way. Due to the nature of exceptions,
their basic blocks do not have parents. Indeed, there is no derivation of the control flow to an excep-
tion(Figure 15), because an exception is triggered when executing. So for each basic blocks we need to check
if the block may trigger an exception, and if it is the case, we modify our graph accordingly(Figure 16).

After having built the CFG, we can perform data flow analysis as presented in [10]. These analysis
transform the intermediate representation in order to propagate information accross different blocks and
optimize the result of the decompilation.

21

Once the data flow analysis and optimizations are done, we can perform an analysis of the CFG to
recover higher structures of control like conditionnal statements, loops,. . . To do such analysis, we calculate
dominators and intervales of the graph as presented in [10]

Figure 15: Basic blocks with exception Figure 16: CFG with exception

The next step is to build an AST from the graph in order to remove cycles and to be able to perform
some other optimizations.

4.3 Writing/Executing source

To write the source of a method, the prototype (visibility, type, name. . .) of the method is written, the
AST built previously is traversed and each node of the AST print its representation. To write the source of
a class, we write its prototype and we write the source of all its methods.

Currently, no optimization is done to recover the value of the attributes of a class, so each method’s
constructors initalize the attributes, in the same way it is done at the bytecode level.

5 Conclusion and Future Work

In the first part of the paper we presented several algorithms to compare applications to identify their
similarities or differences. To do that we applied an original selected compressor (Snappy) obtain a real
usable tool to improve the time of comparison with good results. With this similarity distance, we created
a tool to determine whether a version of application has potentially been pirated. Next we applied this
technique to design a tool to measure the efficiency of an obfuscator, and we demonstrated that there is a
lack of proven tools in this domain. Then we described a new algorithm to find and visualize dissimilarities
between versions of an application.

While this paper demonstrate progress in this area, we need to continue investigating this domain to
compare one application against multiple applications by using clustering. An additional area which merits

22

additional research relates to the possible use of similarity distance to create a database of applications [13]
to check whether an identified application is present in a large set of applications. While preliminary findings
are promising, there remains much work to be done in this important area.

In the last part of the paper we presented a problem we found in disassemblers (even in the one provided
by Google) during the implementation of our decompiler, concerning the recovery of numbers. Then we
described different phases which are generally done in a decompiler. We implemented some of them in order
to have a “minimal” working decompiler, that is to say, whose output can be compiled. Some optimisation
phases still need to be done, mostly to increase the readability of the output, but also to handle special
constructs of the language. The decompiler is built in such a way that it can be used to reverse parts of
an application with the source code generated on the fly. It can also be used to do basic debugging, by
extending the operations of our intermediate representation.

The tools and the framework are open source and can be downloaded on the website [13].

References

[1] http://en.wikipedia.org/wiki/longest common subsequence problem.

[2] http://www.7-zip.org/.

[3] http://www.bzip.org/.

[4] G. Gueguen A. Desnos. Android malwares : is it a dream ? EICAR, 2011.

[5] R. Erra A. Desnos, B. Caillat. Binthavro: towards a useful and fast tool for goodware and malware
analysis. EICAR, 2010.

[6] AndroidPolice. http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-in-skype-for-
android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/.

[7] Brutall. http://code.google.com/p/android-apktool/.

[8] Aureliano Calvo. Showing differences between disassembled functions. In Hack.lu, 2010.

[9] Silvio Cesare. Classification of malware using structured control flow. In AusPDC, 2010.

[10] Cristina Cifuentes. Reverse compilation techniques, 1994.

[11] R. Cilibrasi and P.M.B. Vitanyi. Clustering by compression. IEEE Transactions on Information Theory,
51(4):1523–1545, April 2005.

[12] Lasse Collin. http://tukaani.org/xz/.

[13] Anthony Desnos. http://code.google.com/p/androguard/.

[14] Emmanuel Dupuy. http://java.decompiler.free.fr/?q=jdgui.

[15] Emmanuel Dupuy. http://java.decompiler.free.fr/?q=jdgui.

[16] C. Eagle. The IDA PRO Book. No Starch Press, 2008.

[17] Jesus Freke. http://code.google.com/p/smali/.

[18] Google. http://code.google.com/p/snappy/.

[19] Google. http://developer.android.com/sdk/index.html.

[20] Google. http://www.android.com/.

23

[21] Hex-Rays. http://www.hex-rays.com/products/ida/index.shtml.

[22] Don Kellogg. http://blog.nielsen.com/nielsenwire/?p=28628.

[23] Pavel Kouznetsov. http://www.varaneckas.com/jad.

[24] Eric Lafortune. http://proguard.sourceforge.net/.

[25] Jean loup Gailly and Mark Adler. http://www.zlib.net/.

[26] McAfee. http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf.

[27] Nomair A. Naeem and Laurie Hendren. Programmer-friendly decompiled java. Technical Report
SABLE-TR-2006-2, Sable Research Group, McGill University, March 2006.

[28] Damien Octeau, William Enck, and Patrick McDaniel. The ded Decompiler. Technical Report NAS-TR-
0140-2010, Network and Security Research Center, Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA, September 2010.

[29] Oracle. http://www.java.com/.

[30] Panxiaobo. http://code.google.com/p/dex2jar/.

[31] Andy Rubin. https://twitter.com/#!/arubin/status/85660213478309888.

[32] Skype. http://blogs.skype.com/security/2011/04/privacy vulnerability in skype 1.html.

[33] PreEmptive Solutions. http://www.preemptive.com/products/dasho.

24

